Tablety GS-441524 vs. Molnupiravir (EIDD-2801)

GS-441524

Vývoj liečby FIP s GS441524 bol taký, že sa od objavu začala s využitím výhradne injekčnej formy, ku ktorej sa neskôr pridala aj tabletová forma liečiva. Existencia dvoch foriem využívajúcich rovnakú účinnú látku ale priniesla tak trochu zmätky, ktoré súvisia s rozdielom absorpcie (biologickej dostupnosti – využiteľnosti) účinnej látky pri injekčnom a perorálnom použití. Kým pri injekčnej aplikácii dôjde k využitiu takmer 100% liečiva, pri perorálnom podaní je to u GS iba cca 50%. Aby bolo možné používať rovnaké dávkovanie pre injekčné i tabletové formy liečivá, väčšina výrobcov, ktorí vyrábaju obidve formy liekov, u svojich tabliet uvádza tzv. ekvivalentný obsah GS, ktorý už zohľadňuje zníženú využiteľnosť liečiva podaného perorálnou cestou. Takto je možné ľahko prechádzať z injekcií na tablety a naopak. Takže napríklad pokiaľ tableta od známych výrobcov Lucky, Spark, alebo Hero atd… je ekvivalentná (zodpovedajúca injekčnej forme) povedzme 16mg GS, v skutočnosti obsahuje dvojnásobné množstvo GS, teda 32mg… Pri výpočte ale môžeme smelo používať 16mg a riadiť sa doporučeniami pre dávkovanie pre injekčné použitie. Avšak vzhľadom na to, že svoj kus GS koláča na trhu si chce utrhnúť množstvo rôznych výrobcov, veľa z nich často uvádza z marketingových dôvodov reálny obsah GS, pretože samozrejme taká tableta vyzerá finančne atraktívnejšia, ako tableta s uvádzaným ekvivalentným obsahom GS… U takýchto tabliet ale skutočne musíte s istotou vedieť od výrobcu, aký obsah GS vlastne uvádza, pretože pokiaľ uvádza napríklad 40mg reálny obsah GS v tablete, pri výpočte dávky podľa všeobecne platných doporučení pre injekcie, musíte použiť len polovičný obsah tablety… Inými slovami, tabletu 40mg GS vo výpočtoch používate ako 20mg tabletu…

Na tomto mieste by som rád zdôraznil, že GS-441524 je klinickými štúdiami a státisícami vyliečených mačiek po celom svete overený a bezpečný, s minimom vedlajších účinkov, a preto sa používa ako liek prvej voľby.

Doporučené orientačné dávkovanie GS-441524 pri injekčnej aplikácii alebo pre tablety s uvádzaným ekvivalentným obsahom GS441524. Uvedené dávkovanie platí na 1kg / 24h:

  • 6 mg/kg q24h – Vlhká FIP
  • 8 mg/kg q24h – Suchá FIP
  • 10 mg/kg q24h – Okulárna FIP
  • 12 mg/kg q24h – Neurologická FIP
  • 15 mg/kg q24h – Neurologický relaps

Doporučené orientačné dávkovanie GS-441524 pre tablety s uvádzaným reálnym obsahom GS441524. Uvedené dávkovanie platí na 1kg / 24h:

  • 12 mg/kg q24h – Vlhká FIP
  • 16 mg/kg q24h – Suchá FIP
  • 20 mg/kg q24h – Okulárna FIP
  • 24 mg/kg q24h – Neurologická FIP
  • 30 mg/kg q24h – Neurologický relaps

Keď si budete kupovať tablety sami, venujte zvýšenú pozornosť tomu, aby ste sa dozvedeli informáciu o tom, či udávaný obsah účinnej látky v tablete je reálny, alebo tzv. ekvivalentný.

Poznámka: Vzhľadom na to, že existuje dôvodný predpoklad absorpčného limitu GS441524 v tráviacom trakte, doporučuje sa pre dávkovania v ekvivalente 10mg/kg a viac pri ústnom podaní rozdeliť dávku na 2x denne.

MOLNUPIRAVIR (EIDD-2801)

V súvislosti s liečbou Covid-19 sa na trhu objavilo antivirotikum s nazvom Molnupiravir, čo je len zrozumitelnejšie znejúci názov pre látku s označením EIDD-2801. Na rozdiel od GS-441524 toto antivirotikum sa používa výlučne v orálnej forme. Aj keď jeho bioavailabilita (absorpčná schopnosť) v traviacom trakte je podobná ako u GS441524, teda okolo 50%, vzhľadom na absenciu injekčnej formy sa nepoužíva v doporučenom dávkovaní u výrobcov žiadny “ekvivalentný” obsah účinnej látky a prakticky všetci uvádzajú jej reálny obsah. Nepoužíva sa teda žiadny prepočet na 50% obsahu. Tableta 40mg je proste 40mg a s tym treba počítat aj pri výpočte dávky na základe doporučeného dávkovania. A je tu ešte jedna veľmi dôležitá vec… Farmakokinetika Molnupiraviru je iná ako u GS, a Molnupiravir je teda nutné podávať 2x denne.

Doporučené orientačné dávkovanie tabliet EIDD-2801 na 1kg / 12h:

  • 6 mg/kg q12h – Vlhká FIP
  • 8 mg/kg q12h – Suchá FIP
  • 10 mg/kg q12h – Okulárna FIP
  • 12 mg/kg q12h – Neurologická FIP
  • 15 mg/kg q12h – Neurologický relaps

Aj keď sa vám toto dávkovanie môze na prvý pohľad zdať rovnaké ako u GS, nezabúdajte na podstatný rozdiel. Jedná sa o dávkovanie na 12 hodin (na rozdiel 24 hodín u GS441524).

Vzhľadom na to, že pre použitie Molnupiraviru pri liečbe FIP ešte neprebehla žiadna oficiálna klinická štúdia (jedna teraz beží na UC Davis), doporučuje sa jeho použitie len pre prípady zjavnej rezistencie voči GS441524, čím Molnupiravir nájde uplatnenie hlavne pri ťažkých neurologických relapsoch. Majte na pamäti, že nie sú ešte presne zmapované vedlajšie účinky Molnupiraviru a jeden z najobávanejších je potenciálny mutagénny efekt vedúci k vzniku rakoviny. Netreba robiť paniku, ale je nutné si uvedomiť, že za súčasného stavu poznania je lepšie používať Molnupiravir len pre prípady, keď je to skutočne nevyhnutné. Čas ukáže, či možné vedľajšie účinky sú reálnou hrozbou, alebo sa nikdy nepotvrdia.

Legálnosť vs. Nelegálnosť liečby

V súvislosti s liečivami GS441524 a Molnupiravirom (EIDD-2801) došlo k zaujímavému paradoxu.

Účinnost a bezpečnosť GS441524 pri liečbe FIP bola síce potvrdená klinickou štúdiou, ale kvôli licenčnej politike majiteľa patentu (firma Gilead) neexistuje legálny zdroj liekov a prakticky celá produkcia je sústredená v Číne.

Na druhej strane účinnost a bezpečnosť Molnupiraviru pri liečbe FIP nebola doteraz potvrdená žiadnou oficiálnou klinickou štúdiou, existuje ale legálne dostupná forma lieku primárne určená na liečbu Covid-19. V ČR/SR sa distribuuje pod názvom Lagevrio v balení po 40 toboliek, každá s obsahom 200mg účinnej látky, čo je ale príliš mnoho. Preto je pre použitie u mačiek nutné lieky rozkapsulovať. Samozrejme EIDD-2801 vyrába už aj niekoľko čínskych firiem produkujúcich i GS441524. Keďže liek nie je určený oficiálne pre liečbu FIP, jedná sa o jeho použitie v režime off-label.

Úloha molnupiraviru pri liečbe mačiek s FIP v Austrálii

Richard Malik, Centrum pre veterinárne vzdelávanie, Univerzita v Sydney
Pôvodný článok: A key role for molnupiravir in the management of cats with FIP in Australia, 10-2022

Všetci určite poznáte štandardný spôsob liečby FIP v Austrálii, pri ktorom sa používa remdesivir (IV alebo SCI), GS-441524 (tablety) a meflochín. Tieto tri lieky predstavujú základnú výbavu pre veterinárnych lekárov mačiek v Austrálii, hoci konkrétne detaily a liečebné schémy sa u jednotlivých mačiek líšia podľa ich klinických príznakov a podľa predstáv ošetrujúceho lekára, ktorý prípad rieši, a finančných zdrojov majiteľa. Remdesivir má tú výhodu, že je vhodný na intravenóznu aj subkutánnu liečbu, čo môže byť užitočné v niektorých prípadoch pri pokročilom ochorení alebo v prípadoch, keď je brušné ochorenie také rozsiahle, že existujú obavy, koľko GS-441524 sa vstrebe. Predpokladám, že polyprenyl imunostimulant už nikto nepoužíva napriek nedávnej práci edinburskej skupiny, ktorá preukázala jeho určitú účinnosť.1

Obrázok 1: Britská krátkosrstá mačka z Hongkongu s vlhkou (efuzívnou) FIP. Fotografie s láskavým dovolením Chrisa Simpsona.

Niektorí lekári a klienti v skutočnosti uprednostnia úplné vynechanie remdesiviru a prejdú priamo na tablety GS-441524, ktoré sú lacnejšie, a vzdajú sa potreby vysokých nákladov na hospitalizáciu počas niekoľkodňovej intenzívnej liečby. Diskutuje sa o tom, aký je optimálny čas parenterálneho podávania remdesiviru pred prechodom na tablety GS-441524. Na začiatku sme odporúčali dva týždne parenterálnej liečby, ale napríklad kolegovia z Royal Veterinary College podávajú remdesivir intravenózne 4 – 5 dní a potom prechádzajú na perorálnu liečbu GS-441524.

Meflochín je užitočný liek, ktorý sa môže použiť v kombinácii s liekom GS-441524, alebo sa môže podať, keď si majitelia už nemôžu dovoliť vysokú cenu liečby, v čase, keď sa mačke darí dobre, ale pravdepodobne ešte nie je vyliečená. O najlepšom dávkovacom režime tohto repurpovaného lieku sa vedú diskusie. V pôvodnej práci sa navrhovalo, že ¼ tablety Larium (62,5 mg) podávaná dvakrát týždenne je primeraná, zatiaľ čo ja uprednostňujem 20 až 25 mg na mačku raz denne. Túto dávku často začínam podávať mačkám, keď sa blíži koniec liečby liekom GS-441524, a meflochín podávam niekoľko mesiacov, aby mal imunitný systém mačky trochu viac času na “odstránenie” všetkého vírusu FIP, ktorý sa skrýva v bunkách mononukleárneho fagocytárneho systému.

Obrázok 2: Tekutina s vysokým obsahom bielkovín z brušnej dutiny mačky na obrázku 1.

Zistil som, že liečebné režimy založené na týchto liekoch zvyčajne vedú k úspešnej liečbe mačiatok a mačiek s FIP, hoci jednotlivé prípady môžu byť veľmi náročné.

Podľa môjho názoru sú najväčšou prekážkou úspešnej liečby veľmi vysoké náklady na liečbu. Ďalším problémom je požiadavka 84-dňovej liečby na úplnú elimináciu vírusu.

Samotné lieky sú veľmi drahé, najmä u dospelých mačiek alebo pacientov s ochorením CNS (ktoré si vyžadujú vyššie dávky v mg/kg, aby lieky prenikli do CNS), a to zahŕňa nielen veľmi vysoké náklady na lieky, ale aj náklady na počiatočnú stabilizáciu a priebežné konzultácie na monitorovanie. Výsledkom je, že liečba je pre mnohých majiteľov finančne nedostupná, často hneď od začiatku, a ak sa počas liečby vyvinie rezistencia vírusu FIP, požiadavka na veľmi vysoké dávky, často na dlhšie obdobie, robí liečbu náročnou aj pre najoddanejšieho majiteľa.

Majitelia sa snažili obísť vysoké náklady na liečbu používaním lieku GS-441524 z čierneho trhu, ktorý je bežne dostupný u mnohých dodávateľov. Hoci to nie je legálne, majitelia a najmä chovatelia mačiek si ho vo veľkom zaobstarávali a mnohé mačky boli vďaka týmto liekom zachránené.2 Problémom je, že si nie sme istí skutočnými dávkami alebo kvalitou či produktom, ktorý sa podáva v rôznych farebných tabletách, a naše testovanie ukázalo, že dávka, aj keď je uvedená na obale, môže byť vyššia alebo nižšia ako hodnota uvádzaná výrobcom. Okrem toho nevieme posúdiť rozdiely medzi jednotlivými šaržami liekov z čierneho trhu. Väčšina austrálskych veterinárnych lekárov preto odporúča klientom používať legálne produkty poskytované spoločnosťou BOVA Australia a dodávateľský reťazec je spoľahlivý a pravidelná kontrola kvality zabezpečuje, že každá tableta obsahuje 50 mg lieku GS-4415624, ako je uvedené.

Obrázok 3: Röntgenový snímok mačky z obrázka 1 s vlhkou FIP.

Pandémia COVID viedla k obrovskému výskumu v oblasti prevencie a liečby koronavírusového ochorenia a v súčasnosti sú v Austrálii a inde bežne dostupné dva produkty na perorálnu liečbu ľudských pacientov infikovaných SARS-CoV2, a to molnupiravir a paxlovid.3 Niels Pedersen poskytol na svojej webovej stránke SOC FIP zhrnutie histórie molnupiraviru, ktoré som pripojil k tejto monografii. Kľúčová časť je vystrihnutá a vložená nižšie (s určitými úpravami):

Ako sa očakávalo, molnupiravir bol nedávno testovaný u mačiek s FIP najmenej jedným čínskym predajcom lieku GS-441524 a predbežné výsledky boli uvedené na webovej stránke FIP Warriors CZ/SK. Terénna štúdia pozostávala z 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP, ktoré boli pozorované na klinikách pre spoločenské zvieratá v USA, Spojenom kráľovstve, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. Medzi 286 mačkami, ktoré sa zúčastnili na testoch, nedošlo k žiadnemu úmrtiu, vrátane siedmich mačiek s očnou (n=2) a neurologickou (n=5) FIP. Dvadsaťosem z týchto mačiek bolo vyliečených po 4 – 6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky zostali zdravé aj po 3 – 5 mesiacoch, čo je obdobie, počas ktorého by sa u mačiek, ktoré neboli úspešne vyliečené, očakával relaps.

Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná vo forme rukopisu, predložená na odborné posúdenie a publikovaná. Napriek tomu sa teraz predáva majiteľom mačiek s FIP. Najmenej jeden ďalší veľký predajca lieku GS-441524 má tiež záujem o používanie molnupiraviru na liečbu FIP, čo naznačuje dopyt po ďalšej antivirotickej liečbe mačiek s FIP.

Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo publikované. Najmenej jeden predajca z Číny však vo svojom reklamnom letáku na výrobok s názvom Hero-2801 poskytol niektoré farmakokinetické údaje a údaje z terénnych testov molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP. V 28/286 prípadoch dostalo tento liek v dávke 30 – 40 mg/kg každých 24 hodín, t. j. ekvivalent 15 – 20 mg/kg každých 12 hodín. Pre porovnanie, dávka pre ľudí je 800 mg každých 12 hodín alebo približne 10 mg/kg denne.

Obrázok 4: Údaje poskytnuté o “Hero 2018” od spoločnosti FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir).
https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/

Zdá sa, že odporúčania na dávkovanie sa líšia. Pôvodne sa navrhovalo:

  • FIP: 25mg/kg q24h
  • Očná FIP: 37,5 mg/kg q24h
  • Neurologická FIP: 50 mg/kg q24h

Dĺžka liečby 5-10 týždňov v závislosti od závažnosti ochorenia a konkrétnej mačky.

Neskôr bol tento návrh upravený na základe podnetov od Nielsa Pedersena a skupiny UC Davis:

  • FIP: približne 5-7 mg/kg q12h počas 84 dní.
  • Očná FIP: 8-10 mg/kg q12h počas 84 dní.
  • Neurologická FIP: 10-15 mg/kg q12h počas 84 dní.

Tieto odporúčania vychádzajú z predpokladov na základe publikovaných informácií a je potrebné získať viac skúseností s molnupiravirom v teréne. Sam Evans práve prezentoval niektoré údaje o použití molnupiraviru na záchrannú liečbu na konferencii ISCAID v Glasgowe. Na Kalifornskej univerzite v Davise prebieha aktívny klinický výskum, na ktorom sa podieľajú Brian Murphy a Krystal Regan a ktorého cieľom je stanoviť optimálne dávkovanie a dávkovací interval molnupiraviru, ktorý sa začal v júli 2022.

Je otázne, či sa molnupiravir ukáže bezpečnejší a účinnejší ako GS-441524 pri liečbe FIP, ale tretie antivirotikum by sa mohlo ukázať ako mimoriadne užitočné pri prevencii rezistencie na GS-441524 (ako koktail antivirotík s rôznymi profilmi rezistencie) alebo pri liečbe mačiek, ktoré už nereagujú dobre na GS-441524. Veľkou neznámou je, či molnupiravir bude bez dlhodobých vedľajších účinkov.

Keďže sa zdá, že uvedené dávky v skúškach sú trochu sporné, ja som používal 10 mg/kg dvakrát denne, ale všimnite si, že sa tvrdí, že pokusné mačky dostávali 100 mg/kg raz denne bez zistiteľných nežiadúcich účinkov (pozri obrázok 4).

Kľúčový fakt: Molnupiravir používam u vybraných pacientov už asi 2 mesiace v dávke 10 mg/kg dvakrát denne. Možno by bolo rozumné zvýšiť túto dávku na 15 mg/kg dvakrát denne, najmä pri ochorení CNS. Zdá sa, že vyššie dávky sú pravdepodobne bezpečné a možno aj účinnejšie, ale zdráham sa ich odporúčať, kým nezískame viac dlhodobých dát.

Nakoniec, a to skutočne okrajovo, paxlovid je kombinácia dvoch liekov podávaných súčasne, pričom jeden sa používa na inhibíciu metabolizmu druhého lieku; nemôžem nájsť žiadny precedens pre jeho použitie u mačiek, čo je škoda, pretože u ľudí je to účinnejší z dvoch dostupných perorálnych liekov na COVID. V Austrálii stojí približne rovnako ako molnupiravir, ale pri nákupe z webových stránok v Indii je porovnateľne drahší ako molnupiravir. V plnej miere sa môže ukázať ako veľmi užitočný liek na liečbu FIP, ak sa ukáže ako bezpečný. U ľudí je jedným z problematických vedľajších účinkov odporná chuť v ústach, takzvané “paxlovidové ústa”, čo by sa mohlo ukázať ako katastrofálne, ak by sa to prejavilo u mačiek, pretože majú sklon k peneniu slín.

Aké je teda miesto molnupiraviru v terapii mačiatok a mačiek s FIP? Ako ho dostať? Koľko stojí?

Každý si môže kúpiť molnupiravir na vlastné použitie alebo na použitie u mačiek tak, že si nechá vystaviť lekársky predpis a predloží ho v lekárni. Cena je približne 1 146,39 dolárov
(https://www.pbs.gov.au/medicine/item/12910L) v závislosti od prirážky v lekárni. Obchodný názov je Lagevrio (Merck Sharp & Dohme) a škatuľka obsahuje 40×200 mg kapsúl. Liek bol predbežne schválený TGA vo februári 2022 na liečbu COVID-19 u dospelých, ktorí nevyžadujú kyslík a u ktorých existuje riziko progresie do ťažkého COVID-19.

Na liečbu mačky s hmotnosťou 4 kg dávkou 10-15 mg/kg bid potrebujete 80 mg až 120 mg denne počas 84 dní alebo 6 720 až 10 080 mg. Krabička so 40×200 mg kapsulami predstavuje 8 000 mg, takže ak zohľadníte poplatok za prípravu na vhodnú dávku pre mačku – liečba vysokými dávkami stojí približne 1100 – 2200 dolárov, čo je o dosť lacnejšie ako GS-441524 alebo remdesivir. Takže teraz máme alternatívnu liečbu k tej, ktorú používame v súčasnosti. Aké sú dôkazy? Je farmakokinetika u mačiek dobre známa? Odpoveď na oboje je – nevieme to s istotou, pretože dôkazy neboli podrobené odbornému preskúmaniu, ale presvedčivé nepublikované neoficiálne informácie naznačujú, že ide o účinnú terapiu. A pravdepodobne budeme mať do roka dobré informácie o PK od skupiny Davis.

A teraz to začína byť trochu zložitejšie! Austrália má systém, ktorý umožňuje ľuďom dovážať lieky zo zahraničia pre ich osobnú potrebu a pre potrebu ich rodinných príslušníkov. Dôvodom je, že ľudskí pacienti, ktorým sú predpísané drahé neregistrované lieky, a teda lieky, na ktoré sa nevzťahuje systém PBS, si musia sami nájsť spôsob, ako sa k týmto liekom dostať. Nie je známe, koľko Austrálčanov dováža lieky, ale je to legálne v rámci schémy osobného dovozu. Azda najlepším príkladom je “Klub nákupcov FixHepC” (https://fixhepc.com/), ktorý založili austrálski lekári pre infekčné choroby a praktickí lekári doktori John a James Freemanovci.5 Predtým, ako boli lieky na hepatitídu C dotované z PBS, tisíce Austrálčanov využívali tento klub nákupcov na dovoz cenovo dostupných liekov na hepatitídu C za 1 – 2 % maloobchodnej ceny. Túto iniciatívu podporovala Austrálska spoločnosť pre HIV, vírusovú hepatitídu a medicínu sexuálneho zdravia a mnohí austrálski lekári usmerňovali pacientov, aby si lieky kupovali týmto spôsobom.

“Každý z nich zaplatil 1000 až 2000 dolárov, aby sa uzdravil, namiesto 84 000 dolárov, ktoré si v Amerike účtovala spoločnosť Gilead Sciences. Stále je to drahé, ale pre mnohých je to aspoň cenovo dostupné.”

Je to však spojené s určitým rizikom.
Internetový trh s liekmi je nedostatočne regulovaný, pretože funguje medzi hranicami jurisdikcie a nekvalitné výrobky sú bežné. Podľa niektorých údajov je až 25 % liekov v obehu mimo krajín s vysokými príjmami neštandardných. Najväčším rizikom je nedostatočné množstvo účinnej látky, čo môže viesť k neúmyselnému nedostatočnému liečeniu. Pre lekárov je to zložitý priestor, v ktorom sa musia pohybovať z klinického aj medicínsko-právneho hľadiska. Nie je jasné, kam až siaha povinnosť lekára poskytovať starostlivosť. V súčasnom kódexe správania sa uvádza, že správna lekárska prax zahŕňa “zachovávanie práva pacienta na prístup k potrebnej úrovni zdravotnej starostlivosti a vždy, keď je to možné, mu v tom pomáhať.” Nie je dôvod domnievať sa, že by sa to nevzťahovalo aj na pomoc pacientom pri dovoze liekov, ktoré by si inak nemohli dovoliť, ak by to bolo jednoznačne v ich záujme.

Môj vlastný názor je, že sa jedná o rovnakú situáciu pre veterinárov malých zvierat, ktorí sa podieľajú na liečbe mačiek s FIP, a prísaha veterinárneho lekára, ktorú nedávni absolventi zložili, by toto tvrdenie podporila.

Ako si teda môže klient objednať molnupiravir na liečbu svojej mačky s FIP?

Obrázok 5; Snímka obrazovky korešpondencie s výrobcami lieku Molcovir 200 mg
  1. Prejdite na internet a nájdite URL adresu webovej stránky s názvom IndiaMART https://www.indiamart.com/ a vyhľadajte Molcovir 200mg – v súčasnosti je URL adresa: https://m.indiamart.com/isearch.php?s=Molcovir+200mg&prdsrc=1&countryiso=AU&qu-cx=1&stype=attr=1
  2. Vezmú si vaše údaje a opýtajú sa, o aký liek máte záujem. Potom pošlú váš dopyt niekoľkým lekárňam a požiadajú vás o cenové ponuky. Výrobcovia, s ktorými máme najviac skúseností, sú Dolphin pharmaceuticals a Mediseller, pričom jeden z nich akceptuje platbu cez PayPal namiesto použitia vašej kreditnej karty. Upozornia vás, že clo je vašou vlastnou záležitosťou, ale urobia všetko pre to, aby vám pomohli lieky označiť tak, aby bolo jasné, že nejde o nelegálny liek. Kým sa vám nevráti cenová ponuka, nemôžete nič kúpiť. Na obrázku 5 je uvedený snímok obrazovky korešpondencie so spoločnosťou. Keď akceptujete cenovú ponuku, potom zariadia platbu a následne zaslanie. V súčasnosti je pri kúpe piatich balení cena 30 amerických dolárov (42 austrálskych dolárov) za balenie plus 65 amerických dolárov poštovné. Liečba 4 kg mačky s FIP CNS v dávke 10-15 mg/kg bid počas 84 dní bude pravdepodobne v rozmedzí 100 – 150 austrálskych dolárov. Náklady na liečbu tej istej mačky remdesivirom/GS-441524 sú 6550 USD, ak zoberieme do úvahy len náklady na lieky.

Takže náklady na liečbu mačky molnupiravirom z Indie v rámci schémy osobného dovozu budú predstavovať približne 2 % nákladov na konvenčnú liečbu GS-441524.
To znamená, že žiadna mačka nemusí byť utratená kvôli vysokým nákladom na liečbu –

Obrázok 6; Generický molnupiravir (Molcovir 200 mg kapsuly) zakúpený od spoločnosti IndiaMART a dovezený do Austrálie po preclení

Praktickou otázkou je, ako získať molnupiravir včas. Pri nákupe z tejto webovej stránky to trvá približne 3 týždne, kým sa liek dostane do Austrálie a preclí sa. Jednou z možností by teda bolo začať liečbu remdesivirom a/alebo GS-441524 a prejsť na molnupiravir hneď, ako liek dorazí. Alternatívou je vytvoriť “klub nákupcov”, možno s podporou farmakologickej pobočky Austrálskej a novozélandskej veterinárnej akadémie (Australian and New Zealand College of Veterinary Science Pharmacology chapter), a ten bude zdrojom molnupiraviru, kým si klient nebude môcť zabezpečiť dovoz vlastných zásob. Ďalšou možnosťou by bolo, keby nejaká zložená lekáreň doviezla liek od spoľahlivého výrobcu a upravila ho do veľkosti vhodnej pre mačky a mačiatka, možno ako 60 mg odmeranú tabletu, ktorá by sa dala rozdeliť na polovicu.

Aký je najlepší spôsob liečby mačky s FIP v roku 2022 v Austrálii?

Táto otázka nie je taká jednoduchá, ako by sa mohlo zdať. Remdesivir a GS-441524 majú na konte veľa úspechov ako liečba FIP u mačiatok a mačiek a vyhovuje nám aj nízka dávka meflochínu ako doplnkový liek na konsolidáciu liečby. Väčšina z nás, ktorí sme asistovali pri liečbe mačiek, však poznáme prípady, keď sa u vírusu FIP počas liečby vyvinula získaná mutačná rezistencia. Často sa to dá obísť zvýšením podávaných dávok lieku GS0-441524, ale mnohí majitelia si tento postup jednoducho nemôžu dovoliť.

Rutinné používanie kombinovanej terapie prípadov FIP s použitím GS-441524 a molnupiraviru sa teda dá odporučiť a je skutočne možné, že kombinovaná terapia by mohla byť účinnejšia a rýchlejšia, pretože útočí na dva rôzne ciele vo víruse FIP, a to by potenciálne mohlo viesť ku skráteniu doby liečby. Myšlienka 84-dňovej terapie pochádza zo základnej práce Neila Pedersena a možno aj z predpokladu, že životnosť makrofágov v tkanivách je približne 84 dní, takže na kompletnú elimináciu všetkého vnútrobunkového vírusu, ktorý sa ukrýva v systéme mononukleárnych fagocytov, musíme liečiť dlhšie ako 84 dní životnosti makrofágu.

Pre mnohých klientov sú však obrovské náklady na liečbu neprekonateľným problémom a pre mnohých, a dovolím si tvrdiť, že pre väčšinu klientov, bude možnosť liečiť ich mačiatko alebo mačku za 200 dolárov (náklady na lieky) tým najpodstatnejším argumentom.

Aká je nevýhoda molnupiraviru? Veľkou neznámou je, či molnupiravir nebude mať dlhodobé toxické účinky, keďže účinná látka, N4-hydroxycytidín, je mimoriadne silný mutagén a čas liečby FIP je oveľa dlhší ako 5 dní odporúčaných na liečbu Covid-19 u ľudských pacientov. Pravdepodobnosť vedľajších účinkov je teda teoreticky vyššia. Pre mňa je to úplne teoretické riziko, ale je to niečo, čo musíme u pacientov, ktorých liečime, sledovať, uvedomujúc si možnosť neskoršieho vzniku rakoviny v niektorých prípadoch.

Literatúra

1. Černá, P.; Ayoob, A.; Baylor, C.; Champagne, E.; Hazanow, S.; Heidel, R.E.; Wirth, K.; Legendre, A.M.; Gunn-Moore, D.A. Retrospective Survival Analysis of Cats with Feline Infectious Peritonitis Treated with Polyprenyl Immunostimulant That Survived over 365 Days. Pathogens 202211, 881. https://doi.org/10.3390/pathogens11080881

2. Jones, S.; Novicoff, W.; Nadeau, J.; Evans, S. Unlicensed GS-441524-Like Antiviral Therapy Can Be Effective for at-Home Treatment of Feline Infectious Peritonitis. Animals 202111,2257. https://doi.org/10.3390/ani11082257

3. Atmar RL, Finch N. New Perspectives on Antimicrobial Agents: Molnupiravir and Nirmatrelvir/Ritonavir for Treatment of COVID-19. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0240421. doi: 10.1128/aac.02404-21. Epub 2022 Jul 12. PMID: 35862759; PMCID: PMC9380556.

4. https://ccah.vetmed.ucdavis.edu › files › inline-files (this is a fantastic review of this subject, although some of the arithmetic is wrong. Highly recommended for people who are interested in drug development and action.)

5. https://www.smh.com.au/healthcare/fixhepc-the-buyers-club-for-hepatitis-c-drug-inundated-with-inquiries-20151002-gjzud9.html

6. https://insightplus.mja.com.au/2022/28/importing-medicines-from-overseas-guidance-needed/

7. https://www.tga.gov.au/products/unapproved-therapeutic-goods/personal-importation-scheme

História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu

Niels C. Pedersen
Center for Companion Animal Health, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA, 95616, USA
Pôvodný článok: History of Feline infectious Peritonitis 1963-2022 – First description to Successful Treatment
17.4.2022

Abstrakt

Tento článok pojednáva o vývoji poznatkov o mačacej infekčnej peritonitíde (FIP) od jej rozpoznania v roku 1963 až po súčasnosť a bol pripravený s cieľom informovať veterinárnych lekárov, záchrancov a opatrovateľov mačiek, zamestnancov útulkov a milovníkov mačiek. Stručne sa spomína pôvodca mačacieho koronavírusu a jeho vzťah k všadeprítomnému a minimálne patogénnemu črevnému koronavírusu mačkovitých šeliem, epizootológia, patogenéza, patológia, klinické príznaky a diagnostika. Hlavný dôraz sa kladie na rizikové faktory ovplyvňujúce výskyt FIP a úlohu moderných antivirotík pri úspešnej liečbe.

Úvod

Obrázok 1. Fotografia autora a Dr. Jean Holzworthovej (1915-2007) z roku 1991. Dr. Holzworthová bola najlepším mačacím veterinárnym lekárom, akého autor poznal, a bola zodpovedná za prvú správu o FIP ako špecifickom ochorení. Celú svoju kariéru strávila v Angell Memorial Animal Hospital v Bostone.

Mačacia infekčná peritonitída (FIP) bola opísaná ako špecifické ochorenie v roku 1963 veterinármi v Angell Memorial Animal Hospital v Bostone (Holzworth 1963) (obr. 1). Patologické záznamy z tejto inštitúcie a Štátnej univerzity v Ohiu nedokázali identifikovať skoršie prípady (Wolfe a Griesemer 1966), hoci čoskoro boli identické prípady rozpoznané na celom svete. Prvotné patologické opisy sa týkali difúzneho zápalu tkanív vystielajúcich brušnú dutinu a brušné orgány s rozsiahlym výtokom zápalovej tekutiny, podľa ktorého bolo ochorenie nakoniec pomenované (Wolfe a Griesemer 1966, 1971) (obr. 2,3). Druhá a menej častá klinická forma FIP, ktorá sa prejavuje menej difúznymi a viac rozšírenými granulomatóznymi léziami, ktoré zahŕňajú orgánový parenchým, bola prvýkrát opísaná v roku 1972 (Montali a Strandberg 1972) (obr. 3,4). Prítomnosť zápalových výpotkov v telesnej dutine pri bežnej forme a absencia výpotkov pri menej bežnej forme viedla k pomenovaniu vlhká (výpotková, neparenchymatózna) a suchá (nevýpotková, parenchymatózna) FIP.

Zdá sa, že prevalencia FIP sa zvýšila počas panzootického ochorenia spôsobeného vírusom mačacej leukémie (FeLV) v 60. – 80. rokoch 20. storočia, keď sa zistilo, že mnohé prípady FIP boli spojené s FeLV (Cotter et al., 1973; Pedersen 1976a). Následné zvládnutie infekcie FeLV u domácich mačiek pomocou rýchleho testovania a vakcinácie prinieslo nárast počtu prípadov FIP. Nedávny záujem o chov/ záchranu spolu s účinnou liečbou však viedol k zvýšenému povedomiu o ochorení a jeho diagnostike.

Obrázok 2. Hrubý nekroptický vzhľad brušnej dutiny mačky s akútnym nástupom vlhkej FIP. Brucho je vyplnené niekoľkými stovkami ml žltej viskóznej tekutiny, omentum je začervenané, edematózne a stiahnuté a na povrchu sleziny a okrajoch pečene sú viditeľné fibrínové nánosy (šípky). Na slezine je vidieť vlákno fibrínu
Obrázok 3. Vzhľad otvoreného brucha pri pitve mačky, ktorá uhynula na chronickú formu efuzívnej FIP. Brucho je vyplnené viskóznym, žlto sfarbeným exsudátom a omentum je zhrubnuté a stiahnuté. Hlavné lézie sú v pečeni s početnými štruktúrami podobnými plakom (pyogranulómy) na obale. Viac ohraničené lézie (granulómy), tiež orientované na serózny povrch, vyzerajú mäsitejšie a sú vyvýšené nad povrch. Tieto lézie zasahujú aj do spodného pečeňového parenchýmu a sú typickejšie pre suché FIP. Toto je príklad prípadu FIP, ktorý prechádza medzi vlhkou a suchou formou (šípka).
Obrázok 4A – Hrubý prierez obličkami dvoch mačiek so suchou formou FIP. Lézie sú povrchovo orientované a zasahujú do základného parenchýmu.
Obrázok 4B – lézie suchej formy FIP v orgánoch, ako sú obličky, slepé črevo, hrubé črevo a črevné lymfatické uzliny (obr. 5), boli hrubo zamenené s lymfómom obličiek.
Obrázok 5. Hrubé zväčšenie ileo-cekálno-kolických lymfatických uzlín u mačky so suchou FIP.

Etiologický faktor

Prvé pokusy neumožnili identifikovať pôvodcu FIP, ale potvrdili jej infekčnú povahu (Wolfe a Griesemer 1966). Vírusová etiológia bola stanovená v roku 1968 pomocou ultrafiltrátov infekčného materiálu (Zook a kol., 1968). Príčinný vírus bol následne identifikovaný ako koronavírus (Ward 1970), ktorý je úzko príbuzný s črevnými koronavírusmi psov a ošípaných (Pedersen et al., 1978).

Zmätok nastal, keď bol z výkalov zdravých mačiek izolovaný mačací enterický koronavírus (FECV), ktorý sa ukázal ako nerozoznateľný od vírusu mačacej infekčnej peritonitídy (FIPV) (Pedersen a kol., 1981). Na rozdiel od vírusu FIPV, ktorý ľahko vyvolal FIP u laboratórnych mačiek, experimentálne infekcie vírusom FECV boli zväčša asymptomatické. Vzťah týchto dvoch vírusov sa objasnil, keď sa zistilo, že FIPV sú mutantmi FECV, ktoré vznikajú v tele každej mačky s FIP (Vennema et al., 1995; Poland et al., 1996).

FECV je všadeprítomný v populáciách mačiek na celom svete a prvýkrát sa vylučuje vo výkaloch približne od 9. – 10. týždňa života, čo sa zhoduje so stratou materskej imunity (Pedersen a kol., 2008;). Infekcia prebieha fekálno-orálnou cestou a je zameraná na črevný epitel a primárne príznaky enteritídy sú mierne alebo nevýrazné (Pedersen et al., 2008; Vogel et al., 2010). K následnému vylučovaniu do stolice dochádza z hrubého čreva a zvyčajne prestane po niekoľkých týždňoch alebo mesiacoch (Herrewegh et al.,1997; Pedersen et al., 2008; Vogel et al., 2010). Imunita je krátkodobá a opakované infekcie sú bežné (Pedersen et al., 2008; Pearson et al., 2016). Časom sa nakoniec vyvinie silnejšia imunita a u mačiek starších ako 3 roky je menej pravdepodobné, že budú vylučovať infekciu výkalmi (Addie et al., 2003). FECV neustále podlieha genetickému driftu do lokálne a regionálne identifikovateľných kladov (Herrewegh et al.,1997; Pedersen et al., 2009).

FECV a FIPV sú klasifikované ako biotypy poddruhu koronavírusu mačiek (FCoV). Genómy biotypov FECV a FIPV sú na > 98 % príbuzné, avšak s jedinečným tropizmom hostiteľských buniek a patogenitou (Chang et al., 2012; Pedersen et al., 2009). FECV infikujú zrelý črevný epitel, zatiaľ čo FIPV strácajú črevný tropizmus a získavajú schopnosť replikovať sa v monocytoch/makrofágoch. Publikované názvy FECV alebo FIPV sa tu budú používať, keď sa bude hovoriť o aspektoch ochorenia špecifických pre každý biotyp, zatiaľ čo termín FCoV sa bude používať, keď sa bude hovoriť o znakoch spoločných pre oba biotypy.

Na zmene biotypu FECV na FIPV sa podieľajú tri typy mutácií. Prvý typ, ktorý je jedinečný pre každú mačku s FIP (Poland et al., 1996), pozostáva z nahromadenia missense a nonsense mutácií v c-konci pomocného 3c génu, ktoré často vedú k skráteným produktom 3c génu (Pedersen et al., 2012; Vennema et al., 1995). Druhý typ mutácií pozostáva z dvoch špecifických jednonukleotidových polymorfizmov vo fúznom peptide génu S, pričom jedna alebo druhá forma je spoločná pre > 95 % FIPV a chýba u FECV (Chang et al., 2012). Tretí typ mutácií, ktorý je jedinečný pre každý izolát FIPV a nenachádza sa u FECV, sa vyskytuje v motíve štiepenia furínu medzi doménou viažucou receptor (S1) a fúznou doménou (S2) hrotového génu (S) a v jeho okolí (Licitra et al., 2013). Tieto mutácie majú rôzny vplyv na štiepnu aktivitu furínu. Spoločne a zatiaľ neurčeným spôsobom sú zodpovedné za posun tropizmu hostiteľskej bunky z enterocytu na makrofág a za hlbokú zmenu formy ochorenia.

FCoV, a teda aj FECV a FIPV, existujú v dvoch sérotypoch identifikovaných podľa protilátok proti vírusovému neutralizačnému epitopu na géne S (Herrewegh et al., 1998; Terada et al., 2014). FCoV sérotypu I sú identifikované v sérach mačiek a prevládajú vo väčšine krajín. FCoV sérotypu II sú výsledkom rekombinácie s časťou S génu koronavírusu psov (Herrewegh a kol., 1998; Terada a kol., 2014) a identifikujú sa pomocou protilátok proti koronavírusu psov. FIPV sérotypu II sa ľahko kultivujú v tkanivových kultúrach, zatiaľ čo FIPV sérotypu I sa ťažko prispôsobujú rastu in vitro. FECV sérotypu I a II neboli pestované v bežných bunkových kultúrach (Tekes et al., 2020).

FIPV sa nachádzajú výlučne v aktivovaných monocytoch a makrofágoch v postihnutých tkanivách a výpotkoch a nevylučujú sa do vonkajšieho prostredia. Preto prenos FIPV z mačky na mačku (horizontálny) nie je hlavným spôsobom šírenia. FIP sa skôr riadi vzorom základnej enzootickej infekcie FECV, so sporadickými prípadmi a príležitostnými malými výskytmi ochorenia (Foley et al., 1997). Tieto zhluky prípadov sa môžu mylne považovať za epizootie. Jediná správa o epizootickom výskyte FIP bola spojená s jediným vírusom sérotypu II, ktorý sa zrejme vyvinul v útulku, v ktorom boli umiestnené psy aj mačky (Wang a kol., 2013). Horizontálny prenos sa v tomto prípade riadil skôr epizootickým ako enzootickým modelom ochorenia, pričom infekcia sa rýchlo rozšírila na mačky všetkých vekových kategórií a v úzkom kontakte s indexovým prípadom (Wang et al., 2013).

Nízky výskyt prípadov FIP v populácii naznačuje, že mutácie FIPV vznikajú zriedkavo. Štúdie zahŕňajúce infekciu FECV u imunokompromitovaných mačiek infikovaných FIV a FeLV však naznačujú, že mutanty FIP môžu byť bežné, ale spôsobujú ochorenie len za určitých okolností. Devätnásť mačiek infikovaných vírusom imunitnej nedostatočnosti mačiek (FIV) počas 6 rokov a kontrolná skupina 20 súrodencov, ktorí neboli infikovaní vírusom FIV, boli orálne infikované vírusom FECV (Poland et al., 1996). Mačky v oboch skupinách zostali asymptomatické počas dvoch mesiacov, keď sa u dvoch mačiek v skupine infikovanej FIV vyvinula FIP. V druhej štúdii bolo 26 mladých mačiek s enzootickou infekciou FECV a z chovateľskej kolónie bez anamnézy FIP kontaktne vystavených nosičom FeLV (Pedersen a kol., 1977). U dvoch mačiatok v skupine sa následne vyvinula FIP 2 – 10 týždňov po tom, ako sa stali viremickými FeLV. Zostáva otázka, ako dlho môžu vírusy FIPV prežívať v tele, kým sa vylúčia? Podľa jednej z teórií pretrvávajú v tele určitý čas a patologickými sa stanú len vtedy, ak je voči nim narušená imunita (Healey a kol., 2022). Túto teóriu podporuje spôsob, akým sa vyvíja imunita voči FeLV. Väčšina mačiek po dosiahnutí veku mačiatka odolá vírusu FeLV a vyvinie si pevnú a trvalú imunitu, k čomu však dochádza v priebehu niekoľkých týždňov, počas ktorých vírus pretrváva v subklinickom alebo latentnom stave (Pedersen a kol., 1982; Rojko a kol., 1982). Metylprednizolón podávaný počas tohto obdobia, ale nie po ňom, zruší vyvíjajúcu sa imunitu a vedie k stavu pretrvávajúcej virémie.

Epizootológia

Epizootiológia je štúdium výskytu, rozšírenia a možnej kontroly chorôb zvierat a vplyvu faktorov prostredia, hostiteľa a pôvodcu. FIP je označovaná za jednu z najdôležitejších infekčných príčin úmrtí mačiek, hoci neexistujú presné údaje o prevalencii. Odhaduje sa, že 0,3 – 1,4 % úmrtí mačiek prezentovaných veterinárnym inštitúciám súvisí s FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Riemer et al., 2016) a v niektorých útulkoch a chovných staniciach až 3,6 – 7,8 % (Cave et al., 2002). FIP sa opisuje aj ako ochorenie prostredia s hustejším výskytom viacerých mačiek. Tri štvrtiny prípadov FIP v aktuálne prebiehajúcej liečebnej štúdii pochádzali z terénu prostredníctvom dočasných opatrovateľov/záchranných organizácií a útulkov pre mačky, 14 % z chovných staníc a len 11 % z domácností.1

Štúdie založené na prípadoch pozorovaných v akademických inštitúciách preukázali vplyv veku a pohlavia na výskyt FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Pedersen 1976a; Worthing et al., 2012; Riemer et al., 2016). Tri štvrtiny prípadov v týchto kohortách sa vyskytli u mačiek mladších ako 3 roky a len málo prípadov po 7. roku života. Potvrdila to aj aktuálna a prebiehajúca terénna štúdia z Českej republiky a Slovenska, v ktorej sa zistilo, že viac ako 80 % prípadov FIP sa vyskytlo u mačiek vo veku do 3 rokov a len 5 % u mačiek starších ako 7 rokov (obr. 6).1 Skoršie inštitucionálne štúdie sa líšili, pokiaľ ide o vplyv pohlavia, ale náznaky naznačovali, že kocúri sú o niečo náchylnejší na FIP ako mačky. Potvrdili to aj súčasné údaje z terénu, ktoré ukazujú pomer samcov a samíc 1,3:1,1. Nie je jasné, či kastrácia ovplyvňuje výskyt FIP, pričom niektoré správy naznačujú, že môže zvyšovať náchylnosť (Riemer a kol., 2016), zatiaľ čo iné neuvádzajú taký jasný vplyv.1

Obrázok 6. Vek viac ako 607 mačiek z Českej republiky a Slovenska v čase diagnostikovania a liečby FIP.1 Tridsať percent infekcií bolo zaznamenaných u mačiek vo veku šesť mesiacov alebo mladších, 50 % vo veku jedného roka a 85 % vo veku troch rokov alebo mladších.

Na zvýšenom výskyte FIP sa podieľajú ďalšie environmentálne a vírusové rizikové faktory, ale ich význam si vyžaduje znalosť výskytu ochorenia v prípade ich absencie. Možnú východiskovú úroveň mohla poskytnúť štúdia enzootickej infekcie FECV, ktorá bola nepoznane prítomná mnoho rokov v dobre spravovanej špecifickej chovateľskej kolónii bez patogénov (Hickman a kol., 1995). Táto kolónia bola udržiavaná v prísnej karanténe bez iných infekcií a úroveň výživy a chovu bola vysoká. Táto kolónia vyprodukovala stovky mačiatok každý rok, kým bol diagnostikovaný prvý prípad FIP. Takéto pozorovania naznačujú, že FIP môže byť zriedkavým javom pri absencii rizikových faktorov.

Význam premiestnenia do nového domova ako rizikového faktora FIP sa doceňuje až v súčasnosti. Chovatelia plemenných mačiek, z ktorých mnohí nezaznamenali žiadne prípady FIP vo svojich chovoch, majú najväčšie obavy z oznámenia, že u jedného z ich mačiatok sa krátko po odchode do nového domova vyskytla FIP. Nedávna štúdia zistila, že viac ako polovica mačiek s FIP zažila v priebehu týždňov pred ochorením zmenu prostredia, pobyt v útulku alebo odchyt .1 Mačky sú známe tým, že skrývajú vonkajšie príznaky stresu, aj keď trpia vážnymi vnútornými chorobnými následkami. Aj také jednoduché postupy ako zmena klietky potlačia imunitu a reaktivujú latentné vylučovanie herpes vírusu a príznaky ochorenia u mačiek (Gaskell a Povey, 1977). Stresové situácie, dokonca aj tie, ktoré sa zdajú byť menej závažné, môžu spôsobiť zníženie hladiny lymfocytov a “chorobné správanie” (Stella a kol., 2013).

Na prevalencii FIP v populácii sa môžu podieľať aj rozdiely v genetickej výbave enzootických kmeňov FCoV. Predpokladá sa, že FIPV sérotypu II sú virulentnejšie ako sérotyp I a je pravdepodobnejšie, že sa prenášajú z mačky na mačku (Lin et al., 2009; Wang et al., 2013). Je tiež možné, že určité klady FECV sú náchylnejšie na mutáciu na FIPV, čo by sa malo preštudovať. Autor tiež pozoroval neprimerane vysoký podiel mačiek s neurologickou FIP v niektorých regiónoch, čo naznačuje, že genetické determinanty v určitých kmeňoch FCoV môžu byť neurotropnejšie.

S náchylnosťou na FIP sa spájajú imunodeficiencie spojené s retrovírusmi. Až polovica prípadov FIP počas vrcholu panzootického ochorenia FeLV bola perzistentne infikovaná FeLV (Cotter et al., 1973; Pedersen 1976a; Hardy 1981). FeLV infekcia spôsobuje potlačenie T-bunkovej imunity, čo môže inhibovať ochrannú imunitnú odpoveď na FIP. Význam infekcie FeLV pre výskyt FIP sa výrazne znížil od 80. rokov 20. storočia, keď odstránenie nosičov a vakcinácia vytlačili FeLV späť do prírody, kde sú expozície menej závažné a imunita je obvyklým výsledkom. Chronická infekcia vírusom mačacej imunodeficiencie (FIV) sa tiež ukázala ako rizikový faktor pre FIP u mačiek infikovaných FECV v experimentálnych podmienkach (Poland et al., 1996). V jednej nedávnej terénnej štúdii bola infekcia FeLV rozpoznaná u 2 % a FIV u 1 % mačiek liečených na FIP.1

Výskyt FIP u čistokrvných mačiek je údajne vyšší ako u mačiek z náhodných chovov, pričom niektoré plemená sa zdajú byť náchylnejšie ako iné (Pesteanu-Somogyi et al., 2006; Worthing et al., Genetická predispozícia na FIP sa skúmala v niekoľkých chovoch perzských mačiek a odhaduje sa, že predstavuje polovicu rizika ochorenia (Foley et al., 1997). niektoré plemená, ako napríklad birman, sú náchylnejšie na vznik suchej ako mokrej FIP (Golovko et al., 2013). Pokusy o identifikáciu špecifických génov spojených s náchylnosťou na FIP u birmských mačiek zahŕňali niekoľko génov súvisiacich s imunitou, ale žiadny z nich nedosiahol požadovanú významnosť (Golovko a kol., 2013). Najväčšia štúdia genetickej náchylnosti na FIP ukázala, že je extrémne polymorfná a ako hlavný rizikový faktor sa v nej uvádza príbuzenská plemenitba (Pedersen et al., 2016). Špecifické polymorfizmy v niekoľkých génoch boli tiež spojené s vysokou úrovňou vylučovania FECV medzi niekoľkými plemennými plemenami mačiek (Bubenikova et al., 2020).

U samíc sa môže FIP, zvyčajne vlhká forma, vyvinúť počas gravidity alebo v perinatálnom období. Tento jav pripomína potlačenie imunity u gravidných žien a predispozíciu na určité infekcie (Mor a Cardenas 2010). Nie je jasné, či sa subklinická FIP aktivuje v dôsledku gravidity alebo zvýšenou vnímavosťou na novú infekciu. Infekcia matky na začiatku gravidity vedie k úmrtiu plodu a resorpcii, zatiaľ čo neskoršie infekcie často vedú k potratu (obr. 7). Mačiatka sa môžu narodiť aj zdravé, ale v perinatálnom období sa u nich vyvinie choroba a uhynú. Niektoré mláďatá sa rodia nenakazené vďaka účinnosti placentárnej bariéry medzi matkou a plodom alebo vďaka pomoci antivírusovej liečby (obr. 8).

Obrázok 7. Potratené mačiatka od matky, u ktorej sa v neskoršom štádiu gravidity vyvinula vlhká FIP. Potrat bol prvým príznakom FIP, po ktorom rýchlo nasledovali klasické príznaky abdominálnej mokrej FIP. Matka bola úspešne vyliečená z FIP pomocou antivirotika GS-441524.
Obrázok 8. U tejto matky sa 3 týždne po začiatku gravidity objavili príznaky vlhkej brušnej FIP a bola úspešne vyliečená pomocou GS-441524. Následne priviedla na svet vrh štyroch mačiatok cisárskym rezom, z ktorých jedno uhynulo a tri prežili a vyrastali zdravé. Liečba sa podávala počas zvyšných 6 týždňov gravidity a pokračovala 6 týždňov, počas ktorých boli mačiatka úspešne dojčené. GS-441524 nemal žiadne zjavné vedľajšie účinky na matku alebo mačiatka.

Možný nárast počtu prípadov FIP bol pozorovaný u mačiek starších ako 10 rokov v štúdiách, ktoré sa uskutočnili pred 50 rokmi (Pedersen 1976a). O niečo viac ako 3 % prípadov FIP v nedávnej štúdii sa vyskytlo u mačiek vo veku 10 rokov a viac a 1,5 % u mačiek vo veku 12 rokov a viac (obr. 6).1 Výskyt FIP u starších jedincov často zahŕňa dva rôzne scenáre. Prvý scenár zahŕňa aj vystavenie sa vylučovaniu výkalov FECV, ale jedinečným spôsobom. Je bežné, že staré mačky sa párujú ešte ako mačiatka a žijú spolu v relatívnej izolácii nevystavené FECV po mnoho rokov. Jedna mačka z páru uhynie, zostane sama a do domácnosti sa privedie oveľa mladšia spoločníčka získaná zo záchrannej organizácie, útulku alebo chovateľskej stanice, u ktorej je vysoká pravdepodobnosť, že vylučuje FECV. Staršie mačky sú tiež náchylné na tie isté rizikové faktory FIP ako mladšie mačky, ale aj na ďalšie faktory spojené so starnutím. Prvým z nich je vplyv starnutia na imunitný systém, pričom najdôslednejším je zhoršenie bunkovej imunitnej funkcie (Day 2010). Medzi ďalšie rizikové faktory spojené so starými mačkami patria oslabujúce a potenciálne imunosupresívne účinky ochorení, ako je rakovina, a chronické ochorenia obličiek, pečene, ústnej dutiny a čriev. Niektoré ochorenia starých mačiek môžu byť zamenené za FIP alebo komplikovať liečbu FIP, ak sú prítomné súčasne.

Medzi ďalšie rizikové faktory, ktoré je potrebné ďalej skúmať, patrí strata materskej systémovej imunity oddelením pri narodení, skoré odstavenie a strata laktogénnej imunity, podvýživa, bežné infekčné ochorenia mačiatka, skorá kastrácia, očkovanie, vrodené srdcové chyby a dokonca aj požiar v útulku (Drechsler a kol.), 2011; Healey et al., 2022; Pedersen 2009, Pedersen et al. 2019).1 Najdôležitejším pozitívnym rizikovým faktorom však zostáva prítomnosť FECV v populácii (Addie et al., 1995). Prevalencia FIP v niekoľkých chovoch perzských mačiek súvisela v jednej štúdii aj s podielom mačiek, ktoré v danom čase vylučujú FECV, a s podielom týchto mačiek, ktoré sú chronickými vylučovateľmi (Foley a kol., 1997). Význam vystavenia FECV podporuje potrebu nájsť spôsoby, ako buď zabrániť infekcii, alebo znížiť jej závažnosť. Jedným z prvých krokov je lepšie pochopenie imunity FECV (Pearson et al., 2019).

Patogenéza

Prvým rozhraním medzi FECV a imunitným systémom sú lymfatické tkanivá čreva (Malbon et al., 2019, 2020). Hoci následné udalosti vedúce k FIP nie sú úplne objasnené, je možné špekulovať na základe toho, čo je už známe o infekciách FECV a FIPV, iných makrofágovo-tropických infekciách a vírusovej imunite vo všeobecnosti. Častice a proteíny FECV sa počas črevnej infekcie dostanú do miestnych lymfatických tkanív a spracujú sa fagocytujúcimi bunkami najprv na peptidy a nakoniec na aminokyseliny. Niektoré z týchto peptidov budú po usporiadaní na povrchu buniek rozpoznané ako cudzie, čo vyvolá vrodenú (prirodzenú alebo nešpecifickú) a adaptívnu (získanú alebo špecifickú) imunitnú odpoveď (Pearson et al., 2016). FECV tiež prechádzajú mutáciou na FIPV v rovnakom čase a u rovnakého typu buniek. Niektoré z týchto mutácií umožnia vírusu replikovať sa v týchto alebo blízko príbuzných bunkách špecifickej monocytovej/makrofágovej línie.

Zdá sa, že hostiteľskou bunkou pre FIPV je špecifická trieda aktivovaných monocytov, ktoré sa nachádzajú okolo venúl na povrchu črevných a hrudných orgánov, mezentéria, omenta, uveálneho traktu, mening, cievovky a ependymu mozgu a miechy a voľne vo výpotkoch. Tieto bunky patria do triedy aktivovaných (M1) (Watanabe a kol., 2018) a podobajú sa subpopulácii malých peritoneálnych makrofágov opísanej u myší (Cassado a kol., 2015). Tento typ buniek vzniká z cirkulujúcich monocytov pochádzajúcich z kostnej drene, ktoré sa rýchlo mobilizujú z krvi v reakcii na infekčné alebo zápalové podnety. V okolí krvných ciev v sietnici postihnutej FIP bola opísaná rovnako vyzerajúca populácia aktivovaných monocytov (Ziolkowska et al., 2017). Tieto bunky sa farbili na kalprotektín, čo poukazuje na ich krvný pôvod. Hoci infekcia FIPV prebieha spočiatku v menších aktivovaných monocytoch, replikácia vírusu je najintenzívnejšia vo veľkých, vakuolizovaných, terminálne diferencovaných makrofágoch (Watanabe a kol., 2018). Vírus uvoľnený z týchto buniek rýchlo infikuje aktivované monocyty produkované v kostnej dreni a stiahnuté do daného miesta z krvného obehu.

Bunkový receptor, ktorý FECV využívajú na infikovanie črevných epitelových buniek, ešte nebol určený. Bunkový receptor, ktorý FIPV používajú na infikovanie aktivovaných monocytov, tiež nie je známy. RNA pre konvenčné receptory koronavírusov, ako je aminopeptidáza N (APN), angiotenzín konvertujúci enzým 2 (ACE2) a CD209L (L-SIGN), neboli v infikovaných peritoneálnych bunkách mačiek s experimentálnou FIP upregulované a CD209 (DC-SIGN) bol výrazne nedostatočne exprimovaný (Watanabe et al., 2018). Alternatívna cesta infekcie aktivovaných monocytov môže zahŕňať imunitnú komplexáciu vírusu a vstup do buniek fagocytózou (Dewerchin et al., 2008, 2014; Van Hamme et al., 2008). Aktivované monocyty v léziách sa silne pozitívne farbia na antigén FIPV, IgG a komplement (Pedersen, 2009) a mRNA pre FcγRIIIA (receptor CD16A/ADCC) je v infikovaných bunkách výrazne zvýšená (Watanabe et al., 2018), čo podporuje infekciu prostredníctvom imunitného komplexovania a alternatívnych receptorov súvisiacich s fagocytózou.

Makrofágové patogény sú intracelulárne a eliminácia infikovaných buniek prebieha prostredníctvom usmrcovania sprostredkovaného lymfocytmi. Prvou obrannou líniou sú nešpecifické lymfocyty, a ak zlyhajú, nasleduje adaptívna imunitná odpoveď na FIPV prostredníctvom špecifických T-lymfocytov. Ak sa nepodarí zadržať a eliminovať infikované aktivované monocyty a makrofágy, môžu sa lokálne šíriť v brušnej dutine, pravdepodobne z lymfatických uzlín v oblasti dolného čreva a miesta replikácie FECV. Šírenie lokálne a do vzdialených miest prostredníctvom krvného obehu sa uskutočňuje infikovanými monocytovými bunkami (Kipar a kol., 2005).

FIP sa vyskytuje v dvoch základných formách, vlhkej (efuzívna, neparenchymatózna) (obrázky 2 a 3 )alebo suchej (neefuzívna, parenchymatózna) (obrázky 4 a 5), pričom vlhká FIP predstavuje 80 % prípadov.1 Termín “vlhká” sa vzťahuje na charakteristický výpotok tekutiny v bruchu alebo hrudníku (Wolfe a Griesemer 1966, 1971). V léziách vlhkej FIP dominuje zápal pripomínajúci hypersenzitivitu okamžitého alebo Arthusovho typu (Pedersen a Boyle, 1980), zatiaľ čo lézie suchej FIP pripomínajú hypersenzitívne reakcie oneskoreného typu (Montali a Strandberg 1972; Pedersen 2009). Vlhké a suché formy FIP preto odrážajú konkurenčné vplyvy protilátkami a bunkami sprostredkovanej imunity a súvisiacich cytokínových dráh (Malbon a kol., 2020, Pedersen 2009). Predpokladá sa, že imunita voči bunkám infikovaným FIPV, ktorá je normou, zahŕňa silné reakcie sprostredkované bunkami (Kamal et al. 2019). Predpokladá sa, že k suchej FIP dochádza vtedy, keď je bunkami sprostredkovaná imunita čiastočne účinná pri potláčaní infekcie, a k vlhkej FIP vtedy, keď je bunková imunita neúčinná a prevládajú humorálne imunitné reakcie.

FIP sa považuje za jedinečnú medzi makrofágnymi infekciami, pretože je vírusová, ale suchá forma má mnoho spoločných klinických a patogénnych znakov s ochoreniami mačiek spôsobenými systémovými mykobakteriálnymi (Gunn-Moore et al., 2012) a plesňovými infekciami (Lloret et al., 2013). Podobnosti v patogenéze existujú aj medzi vlhkou FIP a vírusovými infekciami zosilnenými protilátkami, ako sú horúčka Dengue a syndróm hemoragického šoku Dengue (Pedersen a Boyle 1980; Rothman a kol., 1999, Weiss a Scott 1981).

Predpokladá sa, že reakcie hostiteľa výlučne určujú výsledok infekcie FIPV a výsledné formy ochorenia. Avšak makrofágovo-tropné patogény si vyvinuli vlastné jedinečné obranné mechanizmy proti hostiteľovi (Leseigneur et al., 2020). Jedným z mechanizmov je oddialenie programovanej bunkovej smrti (apoptózy). Oneskorená apoptóza umožňuje trvalú mikrobiálnu replikáciu a prípadné uvoľnenie väčšieho množstva infekčných agensov, ako bolo opísané aj v prípade makrofágov infikovaných FIPV (Watanabe et al., 2018). FIPV môže tiež kontrolovať rozpoznávanie a ničenie infikovaných aktivovaných monocytov špecifickými alebo nešpecifickými T-bunkami. Cieľom bunkového povrchu pre T-bunky, ktoré zabíjajú infikované bunky, sú pravdepodobne proteíny (antigény) FIPV exprimované na hlavných histokompatibilných receptoroch I. triedy (MHC-I). Na FIPV-pozitívnych bunkách odobratých z tkanív FIP alebo výpotkov sa však nezistila povrchová expresia vírusových antigénov receptormi MHC-I (Cornelissen a kol., 2007). DC-Sign bol navrhnutý ako receptor pre FIPV (Regan a Whitaker, 2008), ale RNA pre DC-Sign je výrazne nedostatočne exprimovaná infikovanými peritoneálnymi bunkami, zatiaľ čo RNA pre Fc (MHC-II) receptory je výrazne nadmerne exprimovaná a RNA pre MHC-I je znížená (Watanabe a kol., 2018). To naznačuje, že normálny spôsob infekcie hostiteľských buniek môže byť zmenený FIPV tak, aby uprednostňoval infekciu fagocytózou namiesto väzby na špecifické vírusové receptory na povrchu buniek, fúzie s bunkovou membránou a internalizácie.

Patológia

Podrobné opisy hrubých a mikroskopických lézií pri vlhkej forme FIP po prvýkrát popísali Wolfe a Griesemer (1966, 1971). Ochorenie je charakterizované vaskulitídou, ktorá zahŕňa venuly v tkanivách vystielajúcich brušnú alebo hrudnú dutinu, povrch orgánov a podporných tkanív, ako sú mezentérium, omentum a mediastinum. Zápalový proces vedie k výpotkom v brušnej alebo hrudnej dutine až do objemu jedného litra alebo viac (obr. 2, 3). Základnou léziou je pyogranulóm, ktorý pozostáva z fokálneho nahromadenia aktivovaných monocytárnych buniek v rôznych štádiách diferenciácie, popretkávaných nedegenerovanými neutrofilmi a riedkym množstvom lymfocytov. Pyogranulómy sú povrchovo orientované a hrubo a mikroskopicky sa javia ako jednotlivé a koalescenčné plaky (obr. 2).

Antigén FIPV sa imunohistochemicky (IHC) pozoruje len v aktivovaných monocytoch v léziách a vo výpotkoch (Litster et al., 2013). Veľké vakuolizované terminálne diferencované makrofágy sú obzvlášť bohaté na vírus (Watanabe et al., 2018), čo pripomína lepromatóznu formu malomocenstva (deSousa et al., 2017). Lymfatické uzliny lokalizované v blízkosti miest zápalu sú hyperplastické a zväčšené.

Vzťah suchej a vlhkej FIP bol prvýkrát opísaný v roku 1972 v správe o prípadoch neznámej etiológie s podobnou patológiou (Montali a Strandberg 1972). Ako uvádzajú autori, “tento patologický syndróm bol charakterizovaný granulomatóznym zápalom v rôznych orgánoch, ale hlavne postihoval obličky, viscerálne lymfatické uzliny, pľúca, pečeň, oči a leptomeningy”. Tkanivové extrakty týchto lézií vyvolali vlhkú FIP u laboratórnych mačiek, čím sa potvrdilo, že vlhkú a suchú FIP spôsobuje ten istý pôvodca.

Hrubá a mikroskopická patológia suchej FIP sa podobá patológii iných makrofágovo-tropických infekcií, ako je systémová blastomykóza mačiek, histoplazmóza, kokcidioidomykóza (Lloret et al., 2013), tuberkulóza a lepra (Gunn-Moore et al., 2012). Lézie suchej FIP zahŕňajú najmä brušné orgány (obr. 5, 6) a v hrudnej dutine sú zriedkavé (Montali a Strandberg 1972; Pedersen 2009). Lézie sú menej rozšírené a fokálne ako pri vlhkej FIP, s tendenciou rozširovať sa zo seróznych povrchov do parenchýmu základných orgánov (obr. 5, 6). Cieľom imunitnej odpovede hostiteľa sú malé agregáty infikovaných monocytárnych buniek spojené s venulami, podobne ako pyogranulómy pri vlhkej FIP, ale obklopené hustými akumuláciami lymfocytov a plazmatických buniek a variabilnou fibrózou. Floridná hyperémia, edém a mikrohemorágia spojené s vlhkou FIP väčšinou chýbajú, preto chýbajú významné výpotky v telesných dutinách. Reakcia hostiteľa na ložiská infekcie dáva léziám hrubý vzhľad podobný nádoru (obr. 5, 6). Infikované aktivované monocyty v centrálnom ohnisku infekcie sú menej husté a obsahujú nižšie hladiny vírusu ako pri vlhkej forme (Pedersen 2009;), čo je vlastnosť tuberkuloidnej formy lepry (de Sousa et al., 2017). Lézie na niektorých miestach, napríklad na stene hrubého čreva, môžu vyvolávať hustú okolitú zónu fibrózy, ktorá pripomína klasické granulómy tuberkulózy. Prechodné formy existujú aj medzi vlhkými a suchými formami v malej časti prípadov a väčšinou sú rozpoznateľné pri pitve (obr. 3).

Okulárna a neurologická FIP sa klasifikujú ako formy suchej FIP (Montali a Strandberg 1972). Avšak patológia v uveálnom trakte a sietnici oka a v ependýme a meningách mozgu a miechy predstavuje medzistupeň medzi vlhkou a suchou FIP (Fankhauser a Fatzer 1977; Peiffer a Wilcock 1991). Možno to vysvetliť účinkom hematookulárnej a hematoencefalickej bariéry pri ochrane týchto oblastí pred systémovými imunitnými reakciami.

Klinické charakteristiky FIP

Päť najčastejších príznakov u mačiek s FIP, bez ohľadu na klinickú formu a frekvenciu výskytu, sú letargia, nechutenstvo, zväčšené brušné lymfatické uzliny, úbytok hmotnosti, horúčka a zhoršujúca sa srsť.1 Tieto príznaky sa môžu objaviť rýchlo, v priebehu týždňa, alebo môžu existovať mnoho týždňov a dokonca mesiacov pred stanovením diagnózy. Priebeh ochorenia býva rýchlejší u mačiek s vlhkou FIP ako so suchou FIP a spomalenie rastu je bežné u mladých mačiek, najmä u tých s chronickejším ochorením. U 20 % mačiek s horúčkou ako hlavným príznakom sa nakoniec diagnostikuje FIP (Spencer et al., 2017).

Vlhká forma FIP sa vyskytuje približne v 80 % prípadov, častejšie u mladších mačiek a býva závažnejšia a rýchlejšie progredujúca ako suchá forma. Abdominálny výpotok (ascites) je štyrikrát častejší ako pleurálny výpotok, pričom častými príznakmi sú abdominálna distenzia (obr. 9) a dyspnoe. Pyrexia a žltačka sú častejšími príznakmi u mačiek s vlhkou ako so suchou formou FIP (Tasker, 2018).

Obrázok 9.  Dospelá dlhosrstá mačka s chronickou brušnou vlhkou FIP. Mačka bola v prijateľnom zdravotnom stave okrem mierneho úbytku hmotnosti, letargie, zhoršenia kvality srsti a občasnej nízkej horúčky. Abdominálna distenzia nebola po určitú dobu zaznamenaná a brušná tekutina obsahovala relatívne nízky počet bielkovín a bielych krviniek.
Obrázok 9. Mladá mačka, ktorá sa prezentovala rýchlym nástupom vysokej horúčky, nechutenstvom, distenziou brucha a brušnou tekutinou s vysokým obsahom bielkovín a bielych krviniek.

Väčšina mačiek so suchou FIP má pri prezentácii príznaky ochorenia obmedzené na brucho a/alebo hrudník. Najčastejšími klinickými príznakmi suchej FIP sú hmatné alebo ultrazvukom identifikovateľné masy v obličkách (obr. 4), slepom čreve, hrubom čreve, pečeni a pridružených lymfatických uzlinách (obr. 5). Lézie suchej FIP zvyčajne šetria hrudnú dutinu a zriedkavo sa vyskytujú v koži, nosových priechodoch, osrdcovníku a semenníkoch ako súčasť širšieho systémového ochorenia.

Neurologické a očné ochorenia sú jedinými alebo sekundárnymi znakmi 10 % všetkých prípadov FIP a 10-krát častejšie sa spájajú so suchou ako s vlhkou FIP (Pedersen 2009). Neurologické a očné formy FIP boli klasifikované ako formy suchej FIP, ale možno by bolo vhodnejšie klasifikovať ich ako odlišné formy FIP vyplývajúce z modifikujúcich účinkov hematookulárnej a hematoencefalickej bariéry, za ktorou sa vyskytujú. Tieto bariéry majú silný vplyv na povahu ochorenia očí a centrálneho nervového systému (CNS) a na odpoveď na antivírusovú liečbu.

Klinické príznaky neurologickej FIP sa týkajú mozgu aj miechy a zahŕňajú zadnú slabosť a ataxiu, generalizovanú nekoordinovanosť, záchvaty, mentálnu otupenosť, anizokóriu a rôzne stupne fekálnej a/alebo močovej inkontinencie (Foley et al., 1998; Dickinson et al., 2020) (obr. 10). Extrémny intrakraniálny tlak môže viesť k náhlej herniácii mozočku a mozgového kmeňa do miechového kanála a syndrómu spinálneho šoku. Medzi prodromálne príznaky patrí nutkavé olizovanie stien alebo podlahy, konzumácia steliva, mimovoľné svalové zášklby a neochota alebo neschopnosť vyskočiť na vysoké miesta. Postihnutie očí môže predchádzať alebo sprevádzať neurologické ochorenie. Neurologická FIP je častým javom pri liečbe antivirotikami, buď sa objavuje počas liečby non-CNS foriem FIP, alebo ako prejav relapsu ochorenia po ukončení liečby (Pedersen et al., 2018, 2019; Dickinson et al., 2020).

Obrázok 10. Mladá mačka so suchou FIP a neurologickým postihnutím. Mačka je letargická, vychudnutá a s biednou srsťou. Srsť v perineálnej oblasti je mokrá a zafarbená od močovej inkontinencie.
Obrázok 11. Zafarbenie dúhovky pravého oka tejto mačky bolo prvým príznakom uveitídy spojenej s FIP. V prednej komore je mierne zahmlenie a na vnútornej strane rohovky sú usadeniny fibrínu bohaté na červené krvinky. Zreničky sú tiež nerovnaké (anizokória).
Obrázok 12. Mladá mačka s okulárnou FIP, ktorá sa na pravom oku prejavila ako predná uveitída so sekundárnym glaukómom spôsobujúcim zväčšenie gule. Dúhovka zmenila farbu v dôsledku zápalu, cievy na báze dúhovky sú prekrvené a na zadnej strane rohovky je zákal vodného moku a zápalové produkty. Vnútroočný tlak je zvyčajne nízky pri nekomplikovanej uveitíde, ale zvýšený u mačiek s glaukómom.
Obrázok 13. Táto mladá mačka mala prednú uveitídu, ale jej terapia FIP pomocou GS-441524 bola oneskorená, čo umožnilo vznik glaukómu na oboch očiach. Liečba odstránila základnú uveitídu a výrazne zlepšila vonkajší zdravotný stav, ale sekundárny glaukóm a slepota pretrvali.

Postihnutie očí je zvyčajne zjavné a potvrdí sa pri oftalmoskopickom vyšetrení prednej a zadnej komory. Okulárna FIP v rôznej miere postihuje dúhovku, ciliárne telieska, sietnicu a disk zrakového nervu (Peiffer a Wilcock, 1991; Ziółkowska a kol., 2017; Andrew, 2000). Najčasnejším príznakom je často jednostranná zmena farby dúhovky (obr. 11). Predná komora sa môže javiť zakalená a môže vykazovať vysoké hladiny bielkovín a vodný zákal pri lome svetla. Do prednej komory sa vyplavujú zápalové produkty vo forme aktivovaných makrofágov, červených krviniek, fibrínových značiek a malých krvných zrazenín. Tento materiál často priľne na zadnú stranu rohovky ako keratické precipitáty (obr. 12). Ochorenie môže zasiahnuť aj sietnicu v tapetálnych a netapetálnych oblastiach a viesť k odlúpeniu sietnice. Vnútroočný tlak je zvyčajne nízky, okrem prípadov komplikovaných postihnutím ciliárneho telesa a glaukómom (obr. 12, 13).

Diagnostika FIP

Signalizácia, environmentálna anamnéza, klinické príznaky a nálezy pri fyzikálnom vyšetrení často poukazujú na FIP (Tasker, 2018). Dôkladné fyzikálne vyšetrenie by malo zahŕňať telesnú hmotnosť a teplotu, stav srsti a tela, manuálnu palpáciu brucha a brušných orgánov, hrubé zhodnotenie srdcovej a pľúcnej funkcie a zbežné vyšetrenie očí a neurologického systému. Silné podozrenie na výpotok v brušnej alebo hrudnej dutine môže byť dôvodom na konfirmačnú aspiráciu a dokonca aj na in-house analýzu kvapaliny ako súčasti úvodnéeho vyšetrenia.

Abnormality v kompletnom krvnom obraze (CBC) a základnom biochemickom paneli séra sú dôležitými faktormi pri diagnostike FIP (Tasker, 2018; Felten a Hartmann, 2019) a monitorovaní liečby antivirotikami (Pedersen a kol., 2018, 2019; Jones a kol., 2021; Krentz a kol., 2021) (obr. 14). Celkový počet leukocytov je u mačiek s vlhkou FIP s najväčšou pravdepodobnosťou vysoký, ale pri ťažkom zápale sa môže vyskytnúť i nízky počet. Vysoký počet leukocytov sa často spája s neutrofíliou, lymfopéniou a eozinopéniou. Mierna až stredne ťažká neregeneratívna anémia sa tiež často pozoruje pri vlhkej aj suchej FIP. Celkové bielkoviny sú zvyčajne zvýšené v dôsledku zvýšených hladín globulínu, zatiaľ čo hodnoty albumínu bývajú nízke (obr. 14). Výsledkom je pomer A:G, ktorý je často nižší ako 0,5 – 0,6 a považuje sa za jeden z najkonzistentnejších ukazovateľov FIP. Nízky pomer A:G sa však môže vyskytnúť v situáciách, keď sú albumín aj globulín v referenčnom intervale alebo pri iných ochoreniach. Preto by pomer A:G nemal byť jediným ukazovateľom FIP a mal by sa vždy hodnotiť v kontexte s inými ukazovateľmi FIP (Tasker, 2018; Felten a Hartmann, 2019). Hodnoty sérových bielkovín získané z väčšiny sérových chemických panelov sú zvyčajne dostatočné. Elektroforéza sérových bielkovín môže poskytnúť ďalšie informácie, najmä ak sú hodnoty bielkovín z chemického vyšetrenia séra sporné (Stranieri a kol., 2017).

Obrázok 14. Kompletný krvný obraz (CBC) (a) mladej mačky s akútnou vlhkou abdominálnou FIP. Hoci počet leukocytov nebol zvýšený, bola zistená relatívna, ale nie absolútna neutrofília, relatívna a absolútna lymfopénia, relatívna a absolútna eozinopénia a neresponzívna anémia, na ktorú poukazujú nízke červené krvinky, hematokrit a hemoglobín s normálnym počtom retikulocytov.
Obrázok 14. Biochemické vyšetrenie séra (b) mladej mačky s akútnou vlhkou abdominálnou FIP. Relevantné hodnoty v chemickom paneli séra boli zvýšený celkový proteín, nízky albumín, vysoký globulín, nízky pomer albumín/globulín (A:G) a zvýšený celkový a priamy bilirubín. Pečeňové enzýmy boli normálne s výnimkou mierne zvýšenej hodnoty AST a BUN a kreatinín sú normálne, čo poukazuje na neprítomnosť významného ochorenia pečene alebo obličiek. Hodnoty globulínu nie sú vždy uvedené, ale primeraný odhad sa dá vypočítať odpočítaním hladiny albumínu od celkovej bielkoviny.

Prílišné spoliehanie sa na abnormality v CBC a sérovej biochémii môže viesť k diagnostickej neistote, ak chýbajú, a to aj napriek tomu, že žiadna hodnota testu nie je konzistentne abnormálna vo všetkých prípadoch FIP (Tasker, 2018)1. Najväčšie rozdiely sú medzi klinickou formou ochorenia, pričom leukocytóza a lymfopénia sú častejšie u mačiek s vlhkou ako so suchou FIP (Riemer et al., 2016). Hyperbilirubinémia je častá u mačiek s FIP, ale hlavne u mačiek s vlhkou FIP (Tasker, 2018). Autor tiež zistil, že mnohé mačky s primárnou neurologickou FIP vykazujú menšie alebo žiadne krvné abnormality. Hodnoty krvných testov pri FIP sa tiež v jednotlivých štúdiách líšia (Tasker, 2018).

Kompletná analýza výpotku je dôležitá na diagnostikovanie vlhkej FIP a na vylúčenie iných potenciálnych príčin hromadenia tekutiny (Dempsey a Ewing, 2011). Zahŕňa farbu (číra alebo žltá), viskozitu (riedka alebo viskózna), prítomnosť precipitátov, schopnosť vytvoriť čiastočnú zrazeninu pri odstátí, obsah bielkovín, počet leukocytov a diferenciál. Charakter tekutiny sa môže líšiť v závislosti od trvania ochorenia a jeho závažnosti. Výpotky u mačiek so závažnejšími príznakmi ochorenia mávajú zvyčajne hodnoty bielkovín blízke sérovým hodnotám, sú viskóznejšie, obsahujú väčší počet leukocytov, sú viac žlto sfarbené a majú väčšiu schopnosť vytvárať čiastočné zrazeniny pri odstátí. Chronické výpotky majú tendenciu byť menej zápalového charakteru, s nižšími hodnotami bielkovín a leukocytov, menej viskózne a čírejšie. Tieto hodnoty sa dajú na väčšine kliník stanoviť priamo na mieste. Faktor zrážanlivosti sa určuje porovnaním tekutiny odobratej v sére a v antikoagulačných skúmavkách po státí. Farbu a viskozitu možno odhadnúť približne a hladinu bielkovín odhadnúť pomocou ručného refraktometra na stanovenie celkového obsahu pevných látok. Bunky sa z tekutiny peletujú a analyzujú na preparáte s rýchle farbeným sklíčkom pomocou svetelnej mikroskopie a odhaduje sa počet a diferenciál leukocytov. Bunky zahŕňajú neseptické neutrofily, malé a stredne veľké mononukleárne bunky a veľké vakuolizované makrofágy (obr. 15).  Je dôležité poznamenať, že výpotky sa môžu vyskytnúť pri rôznych ochoreniach, ako je srdcové zlyhanie, rakovina, hypoproteinémia a bakteriálne infekcie. Výpotky pri týchto iných ochoreniach majú zvyčajne odlišné identifikačné znaky.

Obrázok 15. Farbený náter peritoneálnych buniek centrifugovaných z brušnej tekutiny mačky s vlhkou FIP a vyšetrených na rýchlo zafarbenom sklíčku svetelnou mikroskopiou. Prevládajúce bunky sú veľké silne vakuolizované makrofágy, menšie diferencujúce sa aktivované monocyty a neutrofily. Najväčšia koncentrácia vírusových častíc je v intracytoplazmatických vakuolách makrofágov (šípky).
Obrázok 16. Pozitívny výsledok Rivaltovej skúšky. Malá vzorka brušnej alebo hrudnej tekutiny sa opatrne nakvapká do malého pohára naplneného zriedenou kyselinou octovou (8 ml destilovanej vody a 1 kvapka koncentrovanej kyseliny octovej). Zápalové bielkoviny sa takmer okamžite zrazia a klesnú na dno (pozitívne). Menej zápalové tekutiny vytvoria difúzne zrazeniny (otázne) alebo voľne difundujú v roztoku (negatívne).

Na diagnostikovanie FIP ako príčiny výpotku sa často používa pozitívna Rivaltova skúška na brušnej alebo hrudnej tekutine a negatívna skúška ju skôr vylučuje (Fischer et al., 2010) ( obr. 16). Test však môže byť pozitívny pri zápalových výpotkoch inej príčiny a negatívny u niektorých mačiek s FIP. Preto je Rivaltova skúška najviac nápomocná v kombinácii s inými klinickými nálezmi FIP a nemala by nahrádzať dôkladnú analýzu tekutiny (Felten a Hartmann, 2019).

Hladiny celkového a priameho bilirubínu v sére sú často zvýšené, najmä u mačiek s vlhkou FIP (obr. 14), a môžu byť spojené so žltačkou a bilirubinúriou. Hyperbilirubinémia pri FIP nie je spôsobená ochorením pečene (Tasker, 2018), ale skôr vaskulitídou, mikrohemorágiou, hemolýzou a deštrukciou poškodených červených krviniek makrofágmi lokálne a v pečeni. Uvoľnený hemoglobín sa nakoniec metabolizuje na bilirubín, ktorý sa potom konjuguje v hepatocytoch a vylučuje sa močom. Pre vylučovanie bilirubínu je nevyhnutná glukuronidácia a genetické poruchy ovplyvňujúce glukuronidáciu u ľudí bránia jeho vylučovaniu (Kalakonda a kol., 2021). Mačky ako druh majú nedostatok enzýmov potrebných na glukuronidáciu, čo sťažuje vylučovanie látok, ako je bilirubín (Court a Greenblatt 2000).

Hoci FIP môže postihnúť obličky a pečeň, nie je natoľko závažná, aby spôsobila významnú stratu funkcie obličiek alebo pečene. Avšak sérové testy na dusík močoviny v krvi (BUN) a kreatinín ako indikátory ochorenia obličiek a alanínaminotransferázy (ALT), alkalickej fosfatázy (ALP) a gama glutamyltransferázy (GGT) ako indikátory ochorenia pečene sú u mačiek s FIP často mierne zvýšené, najmä u mačiek s akútnejším a závažnejším ochorením (obr. 14). Mierne abnormálne hodnoty testov by sa preto nemali interpretovať prehnane, ak nie sú prítomné iné klinické príznaky ochorenia pečene alebo obličiek, zatiaľ čo ich výrazné zvýšenie by malo poukazovať na možnosť súbežných a prípadne predisponujúcich ochorení týchto orgánov.

Sérum sa môže testovať aj na ďalšie markery systémového zápalu, ako sú zvýšené hladiny alfa-1-kyslého glykoproteínu (AGP) (Paltrinieri et al., 2007) a mačacieho sérového amyloidu A (fSAA) (Yuki et al., 2020). Môžu sa tiež ukázať ako užitočné pri monitorovaní odpovede na liečbu antivirotikami (Krentz et al., 2021).

Rádiografia môže byť užitočná pri identifikácii hrudných a brušných výpotkov. Ultrazvuk brucha môže odhaliť menšie množstvo výpotku, identifikovať zväčšené mezenterické a ileo-cekálno-kolické lymfatické uzliny, zhrubnutie steny hrubého čreva a lézie v orgánoch, ako sú obličky, pečeň a slezina (Lewis a O’Brien 2010). Môže byť užitočná aj pri vyšetrovaní hrudníka na prítomnosť lézií a pomôcť pri aspiračnom vyšetrení ihlou alebo biopsii.

Hodnota titrov protilátok proti FCoV sa od prvej správy spred takmer 50 rokov znížila (Pedersen 1976b). Referenčný test protilátok využíva nepriame fluorescenčné farbenie protilátok (IFA) Titre IFA ≥ 1:3200 u mačiek s FIP sú vyššie ako u väčšiny mačiek vystavených FECV (1:25 – 1:400). Novšie testy často využívajú postupy ELISA na rýchle interné alebo laboratórne testovanie, ale sú skôr kvalitatívne ako kvantitatívne. Titre protilátok IFA sa počas úspešnej liečby antivirotikami u mnohých mačiek znižujú, ale u iných zostávajú vysoké (Dickinson et al., 2020; Krentz et al., 2021). Sekvenčné titre môžu ukázať postupný nárast titrov v priebehu vývoja FIP (Pedersen et al., 1977), ale predchádzajúce vzorky séra sú k dispozícii na porovnanie iba zriedka. Podobne ako väčšina testov, ani hladiny protilátok FCoV by sa nemali používať ako jediné kritérium na diagnostikovanie alebo vylúčenie FIP (Felten a Hartmann, 2019) alebo na hodnotenie úspešnosti liečby (Krentz a kol., 2021).

Reverzná transkriptázová polymerázová reťazová reakcia (RT-PCR) je základným prostriedkom na identifikáciu FCoV RNA v zápalových výpotkoch, tekutinách alebo postihnutých tkanivách (Felten a Hartmann, 2019). RNA akcesorického génu 7b je prítomná v najvyššej miere v tkanivách, tekutinách alebo výpotkoch infikovaných FECV alebo FIPV, čo z nej robí najcitlivejší cieľ na detekciu nízkych hladín vírusu (Gut a kol., 1999). RT-PCR pre mutácie FIPV S génu sa často používa vo vzorkách, ktoré sú pozitívne na 7b RNA, aby bola špecifická pre FIPV (Felten a kol., 2017). Iné štúdie naznačujú, že testy RT-PCR na mutácie génu S špecifické pre FIPV majú podobnú špecifickosť pre FIP, ale za cenu výraznej straty citlivosti (Barker a kol., 2017). Zníženie citlivosti súvisí so zvýšením počtu falošne negatívnych výsledkov. Falošne negatívne testy RT-PCR sa vyskytujú aj vo vzorkách, ktoré neobsahujú dostatočné množstvo infikovaných makrofágov alebo u mačiek s veľmi nízkymi hladinami vírusu. Falošne negatívne výsledky sú obzvlášť časté pri testovaní plnej krvi.

Imunohistochémia (IHC) detekuje nukleokapsidový proteín koronavírusu mačiek vo formalínom fixovaných tkanivách s vysokou citlivosťou a špecifickosťou, ale nie je taká populárna ako RT-PCR (Litster et al., 2013; Ziółkowska et al., 2019). Vzorky na IHC musia obsahovať intaktné infikované makrofágy (obr. 17), čo si vyžaduje starostlivé oddelenie buniek z výpotkov a ich umiestnenie na podložné sklíčka, alebo choré tkanivá fixované vo formalíne a zaliate do parafínu, ktoré vykazujú lézie kompatibilné s FIP. Antigén koronavírusu v makrofágoch v rámci typickej lézie alebo tekutiny FIP sa pozoruje len pri FIP, čo dáva IHC vysokú úroveň špecifickosti.

Obrázok 17. Histologický rez zo zhrubnutého hrubého čreva mačky s črevnou formou FIP. Zhrubnutá stena obsahovala ložiská makrofágov (štvorcová plocha), ktoré sa imunoperoxidázou sfarbili pozitívne (hnedočerveno) na nukleokapsidový proteín FIPV.

Pre diagnostiku charakteristických zmien FIP je nevyhnutné dôkladné oftalmologické vyšetrenie (Pfeiffer a Wilcock 1991; Andrew, 2000). Vzorka vodného moku z prednej komory zapáleného oka môže byť užitočná aj pre cytologické vyšetrenie, PCR a IHC.

Neurologická FIP sa často diagnostikuje pomocou magnetickej rezonancie (MRI) so zvýraznením kontrastu a často je spojená s analýzou mozgovomiechového moku (CSF) (Crawford et al., 2017; Tasker, 2018; Dickinson et al., 2020). Ide však o nákladné postupy, ktoré nie sú vždy dostupné a nesú určité riziko pre mačku. MRI lézie zahŕňajú obštrukčný hydrocefalus, syringomyéliu a herniáciu foramen magnum s kontrastným zvýraznením meningov mozgu a miechy a ependymu tretej komory, mezencefalického akvaduktu a mozgového kmeňa. CSF vykazuje zvýšený počet bielkovín a buniek (neutrofily, lymfocyty, monocyty/makrofágy), a ak sú prítomné, môže byť spoľahlivým materiálom pre PCR alebo IHC vyšetrenie.

Neurologické a/alebo okulárne formy FIP sa často zamieňajú so systémovou toxoplazmózou mačiek a mnohé mačky s FIP sa empiricky liečia na toxoplazmózu ešte pred stanovením diagnózy FIP. Našťastie, dostupnosť účinnej liečby FIP túto prax obmedzila. Systémová toxoplazmóza je oveľa menej rozšírená ako FIP a sérologicky pozitívne bolo menej ako 1 % mačiek s FIP v jednej terénnej štúdii.1 Preto by sa testovanie alebo liečba na toxoplazmózu mali zvážiť až po adekvátnom diagnostikovaní FIP.

Antivírusová liečba ako diagnostický nástroj

Obrázok 18. Mačka s FIP na začiatku liečby liekom GS-441524 (a) a po 1 týždni (b). Odpoveď je rýchla, horúčka vymizne do 24-48 hodín a do 1-2 týždňov sa výrazne zlepší celkový zdravotný stav. Tento typ odpovede sa často používa na potvrdenie diagnózy FIP.

Bežne sa vyskytujú situácie, keď klinické nálezy poukazujú na FIP, ale pochybnosti pretrvávajú. Vtedy je na výber vykonanie viacerých diagnostických testov, ktoré ale nemusia viesť k definitívnejšej diagnóze. Alternatívnym diagnostickým prístupom je liečba vhodným antivirotikom počas 1 – 2 týždňov v správnej dávke pre suspektnú formu FIP.2 Liečba často prinesie klinické zlepšenie už za 24 – 48 hodín a to sa rýchlo stupňuje počas nasledujúcich 2 týždňov a celkovej podanej liečbe (obr. 18). Žiadna reakcia na testovaciu liečbu a/alebo zhoršenie zdravotného stavu by naznačovali potrebu ďalšieho vyšetrenia príčiny (príčin) zlého zdravotného stavu.

Liečba FIP

Pred rokom 2017 neexistoval liek na FIP a liečba bola zameraná najmä na zmiernenie príznakov ochorenia (Izes et al., 2020). Takáto podporná liečba bola zameraná na udržiavanie dobrej výživy, kontrolu zápalu (kortikosteroidy), zmenu imunitných reakcií (interferóny, cyklofosfamid, chlorambucil) a inhibíciu kľúčových cytokínových reakcií (pentoxifylín a iné inhibítory TNF-alfa). Bežne sa používali aj výživové doplnky, ktoré mali pomáhať špecifickým funkciám orgánov, ako napríklad jeden (Polyprenyl Imunostimulant), ktorý mal zlepšiť imunitu a predĺžiť prežívanie u mačiek so suchou, ale nie vlhkou FIP (Legendre et al., 2017). Vplyv dobrej podpornej starostlivosti na prežívanie nebolo možné určiť, pretože väčšina mačiek bola eutanizovaná po stanovení diagnózy alebo v priebehu niekoľkých dní či týždňov. Miera prežitia aj pri najľahších formách suchej FIP a najtrvalejšej liečbe v jednej štúdii bola len 13 % po 200 dňoch a 6 % po 300 dňoch (Legendre et al., 2017).

Mnohé komerčne dostupné lieky a zlúčeniny inhibujú infekciu alebo replikáciu FIPV in vitro, pričom niektoré z nich sú lieky, o ktorých je známe, že inhibujú špecifické proteíny vírusu HIV alebo hepatitídy C, zatiaľ čo iné fungujú tak, že inhibujú normálne bunkové procesy, ktoré si vírus uzurpuje pre svoj vlastný životný cyklus (Hsieh et al., 2010; Izes et al., 2020; Delaplace et al., 2021). Medzi tieto rôzne lieky a látky patria cyklosporín a príbuzné imunofilíny, niekoľko nukleozidov a inhibítorov proteáz, inhibítory vioporínu, pyridínové N-oxidové deriváty, chlorochín a príbuzné zlúčeniny, ivermektín, niekoľko rastlinných lektínov, inhibítory ubikvitínu, itrakonazol a niekoľko antibiotík. Koncentrácie potrebné na inhibíciu replikácie vírusu in vitro sa však často blížia k toxickým hodnotám pre bunky. Bolo tiež ťažké preniesť priaznivé závery in vitro na zvieratá a štúdie na chorých mačkách nasledovali len zriedka. Ribavarín inhibuje replikáciu FIPV in vitro, ale nebol účinný ako liečba experimentálnej FIP (Weiss et al., 1993). Účinnosť chlorochínu sa testovala u laboratórnych mačiek infikovaných FIPV, ale klinické výsledky u liečených mačiek boli len o niečo lepšie ako u neliečených a preukázala sa hepatotoxicita (Takano et al., 2013). U 3-mesačného mačiatka s hrudnou vlhkou FIP liečeného itrakonazolom a prednizolónom sa vyvinula neurologická FIP a po 38 dňoch liečby bolo eutanazinované (Kameshima et al., 2020). Meflochín tiež inhiboval replikáciu FIPV v nízkych koncentráciách v kultivovaných mačacích bunkách bez cytotoxických účinkov a predbežné farmakokinetické štúdie u mačiek sa zdali byť priaznivé (Yu et al., 2020), ale dôkazy o jeho bezpečnosti a účinnosti v klinických štúdiách na mačkách s FIP ešte neboli publikované.

Prelom v liečbe FIP nastal v rokoch 2016-2019, keď sa objavili správy o antivirotických liekoch, ktoré sa zameriavajú na špecifické proteíny FIPV nevyhnutné pre replikáciu. Prvým z týchto liekov bol GC376, inhibítor hlavnej proteázy (Mpro ) FIPV (Kim et al., 2016; Pedersen et al., 2018). Inhibítory proteáz zabraňujú tvorbe jednotlivých vírusových proteínov tým, že inhibujú ich štiepenie z polyproteínových prekurzorov. GC376 dokázal vyliečiť všetky experimentálne infikované mačky a 7 z 21 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP, ale bol menej účinný pre mačky s okulárnymi alebo neurologickými príznakmi (Pedersen et al., 2018). Druhým z týchto liekov bol GS-441514, aktívna časť proliečiva remdesivir (Gilead Sciences; Murphy et al., 2018; Pedersen et al., 2019). GS-441524 je adenozínový nukleozidový analóg, ktorý blokuje replikáciu FIPV vložením bezvýznamného adenozínu do vyvíjajúcej sa vírusovej RNA. GS-441524 dokázal vyliečiť aj všetky experimentálne infikované mačky (Murphy et al., 2018) a 25/31 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP (Pedersen et al., 2019). Ukázalo sa, že pri vyššom dávkovaní bol účinný aj u niekoľkých mačiek s okulárnou a neurologickou FIP (Pedersen et al., 2019) a v súčasnosti je liekom prvej voľby pre mačky s neurologickou FIP (Dickinson et al., 2020). GS-441524 za posledné tri roky vyliečil tisíce mačiek s FIP z celého sveta s celkovou mierou vyliečenia tesne nad 90 % (Jones et al., 2021).1

Hoci schopnosť liekov GC376 a GS-441524 liečiť mačky je známa už niekoľko rokov, ani jeden z nich nie je v súčasnosti legálne dostupný vo väčšine krajín. Práva na liek GC376 zakúpila spoločnosť Anivive, ale zatiaľ nebol uvedený na trh.3 Potenciálne konflikty s vývojom remdesiviru pre liečbu COVID-19 u ľudí viedli spoločnosť Gilead Sciences k zadržaniu práv na GS-441524 pre použitie u zvierat, čo podnietilo vytvorenie neschváleného zdroja pre GS-441524 z Číny (Jones a kol, 2021).1,2,4 Remdesivir sa v tele rýchlo metabolizuje na GS-441524 a v niektorých krajinách bol povolený na liečbu FIP.2 GS-441524 sa môže podávať aj perorálne vo vyšších dávkach a v súčasnosti sa v praxi bežne používa (Krentz et al., 2021).1

Účinnosť liekov ako GC376 a GS-441524 na FIP mačiek, ktorých používanie predchádzalo pandémii COVID-19, uznali výskumníci skúmajúci príbuzné inhibítory SARS-CoV 2 (Yan et al., 2020; Vuong et al., 2021). Remdesivir, injekčný liek uvádzaný na trh pod názvom veklury (Gilead), sa celosvetovo používal na zníženie úmrtnosti na COVID-19 (Beigel et al., 2020). GC373, aktívna forma proliečiva GC376, prešla jednoduchými úpravami na zvýšenie účinnosti a perorálnej biologickej dostupnosti (Vuong et al., 2021). Liek príbuzný lieku GC373, nirmatrelvir, bol úspešne testovaný proti raným infekciám COVID-19 a bol schválený pre liečbu raného COVID-19 a predávaný pod názvom paxlovid (Pfizer). Paxlovid pozostáva z dvoch liekov, nirmatreviru a inhibítora HIV proteázy ritonaviru. Ritonavir nie je významným inhibítorom SARS-CoV 2,ale údajne predlžuje polčas rozpau inhibítorov Mpro, keď sa používa v kombinácii (Vuong a kol., 2020). Nirmatrelvir a paxlovid neboli v súčasnosti testované u mačiek s FIP, ale na základe skúseností s úzko súvisiacim liekom GC376 môžu byť v budúcnosti dôležitou perorálnou liečbou niektorých foriem FIP.

Na liečbu viacerých infekcií spôsobených RNA vírusmi u ľudí a zvierat sa skúmali ďalšie dva nukleozidové analógy EIDD-1931 a EIDD-2801 (Painter et al., 2021). EIDD-1931 je experimentálne označenie pre beta-D-N4-hydroxycytidín, zlúčeninu široko skúmanú od 70. rokov 20. storočia. Beta-D-N4-hydroxycytidín sa metabolizuje na ribonukleozidový analóg, ktorý sa inkorporuje do RNA namiesto cytidínu a vedie k fatálnym mutáciám v reťazci vírusovej RNA.  Zlúčenina je inhibítorom širokého spektra ľudských a živočíšnych RNA vírusov vrátane všetkých známych koronavírusov. EIDD-1931 bol modifikovaný na zvýšenie perorálnej absorpcie a nazvaný EIDD-2801 (molnupiravir) (Painter et al., 2021). Molnupiravir sa v tele deesterifikuje na svoju účinnú zložku, beta-D-N4-hyroxycytidín. Preto sú EIDD-1931 a molnupiravir analogické GS-441524 a remdesiviru. Molnupiravir sa predáva na domácu liečbu primárneho COVID-19 pod názvami Lagevrio (Merck, USA) alebo Molnulup (Lupin, India).

EIDD-1931 aj EIDD-2801 sa ukázali ako účinné pri inhibícii FIPV v tkanivovej kultúre (Cook et al., 2021) a EIDD-2801 sa v súčasnosti používa na liečbu niektorých prípadov FIP v teréne.5,7 Účinná koncentrácia 50 % (EC50) pre EIDD-1931 proti FIPV je 0,09 µM, EIDD-2801 0,4 µM a GS-441524 0,66 µM (Cook et al., 2021). Percentuálna cytotoxicita pri 100 µM je pre tieto zlúčeniny 2,8, 3,8 a 0,0. EIDD-1931 a -2801 sú teda o niečo viac inhibičné voči vírusom, ale cytotoxickejšie ako GS-441524. Rezistencia na GS-441524 sa zaznamenala v niektorých prípadoch FIP (Pedersen et al., 2019) a na remdesivir u pacientov s COVID-19 (Painter et al., 2021), ale tieto izoláty zostávajú citlivé na molnupiravir (Sheahan et al., 2020). To sa môže ukázať ako užitočné v boji proti rezistencii na GS-441524 u mačiek a ľudí a pri vývoji liečby viacerými liekmi, aby sa zabránilo vzniku rezistencie.

Čo bude úplné schválenie liekov ako molnupiravir a paxlovid pre ľudí znamenať pre mačky? Úplné schválenie pre ľudí by malo veterinárnym lekárom vo väčšine krajín umožniť legálne obstarávať lieky schválené pre ľudí na priame použitie u zvierat za predpokladu, že sa dodržia usmernenia pre použitie u zvierat, ktoré nie sú určené na produkciu potravín.6 To si vyžaduje preformulovanie lieku vyrobeného pre ľudí a zakúpeného za cenu pre ľudí. Dúfajme, že antivirotiká podobné alebo identické s tými, ktoré sú schválené pre ľudí, budú licencované výlučne pre zvieratá a predávané za oveľa nižšiu cenu, ale to bude pravdepodobne trvať ešte roky.

Komerčné a politické otázky, ktoré obmedzujú súčasné používanie antivirotík, ako je GS-441524, pri ochoreniach zvierat, ako je FIP, sú pre súčasných majiteľov mačiek a mačacích podporných skupín, ktoré už obišli súčasný systém schvaľovania liekov a jeho dôraz pre prvoradé humánne potreby, nepodstatné (Jones et al., 2021; Krentz et al., 2021). Obhajcovia liečby FIP sa v súčasnosti nachádzajú po celom svete a často sa združujú pod rozšírenou značkou FIP Warriora. Členovia týchto skupín často pôsobia ako sprostredkovatelia medzi majiteľmi, veterinármi a dodávateľmi antivirotík a často poskytujú poradenstvo tým, ktorí nemôžu získať veterinárnu pomoc pri liečbe. Niektoré z týchto skupín, ako napríklad FIP Warriors Česká republika/Slovensko7, umiestnili svoje skúsenosti s liečbou FIP na internet, kde poskytujú veľmi potrebné informácie o súčasnej liečbe antivirotikami.

Aktuálna situácia liečby FIP

Súčasným liekom voľby na liečbu FIP je adenozínový nukleozidový analóg GS-441524, ktorý bol prvýkrát publikovaný vo vedeckej literatúre v experimentálnych podmienkach (Murphy et al., 2018) a neskôr proti prirodzene sa vyskytujúcemu ochoreniu (Pedersen et al., 2019). Hoci počiatočné experimentálne a terénne štúdie GS-441524 sa uskutočnili v rámci spolupráce medzi výskumníkmi spoločnosti Gilead Sciences a Kalifornskej univerzity v Davise, príbuznosť lieku Remdesivir s GS-441524 a začiatok pandémie COVID-19 v roku 2019 viedli spoločnosť Gilead Sciences k tomu, že nakoniec neposkytla práva na používanie lieku GS-441524 pre zvieratá s odôvodnením, že môže zasahovať do vývoja lieku Remdesivir na humánne použitie.4 Námietky voči tomuto rozhodnutiu boli vyjadrené priamo spoločnosti a na viacerých internetových fórach.4 Následný tlak zo strany majiteľov mačiek, skupín na záchranu mačiek a milovníkov mačiek spolu s oportunistickými čínskymi výrobcami liekov rýchlo vytvorili alternatívny neschválený zdroj lieku GS-441524, trh s ním a sieť na liečbu.4  Táto sieť do veľkej miery obišla veterinárov, z ktorých väčšina sa rozhodla počkať na legalizáciu lieku (Jones a kol., 2021). Výsledkom tohto vzťahu bol takmer bezproblémový prechod liečby FIP liekom GS-441524 z laboratória na rýchlo sa rozširujúcu celosvetovú sieť skupín, voľne zastrešených pod hlavičkou FIP Warriors (Jones a kol., 2021).4,7 

Predaj a používanie GS-441524 v praxi na liečbu FIP sa začalo takmer okamžite s prvým uverejnením výsledkov poľných pokusov (Pedersen et al., 2019) (obr. 19).

Obrázok 19.  Graf mesačného vývoja liečby mačiek z Českej republiky a Slovenska od augusta 2019. Tento graf pochádza z webovej stránky FIP Warrior CZ/SK.1 Tieto údaje odrážajú skúsenosti iných skupín FIP Warrior na celom svete. Od roku 2019, keď bola publikovaná prvá terénna štúdia GS-441524 (Pedersen et al. 2019), boli na celom svete úspešne liečené už tisíce mačiek na FIP. Zimné vrcholy ochorenia odrážajú neskorý jarný a letný nárast počtu narodených mačiatok a vysoký výskyt FIP, ktorý sa zvyčajne začína vo veku 3 až 6 mesiacov (obr. 6). Tento graf je z webovej stránky FIP Warrior CZ/SK.1
Obrázok 20. Hlavní účastníci podávania liečby GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Skutočnosť, že liek GS-441524 nie je legálne schválený na použitie u zvierat, zabránila mnohým veterinárnym lekárom uznať túto liečbu alebo sa na nej podieľať. Len 25 % mačiek v skupine liečenej CZ/SK dostalo veterinárnu podporu pri podávaní liečby (obr. 20), hoci sa na diagnostike ochorenia mohlo podieľať viac veterinárnych lekárov. Zaujímavé je, že toto číslo bolo vyššie ako 8,7 % liečených mačiek v USA, ktoré dostali veterinárnu starostlivosť (Jones et al., 2021). Účastníci CZ/SK štúdie a podobných skupín na celom svete však nie sú bez lekárskych skúseností, keďže mnohí z nich sa venujú dočasnej starostlivosti/záchrane a mali značné priame aj nepriame veterinárne skúsenosti s chorobami mačiek a ich liečbou a kastračnými programami.

Z prvých laboratórnych štúdií a výskumov čínskych výrobcov bolo známe, že GS-441524 sa môže absorbovať perorálnou cestou, aj keď s menšou účinnosťou (Kim et al. 2016).9 Prví predajcovia GS-441524 skúmali túto skutočnosť ďalej a zistili, že účinné hladiny v krvi možno dosiahnuť zvýšením množstva podaného perorálne v porovnaní s injekciou.8 Do perorálnych kapsúl alebo tabliet GS-441524 sa často pridávali doplnky s tvrdením, že zvyšujú absorpciu alebo majú aditívny terapeutický prínos (Krentz et al., 2011).  Väčšina hlavných predajcov injekčného lieku GS-441524 teraz ponúka perorálne verzie a perorálna liečba sa stáva čoraz populárnejšou buď ako jediná liečba, alebo v kombinácii s injekčným liekom GS-441524 (obrázok 21). Úspešnosť perorálnej liečby GS-441524 sa výrazne nelíši od injekčnej liečby GS-441524 (obrázok 22).

Obrázok 21. Porovnanie použitia perorálnych (tablety alebo kapsuly) a injekčných (subkutánnych) foriem GS-441524 na liečbu FIP u mačiek z Českej republiky a Slovenska. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 22. Pri perorálnom podávaní lieku GS-441524 v porovnaní so subkutánne podávaným GS nie je významný rozdiel v úspešnosti liečby, ale skutočné množstvo (mg) lieku podaného perorálne v každej dávke je až dvojnásobne vyššie ako množstvo obsiahnuté v rovnakej dávke injekčného GS. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Odporúčaná dávkovacia schéma pre GS-441524 na základe publikovaných údajov z terénnych štúdií (Pedersen et al., 2019) bola 4 mg/kg, subkutánne (SC), každý deň (q24h), t. j. 4 mg/kg, SC, q24h. Táto odporúčaná počiatočná dávka pre mačky s mokrou alebo suchou FIP bez očných alebo neurologických príznakov mala tendenciu sa v priebehu času zvyšovať na 6 mg/kg SC q24h (obr. 23). 8 mg/kg SC q24h je súčasné doporučené dávkovanie pre mačky s okulárnymi príznakmi a 10 alebo 12 mg/kg SC q24h pre mačky s neurologickými príznakmi.

Obrázok 23. Denná dávka lieku GS-441524, ktorá bola použitá na liečbu FIP u mačiek z Českej republiky a Slovenska. Bežná začiatočná dávka bola 6 mg/deň, pričom u niektorých mačiek boli potrebné vyššie dávky na základe odpovede na liečbu, formy ochorenia a výskytu recidív po tom, čo sa liečba zdala byť úspešná. Perorálne prípravky GS-441524 sú zvyčajne označené tak, aby zodpovedali dávkovaniu používanému pri injekčnom lieku, ale obsahujú až dvojnásobok označeného množstva. Tento graf je z webovej stránky FIP Warrior CZ/SK.1

Optimálne trvanie liečby, ako bolo stanovené v úvodnej klinickej štúdii, je 84 dní (Pedersen et al., 2019). V niektorých prípadoch akútnej vlhkej FIP u mladších mačiek sa dosiahlo vyliečenie za 6 – 8 týždňov, ale niektoré mačky potrebujú viac ako 84 dní. Ako je uvedené na obrázku 24,72 % mačiek sa liečilo 81 – 90 dní, 19 % dlhšie a len 9 % sa liečilo kratšie. Bohužiaľ, neexistuje jednoduchý a presný test na stanovenie momentu vyliečenia, a rozhodnutie o ukončení liečby je tak založené na úplnom návrate k zdraviu a normálnym hodnotám krvných testov. Mačky liečené oveľa dlhšie ako 100 dní boli zvyčajne tie, ktoré vyžadovali dávku GS vyššiu ako 12 mg/kg denne injekčne alebo ekvivalentnú perorálnu dávku, mačky, u ktorých došlo k recidíve ochorenia počas 12-týždňového obdobia pozorovania po ukončení liečby, mačky s neurologickým ochorením alebo mačky, ktoré sa stali rezistentné na GS-441524.   

Obrázok 24. Trvanie liečby liekom GS-141524 u 352 mačiek úspešne liečených na všetky formy FIP. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 25. Počiatočná liečba bola úspešná u 88,1 % mačiek a 6,2 % mačiek uhynulo alebo bolo utratených buď z dôvodu nedostatočnej odpovede na liečbu, finančných dôvodov alebo vedľajších účinkov liečby. U ďalších 5,7 % mačiek došlo po počiatočnej liečbe k recidíve a približne rovnaký počet mačiek sa po ďalšej liečbe buď vyliečil, alebo uhynul. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Úspešnosť liečby všetkých foriem FIP u mačiek z Českej republiky a Slovenska je 88,1 % pri prvej liečbe, ale keď sa zahrnú aj mačky, ktoré po prvej liečbe recidivovali a po druhej liečbe sa vyliečili (3,1 %), celková úspešnosť bola viac ako 91 % (obr. 25). Táto miera vyliečenia je totožná s mierou vyliečenia iných skupín bojovníkov proti FIP (Jones a kol., 2021). Úspešnosť liečby sa nelíši medzi mačkami s vlhkou alebo suchou FIP a bez očného alebo neurologického postihnutia (obr. 26). Miera vyliečenia u mačiek s očným a neurologickým postihnutím však bola nižšia, a to 80 % oproti 92 % u všetkých ostatných foriem FIP (obr. 26).

Obrázok 26.  Miera vyliečenia mačiek s vlhkou alebo suchou FIP bez okulárnych alebo neurologických príznakov a mačiek s okulárnym alebo neurologickým ochorením ako hlavným znakom ich ochorenia. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 27.  Zdravotný stav mačiek rok po úspešnom ukončení liečby liekom GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Mačky, ktoré boli úspešne liečené na FIP, boli sledované po dobu 4 až 5 rokov, ak zahrnieme prípady hlásené v prvých terénnych štúdiách. V tejto skupine prvých terénnych pokusov sa doteraz nevyskytli žiadne recidívy alebo opakované prípady FIP. K dispozícii sú údaje o ročnom prežívaní z oveľa väčšej populácie štúdie CZ/SK, ktoré ukazujú, že 90,5 % mačiek je rok po ukončení liečby stále zdravých (obr. 27). Iba 1,3 % týchto mačiek uhynulo z iných príčin ako FIP a 8,2 % kohorty je v súčasnosti v neznámom zdravotnom stave. Nízky podiel mačiek, ktoré uhynuli z neznámych príčin počas roka po liečbe, a ich pozitívna reakcia na liečbu naznačujú, že FIP bola diagnostikovaná správne.

EIDD-2801 (molnupiravir) sa práve teraz používa v teréne pre hlavnú liečbu a na liečbu mačiek s rezistenciou na GS-441524.5,7,9 EIDD-1931, aktívna forma EIDD-2081, sa musí podrobiť hlbšiemu výskumu, pretože sa na neho už nevzťahuje patentová ochrana a je tak ľahko schváliteľný pre použitie u zvierat, ak sa zistí, že je skutočne bezpečný a účinný.5 Bližšie preštudovať pre účely liečby FIP sa ešte musí aj Nirmatrelvir, perorálna forma GC373 a úzko príbuzná GC376.

Poďakovanie

Som zaviazaný Ladislavovi Mihokovi a jeho spolupracovníkom z “FIP Warriors Czech Republic/Slovakia” za to, že mi umožnili zdieľať údaje z ich webovej stránky. Táto webová stránka obsahuje najvýznamnejšiu, najdôkladnejšiu a najusporiadanejšiu zbierku údajov o liečbe FIP antivirotikami v súčasnosti. Webová stránka obsahuje aj užitočné informácie a rady o zahájení, vedení a monitorovaní aktuálnej liečby. Zbierka mačiek a údajov o nich je priebežne a pravidelne aktualizovaná a v čase písania tohto článku zahŕňala viac ako 600 mačiek s FIP.

Literatúra

  • Addie DD, Toth S, Murray GD, Jarrett O, 1995. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. American Journal of Veterinary Research, 56, 429-34.
  • Addie DD, Schaap IA, Nicolson L, Jarrett O, 2003. Persistence and transmission of natural type I feline coronavirus infection. Journal of General Virology 84, 2735–2744.
  • Andrew SE, 2000. Feline infectious peritonitis. Veterinary Clinics of North America and Small Animal Practice 30, 987-1000.
  • Barker EN, Stranieri A, Helps CR, Porter EL, Davison AD, Day MJ, Knowles T, Kipar A, Tasker S, 2017. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Veterinary Research 48, 60.
  • Beigel JH, Tomashek KM, Dodd LE, Mehta EK, Zingman BS, et al., 2020. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 383, 1813-1826,
  • Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P, 2020. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens 9, 958.
  • Cassado Ados A, D’Império Lima, Bortoluci KR., 2015. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in Immunology 6, 225.
  •  Cave TA, Thompson H, Reid SW, Hodgson DR, Addie DD, 2002. Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000). Veterinary Record 151, 497–501.
  • Chang H-W, Egberink HF, Halpin R, Spiro DJ, Rottier PJM, 2012. Spike protein fusion peptide and feline coronavirus virulence. Emerging Infectious Diseases 18, 1089–1095.
  •  Cook SE, Vogel H, Castillo D, Olsen M, Pedersen N, Murphy BG, 2021. Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery. doi: 10.1177/1098612X211048647. Epub ahead of print. PMID: 34676775.
  • Cornelissen E, Dewerchin HL, Van Hamme E, Nauwynck HJ, 2007. Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Veterinary Microbiology. 121, 131-137,
  • Cotter SM, Gilmore CE, Rollins C. 1973, Multiple cases of feline leukemia and feline infectious peritonitis in a household. Journal of the American Veterinary Medical Association 162, 1054–1058.
  • Court MH., Greenblatt DJ. 2000, Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms Pharmacogenetics, 10, 355-369
  • Crawford AH, Stoll AL, Sanchez-Masian D, Shea A, Michaels J, Fraser AR, Beltran E, 2017. clinicopathologic features and magnetic resonance imaging findings in 24 cats with histopathologically confirmed neurologic feline infectious peritonitis. Journal of Veterinary Internal Medicine 31, 1477-1486.
  • Day MJ, 2010. Ageing, immunosenescence and inflammageing in the dog and cat. Journal of Comparative Pathology 142 Suppl 1, S60-69.
  • Delaplace M, Huet H, Gambino A, Le Poder S, 2021. Feline coronavirus antivirals: A review. Pathogens 10, 1150. doi: 10.3390/pathogens10091150.
  • Dempsey SM, Ewing PJ, 2011. A Review of the Pathophysiology, Classification, and Analysis of Canine and Feline Cavitary Effusions. Journal of the American Animal Hospital Association 47, 1–11.
  • de Sousa JR, Sotto MN, Simões Quaresma JA, 2017. Leprosy as a complex infection: Breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease. Frontiers in Immunology 8,1635.
  • Dewerchin HL, Cornelissen E, Van Hamme E, Smits K, Verhasselt B, Nauwynck HJ, 2008. Surface-expressed viral proteins in feline infectious peritonitis virus-infected monocytes are internalized through a clathrin- and caveolae-independent pathway. Journal of General Virology 89, 2731-2740
  • Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ, 2014. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Veterinary Research 45, 17.
  • Dickinson PJ, Bannasch M, Thomasy SM, Murthy VD, Vernau KM, Liepnieks M, Montgomery E, Knickelbein KE, Murphy B, Pedersen NC, 2020. Antiviral treatment using the adenosine nucleoside analogue GS‐441524 in cats with clinically diagnosed neurological feline infectious peritonitis. Journal of Veterinary Internal Medicine 34, 1587–1593.
  • Drechsler Y, Alcaraz A, Bossong FJ, Collisson EW, Diniz PP, 2011. Feline coronavirus in multicat environments. Veterinary Clinics North America and Small Animal Practice41, 1133-1169.
  • Fankauser R, Fatzer R, 1997. Meningitis and chorioependymitis granulomatosa der Katze. Mögliche beziehungen zur felinen infectiösen peritonitis (FIP). Klientierpraxis 22, 19–22.
  • Felten S, Leutenegger CM, Balzer HJ, Pantchev N, Matiasek K, Wess G, Egberink H, Hartmann K, 2017. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis. BMC Veterinary Research 13, 228.
  •  Felten S, Hartmann K, 2019. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 11, 1068.
  • Fischer Y, Sauter-Louis C, Hartmann K, 2012. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Veterinary Clinical Pathology 41, 558-67.
  • Foley JE, Poland A, Carlson J, Pedersen NC, 1997. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. Journal of the American Veterinary Medicine Association 210, 1313-1318.
  • Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC, 1998. Diagnostic features of clinical neurologic feline infectious peritonitis. Journal of Veterinary Internal 12, 415–423.
  • Gaskell RM, Povey RC, 1977. Experimental induction of feline viral rhinotracheitis virus re-excretion in FVR-recovered cats. Veterinary Record 100, 128–133.
  • Golovko L, Lyons LA, Liu H, Sørensen A, Wehnert S, Pedersen NC, 2013. Genetic susceptibility to feline infectious peritonitis in Birman cats. Virus Research 175, 58-63.
  • Gunn-Moore DA, Gaunt C, Shaw DJ, 2012. Incidence of mycobacterial infections in cats in great britain: estimate from feline tissue samples submitted to diagnostic laboratories. Transboundary and Emerging Diseases. 60, 338-344.
  • Gut, M, Leutenegger, CM, Huder, JB, Pedersen NC, H, 1999. One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. Journal of Virological Methods 77, 37–46.
  • Hardy WD Jr, 1981. Feline leukemia virus non-neoplastic diseases. Journal of the American Animal Hospital Association 17, 941-949.
  • Healey EA, Andre NM, Miller AD, Whitaker GR, Berliner EA, 2022. Outbreak of feline infectious peritonitis (FIP) in shelter-housed cats: Molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a ‘circulating virulent-avirulent theory’ of FIP pathogenesis. Journal of Feline Medicine and Surgery Open Reports 8, 20551169221074226.
  • Herrewegh AAPM, Mähler M, Hedrich HJ, Haagmans BL, Egberink HF, Horzinek MC, Rottier PJM, de Groot RJ, 1997. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.
  • Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ, 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. Journal of Virology 72, 4508–4514.
  • Hickman MA, Morris JG, Rogers QR, Pedersen NC, 1995. Elimination of feline coronavirus infection from a large experimental specific pathogen-free cat breeding colony by serologic testing and isolation, Feline Practice 23, 96–102.
  • Hsieh L-E, Lin C-N, Su B-L, Jan T-R, Chen C-M, Wang C-H, Lin D-S, Lin C-T, Chueh L-L. 2010. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Research 88, 25–30.
  • Holzworth J, 1963. Some important disorders of cats. Cornell Veterinarian 53, 157–160.
  • Izes AM, Yu J, Norris JM, Govendir M, 2020. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Veterinary Quarterly
    40, 322–330.
  • Jones S, Novicoff W, Nadeau J, Evans S, 2021. Unlicensed GS-441524-like antiviral therapy can be effective for at-home treatment of feline infectious peritonitis. Animals 11, 2257.
  • Kalakonda A, Jenkins BA, John S. Physiology, Bilirubin. [Updated 2021 Sep 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470290/
  • Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE, 2019. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV). BMC Veterinary Research 15,165.
  • Kameshima S, Kimura Y, Doki T, Takano T, Park CH, Itoh N, 2020. Clinical efficacy of combination therapy of itraconazole and prednisolone for treating effusive feline infectious peritonitis. Journal of Veterinary Medical Science 82, 1492-1496.
  • Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC, 2016. Reversal of the progression of fatal coronavirus Infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathogens 12:e1005531.
  • Kipar A, May H, Menger S, Weber M, Leukert W, Reinacher M, 2005. Morphologic features, and development of granulomatous vasculitis in feline infectious peritonitis. Veterinary Pathology 42, 321–330.
  • Krentz D., Zenger K., Alberer M., Felten S., Bergmann M, Dorsch R., Matiasek, K., Kolberg, L., Hofmann-Lehmann, R., Meli, M.L., et al., 2021. Curing cats with feline infectious peritonitis with an oral multi-component drug containing GS-441524. Viruses 13, 2228.
  • Legendre AM, Kuritz T, Galyon G, Baylor VM, Heidel RE, 2017. Polyprenyl immunostimulant treatment of cats with presumptive non-effusive feline infectious peritonitis in a field study. Frontiers in Veterinary Science 4, 7.
  • Leseigneur C, Lê-Bury P, Pizarro-Cerdá J, Dussurget O, 2020. Emerging Evasion Mechanisms of Macrophage Defenses by Pathogenic Bacteria. Frontiers in Cellular and Infection Microbiology, 10, 538.
  • Lewis KM, O’Brien RT, 2010. Abdominal ultrasonographic findings associated with feline infectious peritonitis: a retrospective review of 16 cases. Journal of the American Animal Hospital Association. 46, 152-60.
  • Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, Whittaker GR, 2013. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging Infectious Diseases 19, 1066–1073.
  • Lin CN, Su BL, Wang CH, Hsieh MW, Chueh TJ, Chueh LL, 2009. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan. Veterinary Microbiology 136, 233-239.
  • Litster AL. Pogranichniy R, Lin TL, 2013. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis. Veterinary Journal 198, 362-366.
  • Lloret A, Hartmann K, Pennisi MG, Ferrer L, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, et al., 2013. Rare systemic mycoses in cats: blastomycosis, histoplasmosis and coccidioidomycosis: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery 15, 624-627.
  • Longstaff L, Porter E, Crossley VJ, Hayhow SE, Helps CR, Tasker S, 2017. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. Journal of Feline Medicine and Surgery 19, 240–245.
  • Mahase E. 2021. Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports. BMJ 375, n2422.
  • Malbon AJ, Meli ML, Barker EN, Davidson AD, Tasker S, Kipar A, 2019. inflammatory mediators in the mesenteric lymph nodes, site of a possible intermediate phase in the immune response to feline coronavirus and the pathogenesis of feline infectious peritonitis? Journal of Comparative Pathology 166, 69-86.
  • Malbon AJ, Russo G, Burgener C, Barker EN, Meli ML, Tasker S, Kipar A, 2020. the effect of natural feline coronavirus infection on the host immune response: A whole-transcriptome analysis of the mesenteric lymph nodes in cats with and without feline infectious peritonitis. Pathogens 7, 524.
  • Montali RJ, Strandberg JD, 1972. Extraperitoneal lesions in feline infectious peritonitis. Veterinary Pathology 9, 109–121.
  • Mor G, Cardenas I, 2010. The immune system in pregnancy: A unique complexity. American Journal of Reproductive Immunology 63, 425-433.
  • Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC, 2018. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology 219, 226-233.
  • Painter WP, Holman W, Bush JA, Almazedi F, Malik H, Eraut NCJE, Morin MJ, Szewczyk LJ, Painter GR, 2021. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrobial Agents and Chemotherapeutics 65:e02428-20.
  • Paltrinieri S, Giordano A, Tranquillo V, Guazzetti S, 2007. Critical assessment of the diagnostic value of feline α1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach. Journal of Veterinary Diagnostic Investigation. 19, 266-272.
  • Pearson M, LaVoy A, Evans S, Vilander A, Webb C, Graham B, Musselman E, LeCureux J, VandeWoude S, Dean GA, 2019. Mucosal Immune Response to Feline Enteric Coronavirus Infection. Viruses 11, 906.
  • Pedersen NC, 1976a. Feline Infectious Peritonitis: Something Old, Something New. Feline Practice 6,42‑51.
  • Pedersen NC, 1976b. Serologic Studies of Naturally Occurring Feline Infectious
  •          peritonitis. American Journal of Veterinary Research 37, 1447‑1453.
  • Pedersen NC, 2009. A review of feline infectious peritonitis virus infection:1963-2008. Journal of Feline Medicine and Surgery 11, 225-258.
  • Pedersen NC, Boyle J, 1980. Immunologic Phenomena in the Effusive Form of Feline Infectious Peritonitis. American Journal of Veterinary Research 41:868‑876.
  • Pedersen NC, Ward J, Mengeling WL, 1978. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Archives of Virology58, 45‑53.
  • Pedersen NC, Allen CE, Lyons LA, 2008. Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery 10, 529–541.
  • Pedersen NC, Theilen G, Keane MA, Fairbanks L, Mason T, Orser B, Che CH, Allison C, 1977. Studies of naturally transmitted feline leukemia virus infection. American Journal of Veterinary Research 38, 1523–1531.
  • Pedersen NC, Boyle JF, Floyd K, Fudge A, Barker J, 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. American Journal of Veterinary Research 42, 368-377.
  • Pedersen NC, Meric SM, Hoe E, Johnson L. Plucker S, Theilen GH, 1982. The clinical significance of latent feline leukemia virus infection. Feline Practice 14, 32‑48.
  • Pedersen NC, Black JW, Boyle JF, Evermann JF, McKeirnan AJ, Ott RL, 1984. Pathogenic differences between various feline coronavirus isolates. Advances in Experimental Medicine and Biology 173, 365–380.
  • Pedersen NC, Liu H, Dodd KA, Pesavento PA, 2009. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses1, 166-184.
  • Pedersen NC, Liu H, Durden M, Lyons LA, 2016. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veterinary Immunology and Immunopathology 171, 17-20.
  • Pedersen NC, Liu H, Scarlett J, Leutenegger CM, Golovko L, Kennedy H, Kamal FM, 2012. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Research 165,17-28
  • Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO, 2018. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. Journal of Feline Medicine and Surgery 20, 378-392.
  • Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H, 2019. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery 21, 271-281.
  • Peiffer RL Jr, Wilcock BP, 1991. Histopathologic study of uveitis in cats: 139 cases (1978-1988). Journal of the American Veterinary Medical Association 198, 135–138.
  • Pesteanu-Somogyi LD, Radzai C, Pressler BM, 2006. Prevalence of feline infectious peritonitis in specific cat breeds. Journal of Feline Medicine and Surgery 8, 1–5.
  • Poland AM, Vennema H, Foley JE, Pedersen NC, 1996. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with the feline enteric coronavirus. Journal of Clinical Microbiology 34, 3180-3184.
  • Regan A, Whitaker G, 2008. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. Journal of Virology 82, 11992-11996.
  • Riemer F, Kuehner KA, Ritz S, Sauter-Louis C, Hartmann K, 2016. Clinical and laboratory features of cats with feline infectious peritonitis–a retrospective study of 231 confirmed cases (2000-2010). Journal of Feline Medicine and Surgery 18, 348–356.
  • Rohrbach BW, Legendre AM, Baldwin CA, Lein DH, Reed WM, Wilson RB, 2001. Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals. Journal of the American Veterinary Medical Association 218, 1111–1115.
  • Rojko J, Hoover E, Quackenbush, S. Olsen RG, 1982. Reactivation of latent feline leukaemia virus infection. Nature 298, 385–388.
  • Rothman AL. Ennis FA, 1999. Immunopathogenesis of Dengue Hemorrhagic Fever. Virology 257, 1–6.
  • Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Aostini, ML, Leist, SR, Schäfer, A, Dinnon, KH 3rd., Stevens, LJ et al., 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine. 12, eabb5883.
  • Spencer, SE, Knowles, T, Ramsey, IK. 2017. Pyrexia in cats. retrospective analysis of signalment, clinical investigations, diagnosis and influence of prior treatment in 106 referred cases. Journal of Feline Medicine and Surgery 19, 1123–1130.
  • Stella J, Croney C, Buffington T, 2013. Effects of stressors on the behavior and physiology of domestic cats. Applied Animal Behavior Science 143, 157-163.
  • Stranieri A, Giordano A, Bo S, Braghiroli C, Paltrnieri S, 2017. Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004–2009 vs 2013–2014). Journal of Feline Medicine and Surgery 19, 880–887.
  • Takano T, Katoh Y, Doki T, Hohdatsu T, 2013. Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo. Antiviral Research. 99, 100–107.
  • Tasker S, 2018. Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests. Journal of Feline Medicine and Surgery 20, 228–243.
  • Tekes G, Ehmann R, Boulant S, Stanifer ML, 2020. Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection. Cells 9, 2085.
  • Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K, 2014. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9, e106534.
  • Van Hamme E, Dewerchin HL, Cornelissen E, Verhasselt B, Nauwynck HJ, 2008. Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. Journal of General Virology 89, 2147–2156.
  • Vennema H, Poland A, Foley J, Pedersen NC, 1995. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150-157.
  • Vogel L, Van der Lubben M, , Te Lintelo EG, Bekker CPJ, Geerts T, Schuif LS, Grinwis GCM, Egberink HF, Rottier PJM, 2010. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Veterinary Research 41, 71.
  • Vuong, W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby, KD, Lu, J, Arutyenova, E, Joyce, MA, Saffran, HA et al., 2021. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. European Journal of Medicinal Chemistry, 222, 113584.
  • Wang YT, Su BL, Hsieh LE, Chueh LL, 2013. An outbreak of feline infectious peritonitis in a Taiwanese shelter: Epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. Veterinary Research, 44, 57.
  • Ward JM, 1970. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology 41, 191–194.
  • Watanabe R, Eckstrand C, Liu H, Pedersen NC, 2018. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Veterinary Research 49, 81.
  • Weiss RC, Scott FW, 1981. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comparative Immunology, Microbiology and Infectious Diseases 4, 175-189.
  • Weiss RC, Cox NR, Martinez ML, 1993. Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Research in Veterinary Science 55, 162e72.
  • Wolfe LG, Griesemer RA, 1966. Feline Infectious Peritonitis Path. Pathological Veterinaria 3, 255-270.
  • Wolfe, L.G., Griesemer, RA, 1971. Feline infectious peritonitis: review of gross and histopathologic lesions. Journal of the American Veterinary Medical Association 158, 987–993.
  • Worthing KA, Wigney DI, Dhand NK, Fawcett A, McDonagh P, Malik R, Norris JM, 2012. Risk factors for feline infectious peritonitis in Australian cats. Journal of Feline Medicine and Surgery 14, 405-412.
  • Yan VC, Muller FL, 2020. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Medicinal Chemistry Letters 11, 1361-1366
  • Yu J, Kimble B, Norris JM, Govendir M, 2020. Pharmacokinetic profile of oral administration of mefloquine to clinically normal cats: A preliminary in-vivo study of a potential treatment for feline infectious peritonitis (FIP). Animals 10, 1000.
  • Yuki M, Aoyama R, Nakagawa M, Hirano T, Naitoh E, Kainuma D, 2020. A Clinical Investigation on serum amyloid A concentration in client-owned healthy and diseased cats in a primary care animal hospital. Veterinary Sciences, 7, 45.
  • Ziółkowska N, Paździor-Czapula K, Lewczuk B, Mikulska-Skupień E, Przybylska-Gornowicz B, Kwiecińska K, Ziółkowski H, 2017. Feline infectious peritonitis: immunohistochemical features of ocular inflammation and the distribution of viral antigens in structures of the eye. Veterinary Pathology, 54, 933-940.
  • Zook BC, King NW, Robinson RL, McCombs HL, 1968. Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Veterinary Pathology 5, 91–95.

Poznámky pod čiarou

  1. FIP Treatment – Czechia /Slovakia. Basic data, 2022. https://docs.google.com/spreadsheets/d/e/2PACX-1vRAnj_FV_fteWIW1HXsROLuJ7YY1-i_Sf81BCmM9JT9LbCT2mcnwD1rL9IBsLCTB1U59CcnalOGjFqq/pubhtml?gid=1340189982&single=true  (Accessed 4 April2022).
  2. Hughes D, Howard G, Malik R, 2021. Treatment of FIP in cats with Remdesivir. Clinical review, 2021. The Veterinarian. https://www.turramurravet.com.au/wp-content/uploads/2021/07/FIP-Article_The-Veterinarian.pdf (Accessed 5 March 2022).
  3. Anonymous. Thanks to Cats, One Promising Coronavirus Treatment is Already in Development-The GC376 story. 2021,  https://anivive.com/coronavirus (Accessed 4 April 2022)
  4. Zhang S (2020) A Much-Hyped COVID-19 Drug Is Almost Identical to a Black-Market Cat Cure. The Atlantic. https://www.theatlantic.com/science/archive/2020/05/remdesivir-cats/611341/ (Accessed 4 April 2022).
  5. Pedersen NC, 2021. The long history of Beta-d-N4-hydroxycytidine and its modern application to treatment of Covid-19 in people and FIP in cats. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Molnuparivir%20as%20a%20third%20antiviral%20drug%20for%20treatment%20of%20FIP%20v13_1.pdf  (Accessed 4 April 2022).
  6. American Veterinary Medical Association. Guidelines for veterinary prescription drugs. 2022. https://www.avma.org/resources-tools/avma-policies/guidelines-veterinary-prescription-drugs (Accessed 4 April 2022).
  7. FIP Warriors CZ/SK. https://www.fipwarriors.eu/en/ (accessed 15 April 2022).
  8. Pedersen NC, Jacque N, 2021. Treatment with oral formulations of GS-441524. https://sockfip.org/2021-treatment-with-oral-formulations-of-gs-441524/  (Accessed 11 December 2021).
  9. Pedersen NC, Jacque N. 2021.  Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Approaches-to-drug-resistance-in-cats-treated-with-GS-441524-for-FIP-v3.pdf (Accessed 16 April 2022).

Štyri dekády Save Our Cats and Kittens a čo bude ďalej

Niels C. Pedersen, DVM, PhD
December 2021
Pôvodný článok: The history of Save Our Cats and Kittens over four decades and where we go from here

Niels C. Pedersen

Tí, ktorí sledujú moju kariéru, vedia, že okrem infekčných chorôb mačiek mám mnoho ďalších záujmov. Najviac ma však preslávila medicína mačiek a choroby, ktoré trápia prostredia s mnohopočetnými mačkami. Tento záujem o infekčné choroby sa začal v roku 1965 ako u študenta druhého ročníka veterinárnej medicíny, ale rozvinul sa po mojom nástupe na fakultu veterinárnej medicíny Kalifornskej univerzity v Davise v roku 1972. Mojím prvým zadaním bolo pomôcť vyhrať vojnu prezidenta Nixona proti rakovine. Táto vojna kládla dôraz na potenciálne vírusové príčiny rakoviny, najmä na retrovírusy a ľudské leukémie. To bol môj vstup späť do sveta vírusu leukémie mačiek (FeLV). Samozrejme, môj záujem sa sústredil viac na infekciu FeLV, ktorá sa týkala mačiek, než na akékoľvek uplatnenie v prípade rakoviny u ľudí. Rýchlo sa ukázalo, že infekcia FeLV je závažnou panzootickou (pandemickou) chorobou mačiek, ktorá sa v predchádzajúcich desaťročiach nebadane rozšírila z divokých na domáce mačky a v 60. a 70. rokoch 20. storočia bola zodpovedná za jednu tretinu úmrtnosti mačiek. Milovníci mačiek sa po objavení vírusu rýchlo zmobilizovali a začali zbierať peniaze na podporu výskumu FeLV. Pôvodnú organizáciu SOCK (Save Our Cats and Kittens – Zachráňte naše mačky a mačiatka) vytvorila skupina úžasných milovníkov mačiek pod vedením Vincea, Connie a Dorothy Campanileových a ich priateľov. SOCK it to leukemia sa stal mobilizujúcim pokrikom skupiny a ja som mal tú česť spojiť s nimi sily od ich začiatku až do konca. Dary od milovníkov mačiek bez podpory federálnych výskumných fondov umožnili väčšinu nášho výskumu infekcie FeLV na Kalifornskej univerzite v Davise. Tento výskum viedol k pochopeniu toho, ako sa FeLV stala pandémiou domácich mačiek, ako spôsobuje širokú škálu ochorení a ako by sa dala kontrolovať. FeLV infekcia domácich mačiek sa dostala pod kontrolu v 70. a 80. rokoch 20. storočia vďaka rýchlym diagnostickým testom a očkovaniu. Zvládnutie infekcie FeLV bolo jedným z vrcholov veterinárneho výskumu tohto obdobia a možno jedným z najdôležitejších prínosov modernej medicíny mačiek v 20. storočí. SOCK it to leukemia sa nakoniec vypracovala na organizáciu s viac ako 1 miliónom dolárov získaných na konečné zdolanie infekcie FeLV. Infekcia FeLV stále existuje v prírode, kde zostáva problémom pre malý počet mladých mačiek prichádzajúcich do náhradných/záchranných zariadení a útulkov z terénu.

V tom istom čase sa objavila ďalšia veľmi smrteľná choroba. V roku 1963 veterinári z nemocnice Angell Memorial Animal Hospital v Bostone prvýkrát zaznamenali mačací infekčný zápal pobrušnice (FIP). Neskôr sa zistilo, že úzko súvisí s infekciou FeLV, a dúfalo sa, že s kontrolou FeLV do veľkej miery vymizne. To sa nepotvrdilo a FIP čoskoro nahradila FeLV ako hlavnú infekčnú príčinu úmrtí mačiek. V dôsledku toho došlo k predaniu pochodne “SOCK it to leukemia” k “SOCK it to FIP”. To bol aj prirodzený vývoj môjho výskumu. FIP bola mojou prvou “láskou” od čias, keď som ako študent veterinárnej medicíny v roku 1965 pomáhal skúmať prvé prípady FIP na Kalifornskej univerzite v Davise. Môj záujem o FIP sa na krátky čas dostal na druhú koľaj v 80. rokoch 20. storočia, keď som sa venoval HIV/AIDS a následne som objavil vírus imunodeficiencie mačiek (FIV). FIP sa stala hlavným predmetom môjho výskumu počas posledných troch desaťročí.

Som rád, že som mal v týchto rokoch podporu SOCK FIP. Jedným z našich najväčších objavov na Kalifornskej univerzite v Davise bolo, ako neškodný a všadeprítomný mačací enterický koronavírus (FECV) nakoniec spôsobí také smrteľné ochorenie, akým je FIP. Naša teória, že vírus FIP vznikol vnútornou mutáciou vírusu FECV, sa najprv stretla s veľkým skepticizmom, ale teraz je všeobecne prijímaná. Teória vnútornej mutácie viedla k oveľa lepšiemu pochopeniu podmienok, za ktorých sa FIP vyskytuje, a spôsobu, akým vírus FIP vyvoláva ochorenie. Žiaľ, nikomu, vrátane nás, sa nepodarilo nájsť úspešnú vakcínu proti FIP. Tento neúspech viedol k môjmu záujmu o liečenie, a nie o prevenciu FIP pomocou moderných antivirotík, s ktorými som sa zoznámil počas pandémie HIV/AIDS. Vrcholom mojich takmer 50-ročných skúseností s FIP bol objav dvoch antivirotík, ktoré boli schopné vyliečiť FIP. Tisíce mačiek z celého sveta sa za posledné 3 roky vyliečili z FIP pomocou antivírusových liekov, ktoré boli skúmané na UC Davis. Naše objavy na UC Davis by neboli možné bez významnej dlhodobej finančnej a morálnej podpory SOCK FIP a majiteľov mačiek, ktorí nás finančne podporili.

Objavenie lieku na FIP opäť vedie k logickému ukončeniu SOCK FIP, rovnako ako víťazstvo nad infekciou FeLV ukončilo potrebu pôvodného SOCK. Hoci som na dôchodku, naďalej spolupracujem s majiteľmi mačiek a opatrovateľmi na tom, ako používať antivirotiká na liečbu FIP, a budem naďalej spolupracovať so SOCK FIP ako konzultant pre liečbu FIP a doživotný člen. Treba priznať, že v oblasti FIP je stále čo skúmať, hlavne v oblasti prevencie ochorenia. Dúfam, že sa tejto a ďalších oblastí výskumu FIP ujmú aj iní. Otázkou teraz je, ako môže SOCK čo najlepšie zlepšiť zdravie našich mačiek a mačiatok. SOCK FIP je v procese vyhodnocovania širšieho poslania ako len FIP. Toto poslanie môže, ale nemusí zahŕňať získavanie finančných prostriedkov na výskum a mohlo by mať viac informačný charakter. Uvítame návrhy, ako by sa dlhá história SOCK-u dala využiť na zlepšenie zdravia našich mačiek a mačiatok.

Pôvod brušných alebo hrudných výpotkov u mačiek s vlhkou FIP a príčiny ich pretrvávania počas liečby

Niels C. Pedersen, DVM, PhD
Centrum pre zdravie spoločenských zvierat
Kalifornská univerzita, Davis
24.9.2021

Pôvodný článok: Origin of abdominal or thoracic effusions in cats with wet FIP and reasons for their persistence during treatment


Pôvod FIP výpotkov. Výpotky pri vlhkej FIP pochádzajú z malých ciev (venúl), ktoré lemujú povrch brušných a hrudných orgánov (viscerálne) a stien (parietálne), mezentéria/mediastína a omenta. Priestory okolo týchto ciev obsahujú špecifický typ makrofágov, ktoré pochádzajú z progenitorov monocytov, ktoré neustále recirkulujú medzi krvným obehom, intersticiálnymi priestormi okolo venúl, aferentnou lymfou, regionálnymi lymfatickými uzlinami a späť do krvného obehu. Ďalšie miesta tejto recirkulácie sa nachádzajú v meningách, ependyme mozgu a uveálnom trakte očí. Malá časť týchto monocytov sa vyvinie na nezrelé makrofágy (monocyt/makrofág) a nakoniec na rezidentné makrofágy. Makrofágy nepretržite vyhľadávajú infekcie.

FIPV vzniká mutáciou z mačacieho enterického koronavírusu (FECV) prítomného v lymfoidných tkanivách a lymfatických uzlinách v dolnej časti čreva. Mutácia mení bunkový tropizmus FECV z enterocytov na makrofágy peritoneálneho typu. Monocyty/makrofágy sa zdajú byť prvým typom buniek, ktoré sú infikované. Táto infekcia spôsobí, že viac monocytov opustí krvný obeh a začne sa ich premena na makrofágy, ktoré pokračujú v cykle infekcie [2]. Monocyty/makrofágy nepodliehajú programovanej bunkovej smrti, ako sa zvyčajne očakáva, ale pokračujú vo svojom dozrievaní na veľké makrofágy naložené vírusom. Tieto veľké makrofágy nakoniec podliehajú programovanej bunkovej smrti (apoptóze) a uvoľňujú veľké množstvo vírusu, ktorý potom infikuje nové monocyty/makrofágy [1]. Infikované monocyty/makrofágy a makrofágy produkujú niekoľko látok (cytokínov), ktoré sprostredkúvajú intenzitu zápalu (ochorenie) aj imunitu (rezistenciu) [1,2].

Zápal spojený s FIP vedie k trom typom zmien vo venulách. Prvým je strata integrity cievnej steny, mikrokrvácanie a únik plazmatického proteínu bohatého na aktivované faktory zrážania a aktivácie komplementu a ďalšie zápalové proteíny. Druhý typ poškodenia zahŕňa trombózu a zablokovanie prietoku krvi. Tretie poškodenie sa vyskytuje v chronickejších prípadoch a zahŕňa fibrózu (zjazvenie) okolo ciev. Variácie v týchto troch udalostiach určujú množstvo a zloženie výpotkov podľa štyroch Starlingových síl, ktoré určujú pohyb tekutín medzi krvným obehom a intersticiálnymi priestormi [3].

Klasický výpotok pri vlhkej FIP vzniká najmä v dôsledku akútneho poškodenia cievnych stien a úniku plazmy do intersticiálnych priestorov a nakoniec do telesných dutín. Proteín uniknutý do intersticiálnych priestorov priťahuje ďalšie tekutiny, čo sa môže zhoršiť zablokovaním venózneho prietoku krvi a zvýšením kapilárneho tlaku. Tento typ výpotku, známy ako exsudát, obsahuje aj vysoké hladiny proteínov, ktoré sa podieľajú na zápale, imunitných reakciách a zrážaní krvi.

Táto tekutina obsahuje aj veľký počet neutrofilov, makrofágov/monocytov, makrofágov, eozinofilov a nižší počet lymfocytov a červených krviniek. Tento klasický typ tekutiny má konzistenciu vaječného bielka a tvorí slabé zrazeniny obsahuje vysoké množstvo bilirubínu. Bilirubín nepochádza z ochorenia pečene, ale skôr z deštrukcie červených krviniek uniknutých do buniek intersticiálneho tkaniva a pohltených monocytmi/makrofágmi a makrofágmi. Červené krvinky sa rozkladajú a hemoglobín sa štiepi na hem a globín. Globín sa ďalej metabolizuje na biliverdín (zelenkastá farba) a nakoniec na bilirubín (žltkastá farba), ktorý sa potom vylučuje pečeňou. Mačky však majú nedostatok enzýmov používaných na konjugáciu, a preto sú neúčinné pri odstraňovaní bilirubínu z tela [4]. To vedie k hromadeniu bilirubínu v krvnom obehu a dáva výpotku žltý nádych. Čím tmavší je žltý odtieň, tým viac bilirubínu je vo výpotku, tým závažnejšia je iniciujúca zápalová reakcia a tým závažnejšia je výsledná bilirubinémia, bilirubinúria a žltačka.

Opačným extrémom klasického a akútnejšieho výpotku pri FIP sú výpotky vznikajúce prevažne pri chronických infekciách a blokáde venózneho prietoku krvi a následnom zvýšení kapilárneho tlaku. Vysoký kapilárny tlak vedie k výpotku, ktorý sa vzdialenejšie podobá intersticiálnej tekutine ako plazme, má nižší obsah bielkovín, je skôr vodnatý ako lepkavý, číry alebo mierne žlto sfarbený, nie je náchylný na zrážanie a má nižší počet akútnych zápalových buniek, ako sú neutrofily. Existujú aj výpotky FIP, ktoré sú medzi týmito extrémami, v závislosti od relatívneho stupňa akútneho zápalu a chronickej fibrózy. Tieto prechodné typy tekutín sa vo veterinárnej literatúre bežne označujú ako modifikovaný transsudát, čo je však nesprávne pomenovanie. Modifikovaný transsudát začína ako transsudát a mení sa, keď pretrváva a vyvoláva mierny zápal. Výpotky s nízkym obsahom bielkovín a buniek pri FIP vznikajú ako exsudáty a nie ako transsudáty a nezodpovedajú tomuto opisu. Správnejší termín je “modifikovaný exsudát” alebo “variantný exsudatívny výpotok”.

Ako dlho zvyčajne pretrvávajú výpotky u mačiek liečených liekom GS-441524 alebo GC376? Prítomnosť brušných výpotkov často vedie k veľkému roztiahnutiu brucha a potvrdí sa palpáciou, aspiráciou dutou ihlou, röntgenom alebo ultrazvukom. Mačky s hrudnými výpotkami sa najčastejšie prezentujú závažnou dýchavičnosťou a potvrdzujú sa rádiologickým vyšetrením a aspiráciou. Hrudné výpotky sa takmer vždy odstraňujú, aby sa zmiernila dýchavičnosť, a v porovnaní s brušnými výpotkami sa opakujú pomaly. Preto sa brušné výpotky zvyčajne neodstraňujú, pokiaľ nie sú masívne a nezasahujú do dýchania, pretože sa rýchlo nahradia. Opakovaná drenáž brušných výpotkov môže tiež vyčerpať bielkoviny a spôsobiť škodlivé zmeny v rovnováhe tekutín a elektrolytov u ťažko chorých mačiek.

Hrudné výpotky pri liečbe liekom GS-441524 miznú rýchlejšie, so zlepšením dýchania do 24-72 hodín a vymiznutím zvyčajne za menej ako 7 dní. Abdominálne výpotky sa zvyčajne výrazne zmenšia do 7-14 dní a vymiznú do 21-28 dní. Detekcia výpotkov, ktoré pretrvávajú po tomto čase, závisí od ich množstva a metódy detekcie. Malé množstvá pretrvávajúcej tekutiny sú zistiteľné len ultrazvukom.

Pretrvávanie výpotkov počas antivírusovej liečby alebo po nej. Existujú tri základné dôvody pretrvávania výpotkov. Prvým je pretrvávanie infekcie a z nej vyplývajúceho zápalu na určitej úrovni, čo môže byť spôsobené nevhodnou liečbou, zlým liekom alebo rezistenciou na liek. Neadekvátna liečba môže byť dôsledkom nesprávneho dávkovania zlého lieku alebo získania rezistencie vírusu na liek. Druhým dôvodom pretrvávania tekutín je chronické poškodenie venúl a zvýšený kapilárny tlak. Môže to byť spôsobené infekciou nízkeho stupňa alebo reziduálnou fibrózou z infekcie, ktorá bola odstránená. Tretím dôvodom perzistencie je existencia iných ochorení, ktoré sa tiež môžu prejavovať výpotkami. Patria k nim vrodené srdcové choroby, najmä kardiomyopatia, chronické ochorenie pečene (získané alebo vrodené), hypoproteinémia (získaná alebo vrodená) a rakovina. Vrodené ochorenia spôsobujúce výpotky sa častejšie vyskytujú u mladých mačiek, zatiaľ čo získané príčiny a rakovina sa častejšie diagnostikujú u starších mačiek.

Diagnostika a liečba pretrvávajúcich výpotkov. Predpokladom diagnózy a liečby je dôkladné vyšetrenie tekutiny, ako je opísané vyššie. Ak má tekutina zápalový alebo polozápalový charakter a bunkový pelet je pozitívny pomocou PCR alebo IHC, musí sa určiť dôvod pretrvávania infekcie. Bola antivírusová liečba správne vedená, bolo antivírusové liečivo aktívne a jeho koncentrácia správna, existovali dôkazy o získanej rezistencii na liečivo? Ak má tekutina zápalový charakter a PCR a IHC sú negatívne, aké iné ochorenia pripadajú do úvahy? Tekutiny s nízkym obsahom bielkovín a buniek, ktoré nenaznačujú prítomnosť zápalu a ktorých test PCR a IHC je negatívny, poukazujú na diagnózu reziduálnej fibrózy malých ciev a/alebo na iné prispievajúce príčiny, ako je ochorenie srdca, chronické ochorenie pečene, hypoproteinémia (ochorenie čriev alebo obličiek). Niektoré z porúch spôsobujúcich tento typ výpotku si môžu vyžadovať exploratívnu laparotómiu s dôkladnou prehliadkou brušných orgánov a selektívnou biopsiou na určenie pôvodu tekutiny. Liečba pretrvávajúcich výpotkov sa bude veľmi líšiť v závislosti od konečnej príčiny. Pretrvávajúce výpotky spôsobené reziduálnou fibrózou malých ciev u mačiek vyliečených z infekcie často ustúpia až po mnohých týždňoch alebo mesiacoch. Pretrvávajúce výtoky spôsobené úplne alebo čiastočne inými ochoreniami si vyžadujú liečbu zameranú na tieto ochorenia.

Identifikácia a charakteristika pretrvávajúcich výpotkov. Prítomnosť tekutiny po 4 týždňoch liečby GS je nepríjemná a zvyčajne sa zisťuje niekoľkými spôsobmi v závislosti od množstva tekutiny a jej lokalizácie. Veľké množstvo tekutiny sa zvyčajne zistí podľa stupňa roztiahnutia brucha, palpáciou, röntgenom a aspiráciou brucha, zatiaľ čo menšie množstvo tekutiny sa najlepšie zistí ultrazvukom. Pretrvávajúci pleurálny výpotok sa zvyčajne zisťuje pomocou röntgenových snímok alebo ultrazvuku. Celkovo je ultrazvuk najpresnejším prostriedkom na detekciu a semikvantitatívne stanovenie výpotkov v hrudnej a brušnej dutine. Ultrazvuk sa môže použiť aj v kombinácii s aspiráciou tenkou ihlou na odber malých a lokalizovaných množstiev tekutiny.

Druhým krokom pri skúmaní pretrvávajúcich výpotkov je ich analýza na základe farby, obsahu bielkovín, počtu bielych a červených krviniek a typov prítomných bielych krviniek. Tekutiny vzniknuté primárne zápalom budú mať hladinu bielkovín blízku alebo rovnakú ako plazma a veľký počet bielych krviniek (neutrofily, lymfocyty, monocyty/makrofágy a veľké vakuolizované makrofágy). Tekutiny vytvorené zvýšeným kapilárnym tlakom sa viac podobajú intersticiálnej tekutine s proteínmi bližšie k 2,0 g/dl a počtom buniek < 200. Na diagnostiku výpotkov spojených s FIP sa často používa Rivaltova skúška. Nie je to však špecifický test pre FIP, ale skôr pre výpotky zápalového charakteru. Zvyčajne je pozitívny pri výpotkoch s FIP, ktoré majú vysoký obsah bielkovín a buniek, ale často je negatívny pri výpotkoch s veľmi nízkym obsahom bielkovín a buniek. Výpotky, ktoré sú na pomedzí týchto dvoch typov výpotkov, budú testované buď pozitívne, alebo negatívne, v závislosti od toho, kde sa v spektre nachádzajú.

Tretím krokom je analýza výpotkov na prítomnosť vírusu FIP. Na to je zvyčajne potrebných 5 až 25 ml alebo viac tekutiny. Pri tekutinách s vyšším počtom bielkovín a buniek môže stačiť menšie množstvo, zatiaľ čo pri tekutinách s nízkym počtom bielkovín a buniek je potrebné väčšie množstvo. Čerstvo odobratá vzorka by sa mala centrifugovať a bunkový pelet analyzovať na prítomnosť vírusovej RNA metódou PCR alebo cytocentrifugovať na imunohistochemické vyšetrenie (IHC). Test PCR by mal byť na RNA FIPV 7b a nie na špecifické mutácie FIPV, pretože test na mutácie nemá dostatočnú citlivosť a neposkytuje žiadne výhody pre diagnostiku [5]. Vzorky, ktoré sú pozitívne na základe PCR alebo IHC, poskytujú definitívny dôkaz FIP. Avšak až 30 % vzoriek zo známych prípadov FIP môže mať falošne negatívny test buď z dôvodu nevhodnej vzorky a jej prípravy, alebo preto, že hladina RNA vírusu FIP je pod úrovňou detekcie. Taktiež platí, že čím je tekutina menej zápalová, tým sú hladiny vírusu nižšie. Preto je pravdepodobnejšie, že výpotky s nižšími hladinami bielkovín a bielych krviniek budú testované negatívne, pretože vírusová RNA je pod detekčným limitom testu.

Literatúra

[1] Watanabe R, Eckstrand C, Liu H, Pedersen NC. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet Res. 2018 49(1):81. doi: 10.1186/s13567-018-0578-y.

[2]. Kipar A, Meli ML, Failing K, Euler T, Gomes-Keller MA, Schwartz D, Lutz H, Reinacher M. Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):141-55. doi:10.1016/j.vetimm.2006.02.004. Epub

[3] Brandis K.  Starling’s Hypothesis, LibreTexts. https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Book%3A_Fluid_Physiology _(Brandis)/04%3A_Capillary_Fluid_Dynamics/4.02%3A_Starling%27s_Hypothesis

[4]. Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pract. 2013;43(5):10391054. doi:10.1016/j.cvsm.2013.05.002

[5]. Barker, EN, Stranieri, A, Helps, CR. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Vet Res 2017; 48: 60.

Proteíny akútnej fázy u mačiek

April 2019
Rita Mourão Rosa, Lisa Alexandra Pereira Mestrinho
Pôvodný článok: Acute phase proteins in cats

ABSTRAKT: Proteíny akútnej fázy (APP) sú proteíny syntetizované a uvoľňované prevažne hepatocytmi pri poškodení buniek alebo invázii mikroorganizmov. Tento článok obsahuje prehľad použitia APP pri ochoreniach mačiek, identifikuje ich užitočnosť v klinickom prostredí a analyzuje 55 publikovaných prác. Sérový amyloid A, alfa-1 kyslý glykoproteín a haptoglobín sú ukazovatele, ktoré autori považujú za užitočné pri monitorovaní akútnej zápalovej reakcie u mačiek. Hoci sa meranie APP stále vo veterinárnej medicíne rutinne nepoužíva, spolu s klinickými príznakmi a ďalšími krvnými parametrami sú klinicky zaujímavé a použiteľné pri ochoreniach, ako sú infekčná peritonitída mačiek, pankreatitída, zlyhanie obličiek, retrovírusové a kalicivírusové infekcie. Hoci existujú komerčne dostupné súpravy na meranie mačacích APP, štandardizácia testov zameraná na technickú jednoduchosť, väčšiu druhovú špecifickosť a s menšími súvisiacimi nákladmi umožní rutinné používanie v mačacej praxi, tak ako sa to robí v humánnej oblasti.
Kľúčové slová: zápal, proteíny akútnej fázy, mačka.

Úvod

Reakcia akútnej fázy (APR) je včasná nešpecifická systémová vrodená imunitná reakcia na lokálny alebo systémový podnet, ktorá pomáha liečiť a obnoviť homeostázu a minimalizovať poškodenie tkaniva, keď je organizmus zasiahnutý traumou, infekciou, stresom, operáciou, neopláziou alebo zápalom (GRUYS a kol., 2005; CRAY a kol., 2009; ECKERSALL A BELL, 2010). Pri tejto reakcii pozorujeme niekoľko rôznych systémových účinkov: horúčku, leukocytózu, hormonálne zmeny – hlavne koncentrácie kortizolu a tyroxínu, so sekundárnym katabolickým stavom a úbytkom svalových bielkovín, železa a zinku v sére (CERÓN et al. 2005, JAVARD et al. 2017).
Vplyvom cytokínov IL-1β, TNF-α a najmä IL-6 a približne 90 minút po poranení sa zvyšuje syntéza bielkovín v hepatocytoch, lymfatických uzlinách, tonzilách a slezine, ako aj v leukocytoch krvi. Tieto novovytvárané proteíny sa nazývajú proteíny akútnej fázy (APP) (TIZARD, 2013b).

Proteíny akútnej fázy

Koncentrácie APP sa môžu v reakcii na zápal zvýšiť (pozitívne APP) alebo znížiť (negatívne APP) (PALTRINIERI et al., 2008) (JOHNSTON & TOBIAS, 2018). Môžu aktivovať leukocytózu a komplement, spôsobiť inhibíciu proteáz, viesť k zrážaniu krvi a opsonizácii – obrannému mechanizmu, ktorý vedie k eliminácii infekčných agensov, obnove tkanív a obnoveniu zdravého stavu (CRAY et al., 2009). APP môžu mať dve funkcie, pro- a/alebo protizápalový účinok, ktoré musia byť jemne vyvážené na podporu homeostázy (HOCHEPIED et al., 2003).

Podľa veľkosti a trvania reakcie nasledujúcej po podnete sa rozlišujú tri hlavné skupiny APP (MURATA a kol., 2004; PETERSEN a kol., 2004; CERÓN a kol.), Pozitívne APP možno rozdeliť do dvoch skupín: prvá skupina zahŕňa APP so zvýšením 10 až 1000-násobným u ľudí alebo 10 až 100-násobným u domácich zvierat počas prítomnosti zápalu – napr. c-reaktívny proteín (CRP) a sérový amyloid A (SAA). Druhá skupina sú APP, ktoré sa pri zápalovej reakcii zvýšia 2 až 10-násobne – napr. haptoglobín a alfa-globulíny. Posledná skupina zahŕňala negatívne APP, pri ktorých koncentrácia klesá v reakcii na zápal – napr. albumín (KANN et al., 2012).

Pozitívne proteíny akútnej fázy


Pozitívne APP sú glykoproteíny, ktorých sérové koncentrácie sa pri stimulácii prozápalovými cytokínmi počas procesu ochorenia zvyšujú o 25 % a uvoľňujú sa do krvného obehu. Tieto koncentrácie sa môžu merať a používať pri diagnostike, prognóze, na monitorovanie odpovede na liečbu, ako aj na všeobecný zdravotný skríning. Možno ich tiež považovať za kvantitatívne biomarkery ochorenia, vysoko citlivé na zápal, ale málo špecifické, pretože zvýšenie APP sa môže vyskytnúť aj pri nezápalových ochoreniach (CERÓN a kol., 2005; ECKERSALL a BELL, 2010).

Pozitívne APP reagujú na cytokíny rôzne, pričom tieto skupiny sa delia do dvoch hlavných tried. Typ 1 APP, ktorý zahŕňa AGP, zložku komplementu 3, SAA, CRP, haptoglobín a hemopexín, je regulovaný IL-1, IL-6 a TNF-α a tiež glukokortikoidmi. Typ 2, ktorý zahŕňa tri reťazce fibrinogénu (α-, β- a γ-fibrinogén) a rôzne inhibičné proteázy, je regulovaný cytokínmi IL-6 a glukokortikoidmi (BAUMANN et al., 1990; BAUMANN & GAULDIE, 1994).

U mačiek je najdôležitejším APP SAA alebo alfa-1-kyslý glykoproteín (AGP). Hladina SAA v krvi môže indikovať zápalové stavy, ako je infekčná peritonitída mačiek (FIP) a iné infekčné ochorenia, ako je kalicivírusová infekcia, chlamýdióza, leukémia a infekčná imunodeficiencia, pretože sa zvyšuje 10- až 50-násobne(TIZARD, 2013b). SAA môže byť zvýšená aj pri iných ochoreniach, ako je diabetes mellitus a rakovina. Haptoglobín sa zvyčajne zvyšuje 2- až 10-násobne a je obzvlášť vysoký pri FIP (TIZARD, 2013b). V tabuľke 1 sú zhrnuté jednotlivé pozitívne APP v kontexte ochorenia mačiek.

Negatívne proteíny akútnej fázy

Najvýznamnejším negatívnym APP je albumín, ktorého koncentrácia v krvi počas APR klesá v dôsledku odchýlky aminokyselín smerom k syntéze pozitívnych APP (CRAY et al., 2009; PALTRINIERI, 2007a). Ďalšími negatívnymi APP sú transferín, transtyretin, retinol ligand a proteín viažuci kortizol, proteíny podieľajúce sa na transporte vitamínov a hormónov (JAIN et al., 2011).

Proteíny akútnej fázy pri ochorení mačiek

Na rozdiel od cytokínov, ktoré majú malú veľkosť a sú rýchlo filtrované obličkami, proteíny akútnej fázy majú vyššiu molekulovú hmotnosť (viac ako 45 kDa) a následne dlhšie zotrvávajú v plazme (SALGADO et al., 2011).

Hladiny APP môžu vypovedať iba o zápale a následne ich koncentrácie môžu pomôcť pri diagnostike a monitorovaní ochorenia. APP môže pomôcť odhaliť subklinický zápal, odlíšiť akútne ochorenie od chronického a predpovedať jeho priebeh (VILHENA et al, 2018; JAVARD et al., 2017). Keďže APR sa začína pred vznikom špecifických imunologických zmien, môžu sa použiť ako včasný marker ochorenia, skôr ako nastanú zmeny leukogramu, pričom ich magnitúda súvisí so závažnosťou ochorenia (PETERSEN et al., 2004; CÉRON et al., 2005; VILHENA et al., 2018). Z tohto dôvodu možno monitorovanie ochorení považovať za jednu z najzaujímavejších a najsľubnejších aplikácií APP.

Hladiny APP spolu s klinickými príznakmi a krvnými testami sa hodnotili pri rôznych ochoreniach zvierat (t. j. FIP, zápalové ochorenie čriev psov, leishmanióza, ehrlichióza a pyometra psov) a ukázali sa ako užitočné pri diagnostike, monitorovaní odpovede na liečbu a prognóze (ECKERSALL a kol.), 2001; MARTINEZ- SUBIELA et al., 2005; SHIMADA et al., 2002; JERGENS et al., 2003; GIORDANO et al., 2004; PETERSEN et al., 2004; DABROWSKI et al., 2009; VILHENA et al., 2018).

Na získanie úplných informácií o APR by sa mal súčasne vyhodnotiť jeden hlavný a jeden stredne veľký pozitívny, ako aj jeden negatívny APP (CERÓN a kol., 2008). Vysoké koncentrácie hlavného APP zvyčajne súvisia s infekčnými ochoreniami, zvyčajne systémovou bakteriálnou infekciou alebo imunitne sprostredkovaným ochorením (CERÓN et al., 2008; TROÌA et al., 2017). Aj keď by sa APP mali analyzovať spolu s počtom bielych krviniek a neutrofilov, sú najcitlivejšie pri včasnom odhalení zápalu a infekcie (CERÓN et al., 2008; ALVES et al., 2010). Špecifickosť týchto proteínov je však pri zisťovaní príčiny procesu nízka, pričom sa zvyšuje aj pri fyziologických stavoch, ako je napríklad tehotenstvo (PALTRINIERI et al., 2008).

APPChoroba
SAAFIP
Indukovaný zápal a chirurgický zákrok
Rôzne ochorenia (pankreatitída, zlyhanie obličiek, FLUTD, nádory, diabetes mellitus; ochorenie obličiek, poranenie atď.)
Sepsa
FeLV; infekcie hemotropnými mykoplazmami
Infekcia Hepatozoonfelis a Babesia vogeli
Dirofilariaimmitis
Mačky s FIV liečené rekombinantným mačacím interferónom
AGPInfekcia spôsobená Chlamydophila psittaci;
Pankreatitída a nádory pankreasu
FIP
Lymfóm a iné nádory
Indukovaný zápal a chirurgický zákrok
Mačky s FIV liečené rekombinantným mačacím interferónom
Abscesy, pyotorax, nekróza tukového tkaniva
Rôzne ochorenia (FLUTD, nádory, diabetes mellitus, ochorenia obličiek, poranenia atď.)
HaptoglobínFIP
Indukovaný zápal a chirurgický zákrok
Abscesy, pyotorax, nekróza tukového tkaniva
Rôzne ochorenia (FLUTD, nádory, diabetes mellitus, ochorenia obličiek, poranenia atď.)
Infekcia Hepatozoonfelis a Babesia vogeli
FeLV, hemotropné mykoplazmy
Dirofilariaimmitis
CRPMačky s FIV liečené rekombinantným mačacím interferónom
Indukovaný zápal a chirurgický zákrok
Tabuľka 1 – Proteíny akútnej fázy skúmané v súvislosti s chorobami mačiek.
Legenda: Sérový amyloid A (SAA), α1-kyslý glykoproteín (AGP), syndróm systémovej zápalovej reakcie (SIRS), ochorenie dolných močových ciest mačiek (FLUTD), mačacia infekčná peritonitída (FIP), vírus leukémie mačiek (FeLV), vírus imunodeficiencie mačiek (FIV); mačací kalicivírus (FCV).

Obrázok 1 znázorňuje očakávané správanie pozitívnych proteínov akútnej fázy na základe revidovaných štúdií. AGP, SAA a haptoglobín boli označené za užitočné indikátory na monitorovanie akútnej zápalovej reakcie u mačiek (WINKEL et al., 2015; PALTRINIERI et al., 2007a,b; KAJIKAWA et al., 1999). APP u mačiek boli prvýkrát identifikované po porovnávacích meraniach v sére klinicky normálnych a chorých zvierat, v štúdiách experimentálne vyvolaného zápalu a v pooperačných štúdiách (KAJIKAWA et al., 1999). Koncentrácia SAA sa údajne zvýšila ako prvá, následne sa zvýšila koncentrácia AGP a haptoglobínu, čo bolo v protiklade s menej výrazným zvýšením CRP (KAJIKAWA et al., 1999). Jedna štúdia ukázala, že CRP sa pri zápale u mačiek správa podobne ako SAA a AGP (LEAL et al., 2014).

Sérový amyloid A

SAA je u viacerých druhov jedným z hlavných APP, dôležitý u ľudí aj mačiek (KAJIKAWA et al., 1999). Moduluje imunitnú odpoveď tým, že priťahuje zápalové bunky do tkanív a vedie k produkcii viacerých zápalových cytokínov (GRUYS et al., 2005; TIZARD, 2013a). Jeho koncentrácia sa môže pri zápalovom stave zvýšiť viac ako 1 000-krát, čo následne chápeme ako zápal (TAMAMOTO a kol., 2013). Takéto zvýšenie sa však môže pozorovať pri nezápalových i zápalových ochoreniach a pri neopláziách (TAMAMOTO a kol., 2013). Podľa štúdie vykonanej u mačiek, ktoré podstúpili operáciu, sa koncentrácia SAA začína zvyšovať približne po 3 až 6 hodinách, pričom najvyššiu hodnotu dosahuje 21 až 24 hodín po operácii (SASAKI et al.,2003).

Obrázok 1 – Idealizované správanie sa proteínov akútnej fázy u mačky po zápalovom podnete. Hodnoty znázorňujúce zmeny nemožno považovať za absolútne. Zvýšenie sérového amyloidu A (SAA) 3 až 6 h po podnete, vrchol po 21 až 24 h, veľkosť pri vrchole 10 až 50-násobok jeho bazálnej plazmatickej koncentrácie. Alfa 1 kyslý glykoproteín (AGP) zvýšenie 8 h po podnete, vrchol v 36 h, veľkosť v čase vrcholu 2 až 10-násobok jeho základnej plazmatickej koncentrácie. Zvýšenie haptoglobulínu (Hp) 24 h po podnete, vrchol o 36 až 48 h, veľkosť na vrchole 2 až 10-násobok jeho bazálnej hodnoty plazmatickej koncentrácie. C-reaktívny proteín (CRP) zvýšenie 8 h po podnete, vrchol v 36 h, veľkosť pri vrchole 1,5-násobok jeho bazálnych hodnôt.

Alfa 1-kyslý glykoproteín

Alfa 1-kyslý glykoproteín (AGP) je proteín reagujúci s akútnou fázou, ktorý sa nachádza v séromukoidovej časti séra (SELTING et al., 2000; WINKEL et al., 2015). Ako väčšina pozitívnych APP je AGP glykoproteín syntetizovaný prevažne hepatocytmi pri APR a uvoľňovaný do krvného obehu (CÉRON et al., 2005).

AGP možno použiť na monitorovanie včasnej liečby interferónom u mačiek infikovaných vírusom imunodeficiencie mačiek (FIV) (GIL et al., 2014). AGP, ako aj haptoglobín (Hp) sa zvyšuje u anemických mačiek trpiacich pyotoraxom, abscesmi alebo tukovou nekrózou (OTTENJANN a kol., 2006).

Zdá sa, že zmeny AGP pri neoplázii mačiek nie sú v jednotlivých štúdiách konzistentné. Niektoré z nich nepopisujú žiadne zmeny u mačiek s lymfómom (CORREA a kol., 2001). Iné naopak poukazujú na zvýšenie AGP aj SAA u mačiek so sarkómami, karcinómami alebo inými okrúhlo-bunkovými nádormi (SELTING et al., 2000; TAMAMOTO et al., 2013; MEACHEN et al., 2015; HAZUCHOVA et al., 2017).

AGP má význam ako indikátorový test pre FIP, ktorý sa používa špeciálne v Európe (CECILIANI et al., 2004). GIORI et al. skúmali špecifickosť a citlivosť viacerých testov u 12 mačiek, pričom 33,33 % mačiek bolo FIP negatívnych na základe histopatológie a imunohistochémie a 66,66 % mačiek bolo FIP pozitívnych potvrdených histopatológiou a imunohistochémiou. Tento autor dospel k záveru, že na potvrdenie FIP sa musí vždy vykonať imunohistochémia, ale vysoké koncentrácie AGP môžu pomôcť podporiť diagnózu FIP v prípade, že imunohistochémiu nie je možné vykonať a histopatológia nie je presvedčivá.

Haptoglobín

Haptoglobín (Hp) je jedným z najdôležitejších proteínov akútnej fázy u hovädzieho dobytka, oviec, kôz, koní a mačiek (TIZARD, 2013a), syntetizovaný najmä hepatocytmi, ale aj inými tkanivami, ako sú koža, pľúca a obličky (JAIN et al, 2011). Hp sa viaže na molekuly železa a zneprístupňuje ich pre invázne baktérie, čím následne inhibuje bakteriálnu proliferáciu a inváziu. Následne sa viaže aj na voľný hemoglobín, čím zabraňuje jeho oxidácii s lipidmi a proteínmi (TIZARD, 2013a), čo odôvodňuje zníženie Hp v prípade hemolýzy.

U mačiek sa Hp zvyčajne zvyšuje 2- až 10-násobne pri zápalových stavoch, pričom je obzvlášť vysoký pri FIP (TIZARD, 2013a). Hp aj SAA však neposkytli dostatočnú oporu na odlíšenie FIP od iných príčin efúzie v porovnaní s AGP (HAZUCHOVÁ et at., 2017).

Meranie APP

Sérum je zložené z veľkého počtu jednotlivých proteínov, v ktorých môže detekcia zmien v jeho frakciách poskytnúť dôležité diagnostické informácie (ECKERSALL, 2008).

V ideálnom prípade by malo byť k dispozícii meranie všetkých sérových proteínov, aby sa dali použiť ako diagnostický nástroj v súvislosti so zápalovými ochoreniami.
V súčasnosti sa APP (tabuľka 2) môžu stanoviť pomocou enzýmovej imunosorbentovej analýzy (ELISA), rádioimunoanalýzy, nefelometrie, imunoturbidimetrie (IT), Western blotu a analýzy messengerovej ribonukleovej kyseliny (mRNA) (CÉRON et al., 2005;PALTRINIERI et al., 2008; SCHREIBER et. al, 1989). Hoci niektoré testy APP pre ľudí boli automatizované aj pre veterinárnu medicínu, testy špecifické pre jednotlivé druhy sú stále obmedzené. Medzidruhové rozdiely APP a obmedzená dostupnosť skrížene reagujúcich činidiel zatiaľ prispeli k nízkej rutinnej úrovni stanovenia APP vo veterinárnych laboratóriách, najmä u mačiek. Bez ohľadu na to sa technológia vyvíja a v blízkej budúcnosti je možné predpokladať rutinné monitorovanie klinicky relevantných APP u mačiek.

Záver

Proteíny akútnej fázy u mačiek sú biomarkery vhodné na monitorovanie zápalu spolu s ďalšími klinickými a laboratórnymi nálezmi, ktoré sú užitočné pri diagnostike subklinických zmien, monitorovaní vývoja a účinku ochorenia v organizme, ako aj pri hodnotení odpovede na liečbu.

U mačky je SAA APP, ktorý sa najviac prejavuje v reakcii na zápal, nasledovaný AGP a haptoglobínom, na rozdiel od CRP, ktorý sa používa u iných druhov.

Hoci existujú komerčne dostupné sety na určovanie mačacích APP, štandardizácia testov zameraná na technickú jednoduchosť, vyššiu druhovú špecifickosť s nižšími súvisiacimi nákladmi umožní rutinné používanie v mačacej praxi, ako sa to robí v humánnej medicíne.

AnalýzyVýhodyNevýhody
Rádioimunoanalýza24 až 48 hodín na získanie výsledkov, nutné špecifické zručnosti operátora
ELISAKomerčne dostupné súpravy, špecifické pre daný druhNedostatok automatizácie, drahé, určitá “between-run” nepresnosť
Imunoturbidimetria30 minút na získanie výsledkov, prispôsobiteľné biochemickým analyzátorom
Western BlotDlhé doba na spracovanie imunoblotov
Nefelometrické imunotestyZávisia od skríženej reaktivity zvýšeného antiséra
Tabuľka 2 – Výhody a nevýhody možných techník merania APP.

Dodatok: APP a ich pozícia v elektroforetograme

Aj keď existujú testy priamo na konkrétne APP, je užitočné vedieť, v ktorom regióne elektroforetogramu sa nachádzajú.

Ukážka elektroforetogramu (Výstup elektroforézy sérových bielkovín)
Sérový proteínElektroforetický región
α1-kyslý glykoproteínα1 (alfa-1)
Sérový amyloid Aα (alfa)
Haptoglobínα2 (alfa-2)
Ceruloplazmín α2 (alfa-2)
Transferínβ1 (beta-1)
C-reaktívny proteínγ (gama)
Pozícia sérových proteínov v elektroforetograme

Referencie

ALVES, A.E. et al. Leucogram and serum acute phase protein concentrations in queens submitted to conventional or videolapa- roscopic ovariectomy. Arquivo Brasileiro de Medicina Veterina- ria e Zootecnia, v.62, n.1, p.86-91, 2010. Available from: . Accessed: Oct. 10, 2018. doi: 10.1590/S0102-09352010000100012.

BAUMANN, H. & GAULDIE, J. The acute phase response.
Immunol Today, v.15, n.2, p.74-80, 1994. Available from:
https://doi.org/10.1016/0167-5699(94)90137-6. Accessed: Aug. 21, 2018. doi: 10.1016/0167-5699(94)90137-6.

BAUMANN, H. et al. Distinct regulation of the interleukin-1 and interleukin-6 response elements of the rat haptoglobin gene in rat and human hepatoma cells. Molecular and Cellular Biology, v.10, n.11, p.5967–5976, 1990. Available from: Accessed: Aug. 21, 2018. doi: 10.1128/ MCB.10.11.5967.

BENCE, L. et al. An immunoturbidimetric assay for rapid quantitative measurement of feline alpha-1-acid glycoprotein in serum and peritoneal fluid. Veterinary Clinical Pathology, v.34, n.4, p335-341, 2005. Available from: . Accessed: Jan. 13, 2019. doi: 10.1111/j.1939-165X.2005.tb00058.x.

CALLAHAN, G. & YATES, R. Veterinary Clinical Laboratory Immunology. In Warren, A. Basic Veterinary Immunology, pp. 295-317, 2014. Boulder, Colorado: University Press of Colorado.

CECILIANI, F. et al. Decreased sialylation of the acute phase protein α1-acid glycoprotein in feline infectious peritonitis (FIP). Veterinary Immunology and Immunopathology, v.99, n.3- 4, p.229-236, 2004. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j. vetimm.2004.02.003.

CERÓN, J. et al. Acute phase proteins in dogs and cats: current
knowledge and future perspectives. Veterinary Clinical

Pathology, v.34, n.2, p.85-99, 2005. Available from: . Accessed: Aug. 20, 2018. doi: 10.1111/j.1939-165X.2005.tb00019.x.

CERÓN, J.J. A seven-point plan for acute phase protein interpretation in companion animals. Veterinary Journal, v.177, n.1, p.6-7, 2008. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/j. tvjl.2007.12.001.

CORREA, S.S et al. Serum alpha 1-acid glycoprotein concentration in cats with lymphoma. Journal of the American Animal Hospital Association, v.37, n.2, p.153-158, 2001. Available from:
https://doi.org/10.5326/15473317-37-2-153. Accessed: Aug. 24, 2018. doi: 10.5326/15473317-37-2-153.

CRAY, C. et al. AcutePhase Response in Animals: A Review. Comparative Medicine, v.59, n.6, p.517–526, 2009. Available from: . Accessed: Aug. 21, 2018.

DABROWSKI, R. et al. Usefulness of C-reactive protein, serum amyloid A component and haptoglobin determinations in bitches with pyometra for monitoring early postovariohysterectomy complications. Theriogenology, v.72, n.4, p.471–476, 2009. Available from: . Accessed: Aug. 23, 2018. doi: 10.1016/j.theriogenology.2009.03.017.

DUTHIE, S. et al. Value of α1-acid glycoprotein in the diagnosis of feline infectious peritonitis. The Veterinary Record, v.141, n.12, p.299–303, 1997. Available from: . Accessed: Aug. 11, 2018. doi: 10.1136/ vr.141.12.299.

ECKERSALL, P. Proteins, Proteomics, and the Dysproteinemias. In Kaneko, J., Harvey, J. & Bruss, M. In Clinical Biochemistry of Domestic Animals. 6. ed. USA: Elsevier, 2008, Chap. 5, p.117-155.

ECKERSALL, P.D. & BELL, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. The Veteri- nary Journal, v.185, n.1, p.23-27, 2010. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/j.tvjl.2010.04.009.

ECKERSALL, P.D. et al. Acute phase protein response in an experimental model of ovine caseous lymphadenitis. BMC Veterinary Research, v.19, p.3-35, 2007. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2010.04.009.

ECKERSALL, P.D. et al. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Veterinary Record, v.148, n.2, p.35–41, 2001. Available from: . Accessed: Aug. 22, 2018. doi: 10.1136/ vr.148.2.35.

GIL, S. et al. Oral recombinant feline interferon-omega as an alternative immune modulation therapy in FIV positive cats: Clinical and laboratory evaluation. Research in Veterinary Science, v.96, n.1, p.79–85, 2014. Available from: . Accessed: Oct. 10, 2018. doi: 10.1016/j.rvsc.2013.11.007.

GIORDANO, A. et al. Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection. The Veterinary Journal, v.167, n.1, p.38-44, 2004. Available from:
https://doi.org/10.1016/S1090-0233(03)00055-8. Accessed:
Aug. 9, 2018. doi: 10.1016/S1090-0233(03)00055-8.

GIORI, L. et al. Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. Journal of Small Animal Practice, v.52, n.3, p.152-157, 2011. Available from:
https://doi.org/10.1111/j.1748-5827.2011.01042.x. Accessed:
Aug. 24, 2018. doi: 10.1111/j.1748-5827.2011.01042.x.

GRUYS, E. et al. Acute phase reaction and acute phase proteins. Journal of Zhejiang University. Science B, v.6, n.11, p.1045- 1056, 2005. Available from: . Accessed: Aug. 21, 2018.
doi: 10.1631/jzus.2005.B1045.

HAZUCHOVA, K. et al. Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions. Journal of Feline Medicine and Surgery, v.19, n.8, p.809-816, 2017. Available from: https://doi.org/10.1177/1098612X16658925. Accessed: Aug. 11, 2018. doi: 10.1177/1098612X16658925.

HOCHEPIED, T. et al. α1-Acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev, v.14, n.1, p.25–34, 2003. Available from:
https://doi.org/10.1016/S1359-6101(02)00054-0. Accessed: Aug. 21, 2018. doi: 10.1016/S1359-6101(02)00054-0.

JACOBSEN, S. et al. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations. Veterinary Journal, v.172, n.2, p.315–319, 2006. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2005.04.021.

JAIN, S. et al. Acute-phase proteins: As diagnostic tool. Journal of Pharmacy and Bioallied Sciences, v.3 v.1, p.118–127, 2011. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053509/. Accessed: Aug. 21, 2018. doi: 10.4103/0975-7406.76489.

JAVARD R. et al. Acute phase proteins and iron status in cats with chronic kidney Disease. Journal of Veterinary Internal Medicine, v.31, n.2, p.457-464, 2017. Available from: . Accessed: Oct. 10, 2018. doi: 10.1111/jvim.14661.

JERGENS, A.E. et al. A scoring index for disease activity in canine inflammatory bowel disease. Journal of Veterinary Internal Medicine, v.17, n.3, p.291–297, 2003. Available from: . Accessed: Aug. 22, 2018. doi: 10.1111/j.1939-1676.2003.tb02450.x.

KAJIKAWA, T. et al. Changes in concentrations of serum amyloid A protein, alpha 1-acid glycoprotein, haptoglobin, and C-reactive protein in feline sera due to induced inflammation and surgery. Veterinary Immunology and Immunopathology, v.68, n.1, p. 91-98, 1999. Available from: Accessed: Aug. 10, 2018. doi: 10.1016/S0165-
2427(99)00012-4.

KANN, R. et al. Acute phase proteins in healthy and sick cats. Research in Veterinay Science, v.93, n.2. p.649-654, 2012. Available from: https://doi.org/10.1016/j.rvsc.2011.11.007. Accessed: Aug. 20, 2018. doi: 10.1016/j.rvsc.2011.11.007.

KURIBAYASHI, T. et al. Alpha 1-acid glycoprotein (AAG) levels
in healthy and pregnant beagle dogs. Experimental Animals, v.52,
n. 5, p.377–381, 2003. Available from: . Accessed: Jan. 13, 2019. doi: 10.1538/expanim.52.377.

LEAL, R. et al. Monitoring acute phase proteins in retrovirus infected cats undergoing feline interferon-ω therapy. Journal of Small Animal Practice, v.55, n.1, p.39-45, 2014. Available from:
https://doi.org/10.1111/jsap.12160. Accessed: Jan. 6, 2019. doi: 10.1111/jsap.12160.

MARTÍNEZ-SUBIELA, S. et al. Validación analítica de técnicas comerciales para la determinación de haptoglobina, proteína C reactiva y amiloide A sérico en caninos [Analytical validation of comercial techniques for haptoglobin, C reactive protein and sérum amyloid A determinations in dogs]. Archivos de Medicina Veterinaria, v.37, n.1, 2005. Available from: . Accessed: Jan. 13, 2019. doi: 10.4067/S0301-732X2005000100009.

MEACHEM, M.D. et al. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study. Canadian Journal of Veterinary Research, v.79, n.3, p.184-189, 2015. Available from: . Accessed: Oct. 10, 2018.

MURATA, H. et al. Current research on acute phase proteins in veterinary diagnosis: An overview. The Veterinary Journal, v.168, n.1, p.28–40, 2004. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/ S1090-0233(03)00119-9.

OTTENJANN, M. et al. Characterization of the anemia of inflammatory disease in cats with abscesses, pyothorax, or fat necrosis. Journal of Veterinary Internal Medicine, v.2, n.5, p. 1143-1150, 2006. Available from: . Accessed: Aug. 24, 2018. doi: 10.1111/j.1939-1676.2006.tb00713.x.

PALTRINIERI, S. Early biomarkers of inflammation in dogs and cats: The acute phase protein. Veterinary Research Communications, v.31, n.1, p.125-129, 2007a. Available from:
. Accessed: Aug. 21, 2018. doi: 10.1007/s11259-007- 0107-3.

PALTRINIERI, S. et al. Serum alpha1-acid glycoprotein (AGP) concentration in non-symptomatic cats with feline coronavirus (FCoV) infection. Journal of Feline Medicine and Surgery, v.9, n.4, p.271-277, 2007b. Available from: . Accessed: Aug. 11, 2018. doi: 10.1016/j. jfms.2007.01.002.

PALTRINIERI, S. The feline acute phase reaction. Review. The Veterinary Journal, v.111, n.1, p.26-35, 2008. Available from:
https://doi.org/10.1016/j.tvjl.2007.06.005. Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2007.06.005.

PETERSEN, H. et al. Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research, v.35, n.2, p.163–187, 2004. Available from: . Accessed: Aug. 20, 2018. doi: 10.1051/vetres:2004002.

SALGADO, F. J., et al. (2011). Acute phase proteins as biomarkers of disease: from Bench to Clinical Practice. In Veas, F. Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases. Rijeka, Croatia: InTech. Available from:
http://www.documentation.ird.fr/hor/fdi:010060045. Accessed:
Aug. 21, 2018. doi: 10.5772/1045.

SASAKI, K. et al. Evaluation of feline serum amyloid A (SAA) as an inflammatory marker. Journal of Veterinary Medical Science, v.65, n.4, p.545-8, 2003. Available from: . Accessed: Aug. 10, 2018.

SCHREIBER, G. et al. The acute phase response in the rodent. Annals of the New York Academy of Science, v.557, p.61–85, 1989. Available from: . Accessed: Aug. 24, 2018. doi: 10.1111/j.1749- 6632.1989.tb24000.x.

SELTING, K. et al. Serum alpha 1-acid glycoprotein concentrations in healthy and tumor-bearing cats. Journal of Veterinary Internal Medicine, v.14, n.5, p.503-506, 2000. Available from: . Accessed: Aug. 9, 2018. doi: 10.1111/j.1939-1676.2000.tb02267.x.

SHIMADA, T. et al. Monitoring C-reactive protein in beagle dogs experimentally inoculated with Ehrlichiacanis. Veterinary Research Communications, v.26, n.3, p.171– 177, 2002. Available from: . Accessed: Aug. 22, 2018. doi:
10.1023/A:1015290903332.

SILVESTRE-FERREIRA, A.C. et al. Serum acute phase proteins in Dirofilariaimmitis and Wolbachia seropositive cats. Journal of Feline Medicine and Surgery, v.19, n.6, p.693–696, 2017. Available from: https://doi.org/10.1177/1098612X15625435. Accessed: Sep. 16, 2018. doi: 10.1177/1098612X15625435.

TAMAMOTO, T. et al. Serum amyloid A as a prognostic marker in cats with various diseases. Journal of Veterinary Diagnostic Investigation, v.25, n.3, p.428–432, 2013. Available from: . Accessed: Jan. 27, 2019.

TECLES, F. et al. Validation of a commercially available human immunoturbidimetric assay for haptoglobin determination in canine serum samples. Veterinary Research Communications, v.31, n.1, p.23–36, 2007. Available from: . Accessed: Jan. 13, 2019. doi: 10.1007/s11259-006-3397-y.

TERWEE, J. et al. Characterization of the systemic disease and ocular signs induced by experimental infection with Chlamydia psittaci in cats. Veterinary Microbiology, v.59,
259-281, 1998. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/ S0378-1135(97)00185-5.

TIZARD, I. Innate immunity:proinflammatory and antimicrobial mediators/systemic responses to inflammation. In Veterinary Immunology. 9.ed. St. Louis, Missouri: Saunders, Elsevier, 2013a. Chap. 6, p.52-58.

TIZARD, I. Innate immunity: proinflammatory and Atimicrobial mediators/systemic responses to Inflammation. In Veterinary Immunology. 9.ed. St. Louis, Missouri: Saunders, Elsevier, 2013b. Chap. 4, p.31-40.

TROÌA, R. et al. Serum amyloid A in the diagnosis of feline sepsis. Journal of Veterinary Diagnostic Investigation, v.29, n.6, p.856-859, 2017. Available from: . Accessed: Aug. 11, 2018. doi: 10.1177/1040638717722815.

VILHENA, H. et al. Acute phase proteins response in cats naturally infected by hemotropic mycoplasmas. Comparative Immunology, Microbiology & Infectious Diseases, v.56, p.1-5, 2018. Available from: https://doi.org/10.1016/j.cimid.2017.11.001. Accessed: Aug. 11, 2018. doi: 10.1016/j.cimid.2017.11.001.

VILHENA, H. et al. Acute phase proteins response in cats naturally infected with Hepatozoonfelis and Babesia vogeli. Veterinary Clinical Pathology, v.48, n.1, p.72-76, 2017. Available from:
https://doi.org/10.1111/vcp.12451. Accessed: Aug. 10, 2018. doi: 10.1111/vcp.12451.

WEIDMEYER, C. & SOLTER, P. Validation of human haptoglobin immunoturbidimetric detection of haptoglobin in equine and canine serum and plasma. Veterinary Clinical Pathology, v.24, n.4, p.141–146, 1996. Available from: . Accessed: Jan. 13, 2019. doi: 10.1111/j.1939-165X.1996.tb00988.x.

WHICHER, T. et al. Immunonephelometric and immunoturbidi- metric assays for proteins. Critical Reviews in Clinical Labo- ratory Sciences, v.18, n.3, p.213–260, 1983. Available from:
https://doi.org/10.3109/10408368209085072. Accessed: Aug. 13, 2019. doi: 10.3109/10408368209085072.

WINKEL, V. et al. Serum α-1 acid glycoprotein and serum amyloid A concentrations in cats receiving antineoplastic treatment for lymphoma. American Journal Veterinary Research, n.76, v.11, p.983-988, 2015. Available from: . Accessed: Aug. 22, 2018. doi: 10.2460/ ajvr.76.11.983.

Alternatívna liečba mačiek s FIP a prirodzenou alebo získanou rezistenciou voči GS-441524

Niels C. Pedersen, Nicole Jacque, 3.11. 2021
Pôvodný článok: Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524

Skratky:
SC – subcutaneous – podkožne
IV – intravenózne
IM – do svalu
PO – per os – perorálne
SID – raz denne
BID – 2x denne
q24h – raz za 24 hodín
q12h – raz za 12 hodín

Úvod

Rezistencia na antivirotiká je dobre zdokumentovaná v prípade chorôb, ako sú HIV/AIDS a hepatitída C. V niektorých prípadoch je táto rezistencia prítomná v infikujúcom víruse, ale častejšie je dôsledkom dlhodobej expozície lieku. Rezistencia na GC376 [1] a GS-441524 [2] bola zdokumentovaná aj u mačiek s prirodzene získanou FIP. Rezistencia sa vyvíja na základe mutácií v oblastiach vírusového genómu, ktoré obsahujú ciele pre antivírusové liečivo. Napríklad v proteáze (3CLpro) izolátu FIPV od mačky s rezistenciou na GC376 sa zistilo niekoľko zmien aminokyselín (N25S, A252S alebo K260N) [3]. Zistilo sa, že zmena N25S v 3CLpro spôsobuje 1,68-násobné zvýšenie 50 % inhibičnej koncentrácie GC376 v tkanivových kultúrach [3]. Rezistencia voči GC376, hoci bola rozpoznaná v počiatočných terénnych testoch, nebola doteraz opísaná. GC376 nie je tak populárny pri liečbe FIP a neodporúča sa pre mačky s okulárnou alebo neurologickou FIP [1].

Prirodzená rezistencia na GS-441524 bola pozorovaná u jednej z 31 mačiek liečených na prirodzene získanú FIP [2]. Jedna z 31 mačiek v pôvodnej terénnej štúdii GS-441524 sa tiež javila ako rezistentná, keďže hladiny vírusovej RNA sa počas celého obdobia liečby neznížili a príznaky ochorenia sa nezmiernili. Hoci sa tento vírus neštudoval, rezistencia na GS-5734 (Remdesivir), proliečivo GS-441524, bola vytvorená v tkanivovej kultúre pomocou aminokyselinových mutácií v RNA polymeráze a korektívnej exonukleáze [4].

Rezistencia voči GS-441524 bola potvrdená u časti mačiek, ktoré boli liečené na FIP pomocou GS-441524 za posledné 3 roky, najmä medzi mačkami s neurologickou FIP [5]. Rezistencia na GS441524 je zvyčajne čiastočná a vyššie dávky často vyliečia infekciu alebo výrazne znížia príznaky ochorenia počas trvania liečby. Zaujímavé je, že rezistencia na GS-441524 sa zisťuje aj u pacientov s Covid19 liečených Remdesivirom [12]. U imunokompromitovaného pacienta sa vyvinul zdĺhavý priebeh infekcie SARS-CoV-2. Liečba Remdesivirom spočiatku zmiernila príznaky a výrazne znížila hladiny vírusu, ale ochorenie sa vrátilo spolu s veľkým nárastom replikácie vírusu. Sekvenovaním celého genómu sa identifikovala mutácia E802D v nsp12 RNA-dependentnej RNA polymeráze, ktorá nebola prítomná vo vzorkách pred liečbou a spôsobovala 6-násobné zvýšenie rezistencie.

Aj keď už bola opísaná história molnupiraviru a jeho nedávne použitie na liečbu FIP [6], v súčasnosti nie sú k dispozícii žiadne štúdie, ktoré by dokumentovali prirodzenú alebo získanú rezistenciu na molnupiravir. Ukázalo sa, že molnupiravir funguje ako mutagén RNA vyvolávajúci viaceré defekty vo vírusovom genóme [7], zatiaľ čo remdesivir/GS-441524 je neobligátny terminátor reťazca RNA [8], čo naznačuje, že jeho profil rezistencie bude odlišný.

Prekonanie rezistencie voči GS-441524

Rezistenciu na lieky možno prekonať len dvomi spôsobmi: 1) postupným zvyšovaním dávky antivirotika, aby sa dosiahli hladiny liečiva v telesných tekutinách, ktoré presahujú úroveň rezistencie, alebo 2) použitím iného antivirotika, ktoré má iný mechanizmus rezistencie, buď samostatne, alebo v kombinácii. Doteraz sa volila prvá možnosť, ktorá sa v mnohých prípadoch ukázala ako účinná. Rezistencia na GS-441524 však môže byť úplná alebo taká vysoká, že zvyšovanie dávky už nie je účelné. V takýchto prípadoch sa čoraz viac využíva druhá možnosť. V súčasnosti dostupnými alternatívami k lieku GS-441524, aj keď stále z neschváleného trhu, sú GC376 a molnupiravir.

Režimy liečby antivírusovými liekmi pri rezistencii na GS-441524

GC376/GS-441524


Kombinovaný režim GS/GC sa osvedčil u mačiek liečených GS-441524 v dávkach až 40 mg/kg bez vyliečenia v dôsledku rezistencie na GS-441524. Je vhodnejšie zasiahnuť hneď, ako sa zistí rezistencia na GS-441524, čo umožní vyliečiť mačku skôr a s menšími finančnými nákladmi majiteľa.

Spoločnosť Rainman je súčasným dodávateľom GC376, ktorý sa dodáva v 4 ml injekčných vialkách s koncentráciou 53 mg/ml.

Dávkovanie GS/GC: Dávka GS (SC alebo PO ekvivalent) pri kombinovanej liečbe antivirotikami je rovnaká ako dávka potrebná na primeranú kontrolu príznakov ochorenia. Zvyčajne je to posledná dávka použitá pred ukončením liečby a vznikom relapsu. K tejto dávke GS-441524 sa pridáva GC376 v dávke 20 mg/kg SC q24h bez ohľadu na formu FIP. Toto je dostatočné pre väčšinu mačiek, vrátane mnohých mačiek s neuro FIP, ale niektoré budú potrebovať vyššie dávky. Ak sa nedosiahne remisia klinických príznakov alebo sú krvné testy znepokojujúce, dávka GC376 sa zvyšuje o 10 mg/kg až na 50 mg/kg SC q24h.

Dĺžka liečby: Odporúča sa osemtýždňová kombinovaná liečba GC/GS, ktorá sa pridáva k predchádzajúcej monoterapii GS. Niektoré mačky boli vyliečené pri 6 týždňoch kombinovanej liečby, ale recidíva je pravdepodobnejšia ako po 8 týždňoch.

Vedľajšie účinky: U väčšiny mačiek sa nevyskytujú žiadne závažné vedľajšie účinky. Približne jedna z piatich mačiek však môže pociťovať nevoľnosť alebo nepríjemné pocity na začiatku liečby a občas aj dlhšie. Zdá sa, že tieto vedľajšie účinky nie sú závislé od dávky a možno ich liečiť liekmi proti nevoľnosti, ako sú Cerenia, Ondansetron alebo Famotidín. Zdá sa, že u niektorých mačiek lepšie účinkoval ondansetrón.

Molnupiravir

Molnupiravir bol hlásený ako účinný v monoterapii mačiek s FIP najmenej jedným čínskym predajcom GS-441524 [9], ale nie sú žiadne správy o jeho použití u mačiek s rezistenciou na GS-441524. Je však nepravdepodobné, že by sa rezistencia na GS-441524 rozšírila aj na molnupiravir. Skutočnosť, že sa zistilo, že je účinný ako perorálny liek, ho robí atraktívnym aj pre samostatnú liečbu, keďže mnohé mačky s rezistenciou na GS-441524 trpeli injekciami veľmi dlhé obdobie.

Terénna štúdia molnupiraviru údajne pozostávala z 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP, ktoré boli vyšetrené na klinikách pre spoločenské zvieratá v USA, Spojenom kráľovstve, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. Medzi 286 mačkami, ktoré sa zúčastnili na skúške, nedošlo k žiadnemu úmrtiu, vrátane siedmich mačiek s očnou (n=2) a neurologickou (n=5) FIP. Dvadsaťosem z týchto mačiek bolo vyliečených po 4 – 6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky zostali zdravé o 3 – 5 mesiacov neskôr, čo je obdobie, počas ktorého by sa u mačiek, ktoré neboli úspešne vyliečené, očakávali recidívy. Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná vo forme rukopisu, predložená na recenzné konanie a publikovaná. Napriek tomu sa teraz predáva majiteľom mačiek s FIP. Minimálne jeden ďalší veľký predajca lieku GS-441524 má tiež záujem o používanie molnupiraviru na FIP, čo naznačuje dopyt po ďalšej liečbe mačiek s FIP antivirotikami.

Dávkovanie molnupiraviru: Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo stanovené na základe dôkladne kontrolovaných a monitorovaných terénnych štúdií, aké boli vykonané napríklad pre GC376 [1] a GS-441524 [2]. Najmenej jeden predajca z Číny však vo svojom reklamnom letáku na produkt s názvom Hero-2801 [9] poskytol niektoré farmakokinetické údaje a údaje z terénnych testov Molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP. V týchto informáciách nie je jasne uvedené množstvo molnupiraviru v jednej z ich “50 mg tabliet” a skutočný dávkovací interval (q12h alebo q24h?). Dávka použitá v tejto štúdii sa tiež zdala byť príliš vysoká. Odhadovanú počiatočnú dávku molnupiraviru u mačiek s FIP možno našťastie získať z publikovaných štúdií o EIDD-1931 a EIDD-2801 [15] in vitro na bunkových kultúrach a laboratórnych a terénnych štúdií GS-441524 [14,18]. Molnupiravir (EIDD-2801) má EC50 0,4 uM/ul proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je približne 1,0 uM/ul [18]. Oba majú podobnú perorálnu absorpciu približne 40 – 50 %, takže účinná subkutánna (SC) dávka molnupiraviru by bola približne polovica odporúčanej začiatočnej dávky 4 mg/kg SC q24h pre GS441524 [14] alebo 2 mg/kg SC q24h. Perorálna (PO) dávka by sa zdvojnásobila, aby sa zohľadnila menej účinná perorálna absorpcia na dávku 4 mg/kg PO q24h. Odhadovanú počiatočná účinnú perorálnu dávku molnupiraviru u mačiek s FIP možno vypočítať aj z dostupných údajov o liečbe Covid-19. Pacientom liečeným Covidom-19 sa podáva 200 mg molnupiraviru PO q12h počas 5 dní. Táto dávka bola samozrejme vypočítaná na základe farmakokinetickej štúdie vykonanej na ľuďoch, a ak priemerný človek váži 60 – 80 kg (70 kg), účinná inhibičná dávka je ~ 3,0 mg/kg PO q12h. Mačka má bazálnu rýchlosť metabolizmu 1,5-krát vyššiu ako človek a za predpokladu rovnakej perorálnej absorpcie u ľudí aj mačiek by minimálna dávka pre mačky podľa tohto výpočtu bola 4,5 mg/kg PO q12h pri neokulárnych a neneurologických formách FIP. Ak molnupiravir prechádza cez hematookulárnu a hematoencefalickú bariéru s rovnakou účinnosťou ako GS-441524 [3,18], dávka by sa mala zvýšiť na ~1,5 a ~2,0-násobok., aby došlo k adekvátnemu prieniku do komorovej vody a mozgovomiechového moku pre mačky s očnou (~8 mg/kg PO, q12 h), resp. neurologickou FIP (~10 mg/kg PO, q12 h). Tieto dávky sú porovnateľné s dávkami používanými u fretiek , kde 7 mg/kg q12h udržiava sterilizujúce hladiny liečiva v krvi proti vírusu chrípky (1,86 uM) počas 24 hodín [10]. Dávky u fretiek 128 mg/kg PO q12h spôsobili takmer toxické hladiny v krvi, zatiaľ čo dávka 20 mg/kg PO q12h spôsobila len nepatrne vyššie hladiny v krvi [10].

Molnupiravir/GC376 alebo Molnupiravir/GS-441524

Kombinácie molnupiraviru s GC376 alebo GS-441524 sa budú používať čoraz častejšie, a to nielen kvôli synergii alebo doplnení ich individuálnych antivírusových účinkov, ale aj ako spôsob prevencie liekovej rezistencie. Liečivé koktaily boli veľmi účinné pri prevencii liekovej rezistencie u pacientov s HIV/AIDS [11]. V súčasnosti však nie sú k dispozícii dostatočné dôkazy o bezpečnosti a účinnosti kombinácie molnupiraviru s GC376 alebo GS-441524 ako počiatočnej liečby FIP.

Prípadové štúdie


Rocky – DSH MN Neuro FIP


9-mesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny mal niekoľko týždňov trvajúce záchvaty so zvyšujúcou sa frekvenciou, ataxiou a progresívnou parézou. Krvné testy boli bez pozoruhodností. Liečba FIP sa začala dávkou 15 mg/kg BID GS-441524, ktorá sa približne týždeň znižovala na SID. U mačky sa do 24 hodín od začiatku liečby prejavilo zlepšenie, záchvaty ustali a zvýšila sa jej pohyblivosť. Do 5 dní liečby bola mačka opäť schopná pohybu. Približne 2 týždne od začiatku liečby sa však u mačky objavila strata zraku, znížená pohyblivosť, obnovenie záchvatov a ťažkosti s prehĺtaním. Bola vykonaná úprava dávky levetiracetamu a prednizolónu, ako aj zmena zloženia lieku GS-441524, po ktorej nasledovalo prechodné zlepšenie pohyblivosti a prehĺtania a zníženie výskytu záchvatov, celkovo sa však stav mačky zhoršil. Dávka lieku GS-441524 sa postupne zvyšovala až na 25 mg/kg, pričom zlepšenie bolo malé alebo žiadne. V tomto bode sa prešlo na perorálne podávanie GS v dávke 25 mg/kg (odhaduje sa, že zodpovedá približne 12,5 mg/kg) a do 3 dní sa mačka začala pohybovať, zlepšilo sa jej videnie a prestali záchvaty spolu so zvýšením energie a chuti do jedla. Zlepšovanie u mačky pokračovalo približne 4 týždne pri perorálnom podávaní GS-441524, potom ustalo približne 3 týždne pred rýchlo postupujúcou parézou. Boli skúšané perorálne dávky až do výšky 30 mg/kg SC ekvivalentu avšak bez účinku. Potom sa prešlo na injekčné podávanie GS-441524 v dávke 20 mg/kg a mačka bola do 4 dní opäť schopná pohybu s dobrou chuťou do jedla a energiou. Po 2 týždňoch sa do dávkovacieho režimu pridala dávka GC376 20 mg/kg BID. Mačka ukončila 6 týždňov kombinovanej liečby GS441524 a GC376 a potom liečbu ukončila. Hoci mačka má určité trvalé neurologické deficity, jej stav je stabilný, má dobrú pohyblivosť, chuť do jedla a aktivitu už 9 mesiacov od ukončenia antivírusovej liečby.

Video Rockyho: https://www.youtube.com/watch?v=RXB_NnfcMOY

Bucky – DSH MN Neuro/okulárna FIP


Štvormesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny bol prezentovaný s mesačnou anamnézou letargie a progresívnou anamnézou ataxie, parézou zadných končatín, pikou, uveitídou, anizokóriou a inkontinenciou moču a stolice. Krvné testy boli väčšinou bez pozoruhodností s výnimkou miernej hyperglobulinémie. Pomer A/G bol 0,6. Mačka bola liečená dávkou 10 mg/kg GS-441524 SC SID počas 3 týždňov. Aktivita, mentácia a uveitída sa zlepšili do 72 hodín od začiatku liečby. Počas prvých 2 týždňov sa pozorovalo pomalé zlepšenie pohyblivosti a očných symptómov, ale potom sa dosiahlo plató. Po 3 týždňoch sa dávka GS-441524 zvýšila na 15 mg/kg GS-441524 SC SID z dôvodu pretrvávajúceho neurologického a očného deficitu. Okrem toho sa v tomto čase zaznamenalo zväčšenie ľavého oka v dôsledku glaukómu a oko naďalej opúchalo až do jeho odstránenia v 8. týždni liečby.
Vzhľadom na pretrvávajúcu slabosť/nedostatok koordinácie v panvovej oblasti a narastajúcu letargiu sa v 9. týždni dávka GS-441524 zvýšila na 20 mg/kg SC SID [alebo ekvivalentnú perorálnu dávku] a o niekoľko dní neskôr sa do režimu pridalo 20 mg/kg SC BID GC376. Výrazne zvýšená aktivita a ochota skákať na vyvýšené povrchy sa prejavila do 48 hodín od začiatku liečby liekom GS376. Kombinovaná liečba GS-441524 a GC376 sa udržiavala počas 8 týždňov. Mačka má po liečbe reziduálne problémy s inkontinenciou, ale inak je 6 mesiacov po liečbe klinicky normálna.

Boris – Mainská mývalia MI vlhká očná FIP


Päťmesačný intaktný (nekastrovaný) kocúr mainskej mývalej mačky, získaný od chovateľa, mal letargiu, nechutenstvo, brušný ascites, kašeľ, anémiu a neutrofíliu. Pri stanovení diagnózy nebol vykonaný žiadny biochemický rozbor. Mačka bola liečená 6 mg/kg GS-441524 SC SID počas 8 týždňov. Po šiestich týždňoch liečby röntgen odhalil uzlíky v pľúcach a po 8 týždňoch pretrvávala hyperglobulinémia. Dávka GS-441524 sa potom zvýšila na 8 mg/kg SC SID počas 4 týždňov. V krvných testoch a na röntgenových snímkach sa zaznamenalo len malé zlepšenie a dávka GS-441524 sa zvýšila na 12 mg/kg SC SID počas 4 týždňov, potom nasledovalo zvýšenie na 17 mg/kg počas 11 týždňov, 25 mg/kg počas 4 týždňov a 30 mg/kg počas 4 týždňov. Po 25 týždňoch liečby sa ultrazvukom zaznamenali pleurálne odchýlky na ľavej strane a röntgenové snímky nepreukázali žiadne zlepšenie pľúcnych uzlín. Okrem toho sa na pravom oku zaznamenala uveitída a odchlípenie sietnice. Boli odobraté aspiráty pľúc, ktoré preukázali zápal zodpovedajúci FIP. Po 33 týždňoch liečby sa do režimu pridalo 20 mg/kg SC BID GC376 a kombinovaná liečba GS-441524 a GC376 pokračovala 12 týždňov. Zvýšená aktivita sa zaznamenala v priebehu niekoľkých dní. V priebehu 5 týždňov sa zrýchlilo priberanie na hmotnosti, zmiernil sa kašeľ a zvýšila sa uroveň energie. Krvné testy ukázali zlepšenie pomeru A/G a röntgenové snímky hrudníka preukázali zmenšenie uzlín v pľúcach. Po 84 dňoch kombinovanej antivírusovej liečby bol pomer A/G 0,85 a mačka sa javila klinicky normálne. Mačka je v súčasnosti 3 mesiace po liečbe.

Literatúra

  1. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018; 20(4):378-392.
  2. Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019; 21(4):271-281.
  3. Perera KD, Rathnayake AD, Liu H, et al. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. J. Vet Microbiol. 2019;237:108398. doi:10.1016/j.vetmic.2019.108398
  4. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9. DOI:10.1128/mBio.00221-18.
  5. Pedersen NC. 2021. The neurological form of FIP and GS-441524 treatment.
    https://sockfip.org/the-neurological-form-of-fip-and-gs-441524-treatment/
  6. Pedersen NC. The long history of beta-d-n4-hyroxycytidine and its modern application to treatment of covid019 in people and FIP in cats. https://sockfip.org/the-long-history-of-beta-d-n4-hydroxycytidineand-its-modern-application-to-treatment-of-covid-19-in-people-and-fip-in-cats/.
  7. Agostini, M. L. et al. Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 2019; 93, e01348.
  8. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531, 381–385.
  9. FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir) https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/
  10. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, Shean RC, Bluemling GR, Kolykhalov AA, Greninger AL, Natchus MG, Painter GR, Plemper RK. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med. 2019;11(515):eaax5866.
  11. Zdanowicz MM. The pharmacology of HIV drug resistance. Am J Pharm Educ. 2006;70(5):100.doi:10.5688/aj7005100
  12. Gandhi, S, Klein J, Robertson A, et al. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. medRxiv, 2021.11.08.21266069AID

Liečba FIP subkutánnym remdesivirom nasledovaným perorálnymi tabletami GS-441524

Richard Malik DVSc PhD FACVS Centrum FASM pre Veterinárne vzdelávanie, Univerzita v Sydney
Pôvodný článok: Treatment of FIP in cats with subcutaneous remdesivir followed by oral GS-441524 tablets

Poznámka prekladateľa: Článok obsahuje informácie o reálnom obsahu GS-441524 v tabletách. Tento obsah ale nemusí zodpovedať “ekvivalentnému” množstvu GS-441524 v tabletách od iných výrobcov, kde je reálny obsah GS-441524 vždy o niečo vyšší kvôli známej zníženej biologickej dostupnosti perorálne používaného liečiva. Preto nie je možné jednoducho a jednoznačne porovnávať doporučene dávkovanie GS-441524 od firmy BOVA v Austrálii a u nás.

Úvod

Infekčná peritonitída mačiek (FIP) je infekčné ochorenie, najmä mladých mačiek. Dochádza k nemu, keď mačací enterický koronavírus množiaci sa v črevách prechádza kritickou mutáciou, ktorá zmení jeho tkanivový tropizmus z enterocytov na makrofágy. Vírus FIP potom cirkuluje po tele v makrofágoch – jedná sa o ultimátny mechanizmus trójskeho koňa. To vedie k diseminovanej infekcii a rozvoju fibrinoidnej nekrotizujúcej vaskulitídy a serozitídy v dôsledku ukladania imunitných komplexov pozostávajúcich z mačacích protilátok a FIP vírusových antigénov.

Vo všeobecnosti existujú dve formy FIP – efuzívna („vlhká“) FIP a neefuzívna („suchá“) FIP. Vlastný chorobný proces sa môže vyskytnúť v brušnej dutine, hrudnej dutine, osrdcovníku, očiach alebo centrálnom nervovom systéme. Kombinácie suchej a vlhkej FIP s postihnutím rôznych tkanív nie sú ničím nezvyčajným.

Až donedávna bola diagnóza infekčnej peritonitídy mačiek (FIP) pre mačacieho pacienta rozudkom smrti. V posledných rokoch však táto predstava bola postavená na hlavu ako výsledok priekopníckej práce profesora Nielsa C. Pedersena a kolegov z UC Davis.

Za posledných 12 mesiacov mnohí veterinári v Austrálii tiež úspešne zvládli mnoho prípadov FIP pomocou remdesiviru a GS-441524.

Omega-interferón (Virbagen) a polyprenyl imunostimulant (PPI) boli prvé lieky používané na liečbu FIP a obe mali u niektorých pacientov isté účinky. Omega interferón bol užitočný v prípadoch efuzívnej („vlhkej“) FIP, často kombinovanej s nízkou dávkou prednizolónu podľa Ishidovho protokolu, zatiaľ čo PPI, ktorého priekopníkom bol Al Legendre, bol užitočnejší v prípadoch neefuzívnej FIP. V niektorých prípadoch boli oba lieky použité súčasne. Problém bol v tom, že obe formy terapie boli často drahé, najmä keď sa používali oba lieky, takže aj keď sa pacienti zlepšili a mohli mať prechodné klinické remisie počas liečby, trvalé klinické vyliečenia boli zriedkavé. V dôsledku toho väčšina veterinárov stále považovala diagnózu FIP za predohru eutanázie.

To všetko sa zmenilo pred niekoľkými rokmi vďaka vyvrcholeniu celoživotneho výskumu FIP Dr. Nielsa Pedersena. Niels je úžasný veterinár, Severoameričan s dánskym pôvodom. Vyrastal na slepačej farme a pôvodne chcel byť klinickým lekárom pre veľké zvieratá, ale s veľkou predvídavosťou sa rozhodol pre vedeckú dráhu. Krátko po promócii odcestoval do Canberry na John Curtin School of Medical Research na ANU, kde koncom 60-tych rokov získal doktorát z imunológie o odmietaní obličkového transplantátu u profesora Bede Morrisa, pričom použil ovce ako experimentálny model na štúdium kinetiky lymfocytov.

Keď sa Niels vrátil na UC Davis, zameral sa na štúdium infekcií a imunity. Aj keď prispel k veľkému množstvu tém z internej medicíny a genomiky psov a mačiek, FIP sa stala jeho obľúbenou chorobou pre svoju obyčajnosť a súčasnú zložitosť. Jeho štúdium siaha od 80. rokov 20. storočia, keď sa špecializoval na diagnostiku, virológiu a patogenézu, až po súčasnosť, s čoraz väčším zameraním na terapiu.

Niels v spolupráci s kolegami z Kansas State University ukázal, že účelovo navrhnutý inhibítor proteázy GC-376 by mohol zabrániť a vyliečiť experimentálne indukovanú FIP u laboratórnych mačiek.1,2 Klinické štúdie v teréne s mačkami s prirodzene sa vyskytujúcou chorobou boli sklamaním, najmä keď mačky mali okulárnu formu FIP alebo ochorenie CNS. Nevzdal sa, a tak prešiel na iný liek – GS-4415243,4 – nukleozidový analóg vyvinutý severoamerickou farmaceutickou spoločnosťou Gilead. Ukázalo sa, že táto molekula je oveľa účinnejšia ako GC-376 na liečbu FIP, a to ako pri experimentálnych infekciách, tak aj v spontánnych prípadoch FIP. Počnúc farmakokinetikou a štúdiami s eskaláciou dávky s použitím širokého spektra klinických prípadov, Niels a kolegovia zistili, že potrebná dávka závisí od toho, či mal pacient suchú alebo vlhkú FIP, a či došlo k postihnutiu očí alebo centrálneho nervového systému (CNS).5

Prekvapivo, Gilead, výrobca, ktorý vyvinul GS441524, doteraz neprejavil záujem o vývoj tejto molekuly pre liečbu mačiek. Aby sa vyplnila prázdno pre účinnú terapiu FIP na celom svete, rôzne laboratóriá v Číne a východnej Európe začali vyrábať GS-441524 a predávať ho na čiernom trhu.

Široká dostupnosť GS-441524, často vysokej kvality a spočiatku veľmi vysokej ceny, poskytla oddaným majiteľom spôsob, ako zachrániť ich mačky s FIP. Štúdie klinickej patologičky Samanthy Evansovej z Ohio State University naznačili mieru vyliečenia približne 80 % v teréne. Obstarávanie lieku bolo donedávna komplikované a plné problémov, ktoré sa na určitej úrovni obchádzali pomocou rôznych „FIP Warriors“ skupín na Facebooku. Nanešťastie pre austrálskych milovníkov mačiek, APVMA a Vet Boards nakoniec pochopili, čo sa deje a Border Force značne sťažila získavanie GS-441524 a jeho bezpečný dovoz pre veterinárne použitie. Varovania regulačných orgánov a veterinárnych výborov pred trestným stíhaním boli namierené proti veterinárom, ktorí umožňovali liečbu mačiek s FIP pomocou liekov z čierneho trhu.

Je iróniou, že nové riešenie tohto problému priniesla pandémia COVID 19. Gilead vyvinul remdesivir (GS-5734) ako liek na liečbu hepatitídy C, Eboly a ľudského koronavírusového ochorenia. Remdesivir je proliečivo GS-441524, ktoré obsahuje dodatočný chemický bočný reťazec (vrátane fosfátovej skupiny), ktorý má zlepšiť intracelulárnu penetráciu (obrázok 1B). Remdesivir (ako produkt Veklury) získal dočasnú registráciu (na dva roky) od TGA v júli 2020 na liečbu infekcií SARS-CoV-2 u ľudských pacientov s COVID-19. Tento proces registrácie by za normálnych okolností trval niekoľko rokov, ale závažnosť pandémie urýchlila tento proces s prihladnutím na predbežné dáta z klinických testov. Keďže sa remdesivir stal licencovaným ľudským liekom a Gilead licencoval výrobu po celom svete, znamenalo to viac možností prístupu ku kvalitnej surovine. Tým sa obišli problémy s užívaním lieku zakúpeného na čiernom trhu, ako aj problémy neznámej čistoty a konzistencie produktu v priebehu času.

V roku 2020 spoločnosť na výrobu veterinárnych zmesí BOVA Australia zabezpečila spoľahlivé dodávky remdesiviru vo vhodnom formáte na IV a subkutánnu aplikáciu. Štúdie v Austrálii určili, že doba použiteľnosti po rekonštitúcii presahuje 12 dní a potvrdili účinnosť in vitro proti koronavírusom v tkanivových kultúrach. Analytická čistota liečiva sa pravidelne kontroluje pomocou HPLC. Za posledný rok veterinári v každom štáte Austrálie používali remdesivir na liečbu mačiek s FIP. Vyskytlo sa množstvo efuzívnych a neefuzívnych prípadov, vrátane niektorých mačiek s postihnutím oka (uveitída) a iných s multifokálnym ochorením CNS. Na základe liečby približne 500 mačiek liečených medzi októbrom 2020 a novembrom 2021 sa remdesivir ukazuje ako vysoko účinný pri zvládaní infekcií FIP. Umožnuje o niečo jednoduchšiu subkutánnu aplikáciu a zdá sa, že injekcia je o niečo menej bolestivá v porovnaní s GS-441524 a nespôsobuje lokálne reakcie v mieste vpichu, ktoré sa pozorujú pri injekčnom podaní GS-441524. Pôvodne sa remdesivir používal výhradne v Austrálii, hoci posledné 2 mesiace je dostupný aj v Británii od BOVA UK.

Molekulová hmotnosť remdesiviru je 603 g/mol, zatiaľ čo molekulová hmotnosť GS-441524 je 291 g/mol. To by mohlo naznačovať, že liečba mačiek remdesivirom vyžaduje približne dvojnásobné dávkovanie v porovnaní s GS-441524, aj keď to nezohľadňuje možné zlepšenie intracelulárnej penetrácie remdesiviru do určitých tkanív v porovnaní s GS-441524. Navrhovaná dávka remdesiviru u ľudských pacientov s COVID19 je 200 mg intravenózne (IV), po ktorej nasleduje 100 mg IV denne. Pre 70 kg ľudského pacienta to predstavuje dennú dávku 1,3 mg/kg, takže pri použití alometrického škálovania bola dávka 5-10 mg/kg denne pre mačku považovaná za správnu. Naša skúsenosť z prvých 500 prípadov však bola taká, že veľa mačiek nakoniec pre trvalé vyliečenie potrebovalo vyššiu dávku remdesiviru, a preto sme upravili naše odporúčané dávkovanie smerom nahor (pozri nižsie). Remdesivir poskytuje BOVA ako sterilný roztok s koncentráciou 10 mg/ml pripravený na použitie v 10 ml injekčnej vialke.

Obrázok 1. (A) BOVA Remdesivir rekonštituovaný a pripravený na liečbu. Po rekonštitúcii je obsah injekčnej vialky stabilný najmenej 120 dní pri teplote 5°C – a zvyčajne sa injekčná vialka spotrebuje za 3-7 dní. Vialku je najlepšie uchovávať v chladničke. (B) Dráha, ktorú remdesivir absolvuje intracelulárne, aby sa aktivoval ako GS-441524.

V súčasnosti sú Austrália a Spojené kráľovstvo jedinými krajinami, kde je remdesivir ľahko dostupný na predpis pre veterinárne použitie. Veterinári v Indii, na Novom Zélande, v Južnej Afrike a v niektorých častiach Európy však tiež začali pre prístup k lieku využívat dodávateľov humánnych liečiv.

Diagnostika

Obrázok 2: Úžasne komplexný a praktický prehľad diagnostiky FIP od Severine Tasker .

Úplná diferenciálna diagnostika FIP presahuje rámec tohto článku, ale čitateľom dôrazne odporúčame prečítať si vynikajúci článok od Séverine Tasker v Journal of Feline Medicine & Surgery. 6

Hoci sa FIP môže vyskytnúť u mačiek v akomkoľvek veku, väčšina prípadov sa vyskytuje u mačiatok a mačiek mladších ako 3 roky. Pretrvávajúca a často vysoká horúčka, ktorá nereaguje na antibiotickú liečbu (a často ani NSAID), je bežným nálezom, rovnako ako zvýšená hladina celkového proteínu v plazme v dôsledku zvýšených koncentrácií globulínu (difúzna gamapatia pri elektroforéze séra). Pri efuzívnej alebo „vlhkej“ FIP môže pomer albumínu ku globulínu klesnúť na < 0,45. Reaktanty akútnej fázy, ako je sérový amyloid A a α1-kyslý glykoproteín, majú tendenciu byť výrazne zvýšené. Mnoho mačiek s FIP vykazuje tiež sekundárnu imunitne sprostredkovanú hemolytickú anémiu, zvýšené aktivity AST a ALT a ikterus.

Pre včasnú diagnózu je rozhodujúce diagnostické zobrazovanie, čo bolo značne uľahčené zavedením digitálnej rádiológie a rozšírenou dostupnosťou diagnostického ultrazvuku v praxi malých zvierat. Pleurálny výpotok je ľahko rozpoznateľný z röntgenových snímok hrudníka, zatiaľ čo brušný výpotok je najlepšie detekovaný pomocou ultrazvuku (obrázok 3), najmä ak sú k dispozícii vysokofrekvenčné sondy. Za zmienku stojí, že v niektorých prípadoch môžu byť kapsy s tekutinou ohniskové a lokalizované. Často je okolo obličky pod obličkovým puzdrom nejaká tekutina, mačiatka môžu mať edém skrota, zatiaľ čo v ojedinelých prípadoch je výpotok obmedzený na perikardiálny vak. Ale kľúčové je – hľadať (i) výpotok v akejkoľvek telesnej dutine, (ii) granulómy v obličkách, pečeni alebo pľúcach, (iii) zväčšené vnútrobrušné a mezenterické lymfatické uzliny (obrázok 5) alebo výrazné zhrubnutie iliocekokolickej oblasti („fokálna FIP“) (obrázok 5). Röntgenové snímky hrudníka po drenáži pleurálneho výpotku môžu ukázať zmeny zodpovedajúce vírusovej pneumónii.

Obrázok 2: (A) Ultrazvukové vyšetrenie brucha ukazujúce hojnú vysoko echogénnu tekutinu (vlákna fibrínu) u mačky s ascitom s vysokým obsahom bielkovín v dôsledku efuzívnej FIP. (B) Efúzia obsahuje viskóznu žltú až slamovo sfarbenú tekutinu. (C) Röntgenový snímok brucha so vzhľadom brúseného skla naznačujúci tekutinu v bruchu.

Ak uvidíte výpotok – urobte punkciu – pretože tekutina je najlepšou diagnostickou vzorkou.

Obrázok 3: Výrazná mezenterická lymfadenomegália u mačky so suchou FIP.

Charakteristická je tekutina s vysokým obsahom bielkovín, často žltej až slamovej farby (obrázok 3B). Ak v orgáne vidíte granulóm alebo ak sú zreteľne zväčšené lymfatické uzliny – urobte FNA (aspiračná biopsia tenkou ihlou), urobte náter, použite farbenie s RapidDiff a hľadajte neutrofily a makrofágy (pyogranulomatózny zápal) bez viditeľných infekčných agens (obrázok 4) . Dve choroby, ktoré sa najčastejšie zamieňajú s FIP u dospelých mačiek, sú lymfóm a niektoré typy lymfocytickej cholangitídy (spojené s ascitom s vysokým obsahom bielkovín).

Obrázok 4: RapidDiff zafarbený náter aspirátu tenkou ihlou z mezenterických lymfatických uzlín 4-ročnej orientálnej mačky so suchou FIP. Výrazné makrofágy sú kľúčom k cytologickej diagnóze. Fotografiu poskytla Trish Martin.

Efuzívne ochorenie je samozrejme diagnostikovateľné oveľa ľahšie, pretože ascitická, perikardiálna alebo pleurálna tekutina poskytuje vhodnú vzorku, ktorá môže byť vyšetrená cytologicky, analýzou tekutiny a podrobená imunofluorescencii (IFA) na FIP antigén alebo PCR s reverznou transkriptázou na detekciu FIP nukleovej kyseliny. IFA sa vykonáva na VPDS, B14, University of Sydney (prostredníctvom Vetnostics, QML, ASAP, VetPath, Gribbles alebo IDEXX). Väčšinou je však najlacnejšie odoslať vzorku priamo do univerzitného laboratória.

Suchá FIP je problematickejšia, pretože zvyčajne vyžaduje aspiračnú biopsiu tenkou ihlou pyogranulomatóznych lézií v pečeni, obličkách alebo brušných lymfatických uzlinách. Občas môžu prípady vlhkej FIP paradoxne vykazovať vzorky tekutiny, ktoré sú negatívne pri testovaní IFA a/alebo PCR, no pacient stále pravdepodobne má FIP, čo sa prejavuje priaznivou odpoveďou na liečbu remdesivirom alebo GS-441524.

Liečba

Od októbra 2020 liečime mačky s FIP pomocou remdesiviru (IV a SCI) a odnedávna pomocou GS-441524 (orálne), takže naše protokoly sa skúsenosťami neustále vyvíjajú. Doteraz bolo liečených asi 500 mačiek. Snažíme sa vyhnúť tomu, aby sme boli v našich odporúčaniach príliš normatívni, pretože máme podozrenie, že neexistuje jednotný protokol, ktorý by vyhovoval všetkým pacientom, a každý prípad predstavuje jedinečné okolnosti, vrátane veľkosti pacienta, či je mačka stále „šťastná“ a je primerane, alebo je deprimovaná a dehydrovaná. Dôležitým faktorom je emocionálna a finančná angažovanosť majiteľa. Kľúčovou vlastnosťou, ktorú treba spomenúť, je, že oba lieky sú veľmi bezpečné, dokonca aj u chorých mačiek a mačiatok.

Všimnite si, že nasledujúce odporúčané dávky sú vyššie ako tie, ktoré boli pôvodne odporúčané pred rokom. Aj keď u mnohých pacientov fungovali nižšie dávky, zistili sme, že ide často o nesprávnu ekonomickú úvahu, pretože recidíva ochorenia na konci liečby a rozvoj vírusovej rezistencie počas liečby zrejme súvisia s nedostatočným počiatočným dávkovaním. Takže sme sa od začiatku naučili byť agresívnejší, čo je z dlhodobého hľadiska lacnejšie (tj nevyžaduje sa 2. terapia)

Naša najväčšia skúsenosť je spojená s remdesivirom. Tento liek je drahý a majiteľ sa musí zaviazať k nákladnému liečebnému procesu, ktorý trvá 3 mesiace. Pre väčšinu klientov to predstavuje emocionálnu a finančnú záťaž. Môj názor je, že v mnohých prípadoch je lepšie vynaložiť peniaze na antivírusovú terapiu ako takú, než na rozsiahlu diagnostiku a monitorovanie.

Obrázok 5: Výrazné zhrubnutie iliocekokolickej oblasti mačky Devon Rex s takzvanou „fokálnou FIP“, zvyčajnou formou neefuzívnej FIP. Fotografiu poskytla Penny Tisdall.

Jedným z prístupov u novodiagnostikovaných mačiek so závažným ochorením je hospitalizácia mačiek počas prvých 3-4 dní liečby. Pacienti začínajú liečbu remdesivirom, keď dostávajú IV tekutinovú terapiu (typicky 2-4 ml/kg/h; prvý deň Hartmannov roztok alebo Plasmalyte a následne 0,45 % NaCl a 2,5 % dextrózu s obsahom 20 mmol KCl/l). V 1. deň hospitalizácie sa remdesivir podáva vo vysokej dávke intravenózne (10–15 mg/kg zriedených na 10 ml fyziologickým roztokom a podáva sa POMALY počas 20–30 minút alebo dlhšie, manuálne alebo pomocou infúznej pumpy; u ľudských pacientov aplikácia trvá 2 hodiny), aby sa dosiahla zvýšená štartovacia dávka distribučného objemu liečiva. Tým sa dosiahne rýchla antivírusová účinnosť. V prípadoch s ochorením CNS odporúčame dennú IV dávku 20 mg/kg. Mnohé mačky sa môžu niekoľko hodín po IV infúzii remdesiviru javiť ako trochu deprimované. U ľudských pacientov môže remdesivir spôsobiť reakcie súvisiace s infúziou, vrátane nízkeho krvného tlaku, nevoľnosti, zvracania, potenia alebo triašky, ale u našich mačacích pacientov sme tieto javy nepozorovali.

Výhodou zahájenia liečby intravenózne je, že dehydratácia, ak je prítomná, sa upraví a máte IV prístup v prípade, že potrebujete podať iné lieky (napr. antikonvulzíva, kortikosteroidy). Dôležité je, že akonáhle je zavedený IV katéter, denné injekcie remdesiviru nespôsobujú žiadnu bolesť ani nepohodlie. Ak však mačka žerie a je diagnostikovaná v počiatočnom štádiu priebehu ochorenia, potom IV terapia nie je potrebná a rovnaké dávky možno podávať subkutánne, čím sa ušetrí veľa peňazí.

Mačky s FIP liečené remdesivirom sa typicky výrazne zlepšujú počas prvých 2-3 dní. Zistili sme však, že prípady efúzie a najmä tie, ktoré sa pred liečbou prejavili pleurálnym výpotkom, by sa mali dôkladne sledovať, pretože kombinácia antivírusového účinku remdesiviru a väčšej než udržiavacej dávky kryštaloidov môže viesť k prechodnému zhoršeniu pleurálneho výpotku. To vyžaduje drenáž dvakrát denne pomocou motýľovej ihly 19G (1,1mm – krémová farba) a 3-cestného uzatváracieho kohútika (ideálne pomocou ultrazvukového vedenia na nájdenie najlepšieho miesta pre zavedenie ihly). Tieto „sekundárne“ pleurálne výpotky môžu byť smrteľné, ak sa nezistia včas a zdá sa, že sa vyskytujú približne v 1 z 10 prípadov efuzívnych FIP liečených remdesivirom.

Ďalším problémom, ktorý sa v tejto dobe občas vyskytuje, je rozvoj neurologických príznakov, vrátane záchvatov. Náš názor je, že nejde o účinok lieku ako taký, ale skôr o demaskovanie subklinickej CNS FIP. Takéto mačky potrebujú starostlivé pozorovanie, zatiaľ čo vývoj záchvatov vyžaduje použitie antikonvulzívnych liekov, ako je midazolam (0,3 mg/kg IV), alfaxan alebo propofol (podávaný IV, aby bol účinný), po ktorom nasleduje levetiracetam (Keppra) (10–20 mg /kg, PO každých 8 hodín). Fenobarbitón je spoľahlivé antikonvulzívum, má však tendenciu zvyšovať metabolizmus mnohých liekov, a kým lepšie nepochopíme farmakokinetiku a metabolizmus remdesiviru a GS-441524, je pravdepodobne bezpečnejšie používať levetiracetam. Niektorí lekári tiež podávajú dexametazón alebo prednizolón ako jednorazovú liečbu na zmiernenie zápalu CNS.

Hoci obhajujeme úvodnú IV terapiu pre najťažšie prípady FIP, mačky a mačiatka, ktoré sú stále „šťastné“ a jedia, na začiatku nevyžadujú IV terapiu a môžu namiesto toho začať subkutánnymi injekciami v dávke 10-12 mg/kg/deň ( 20 mg/kg pri ochorení CNS). To je, samozrejme, oveľa lacnejšie, pretože mačky alebo mačiatka nemusia byť umiestnené na infúznej pumpe a hospitalizové v nemocnici, v stresujúcom prostredí. U klientov, ktorí majú finančné limity, môže byť toto vhodnejší spôsob zahájenia terapie. Niektorí šikovní kolegovia, ako napríklad Jim Euclid, vyvinuli hybridný prístup, kde mačiatka dostávajú subkutánne tekutiny denne ako bolus s injektovaným remdesivirom.

Následne boli mačkám podávané priebežné subkutánne injekcie remdesiviru. Pôvodne to trvalo 84 dní a takéto prípady predstavovali väčšinu prípadov, ktoré sme doteraz riešili. V poslednom čase na úvodnú terapiu používame agresívny IV/SCI remdesivir a potom mačky prechádzajú na perorálny GS-441524 počas 10 týždňov trvajúcej konsolidačnej terapie.

Po počiatočnom používaní nižších dávok, ktoré neboli úspešné u každého pacienta, teraz používame nasledujúce liečebné protokoly:

  • pre mačky s vlhkou FIP: 10-12 mg/kg raz denne (SID) počas 2 týždňov
  • pre mačky s výrazným postihnutím oka: 15 mg/kg SID subkutánnou injekciou (SCI) počas 2 týždňov; mačkám s ťažkou uveitídou by sa mali podávať aj lokálne kortikosteroidy (Pred Forte alebo Maxidex) 2-3 dni (nie dlhšie!) a atropínová očná masť
  • pre mačky s neurologickou FIP s príznakmi CNS: podávajte 20 mg/kg SID SCI počas 2-4 týždňov. 5

Je dôležité, aby majitelia boli riadne poučení o tom, ako optimálne podávať denné injekcie. Mačky budú vnímať injekciu ako menej bolestivú, ak sa roztok remdesiviru v injekčnej striekačke nechá zohriať na izbovú teplotu, namiesto toho, aby sa podával vychladený z chladničky. Okrem toho, ak ich naučíte jednoduchým úkonom, ako je používanie novej ihly pri aplikácii injekcii (t. j. použite inú ihlu, ako je tá, ktorá sa používa na natiahnutie lieku z vialky) a používanie ihiel priemeru 21G (0,8mm – zelené) alebo 23G (0,6mm – modré), injekcie budú znesiteľnejšie. Aj keď sú ihly 21G väčšie, u niektorých mačiek to možno dáva výhodu rýchlejšej aplikácie injekcie. Alternatívne môžu veterinári pripraviť kvôli zjednodušeniu pre majiteľa injekcie na celý týždeň, ktoré budú uchovávať v chladničke, a každý deň tak budú aplikovať novú injekciu.

U mačiek, ktoré naďalej vnímajú SC injekcie ako bolestivé, sme použili gabapentín perorálne (50 až 100 mg na mačku) a/alebo transmukozálne alebo SC podávaný buprenorfín 30-60 minút pred injekciou na sedáciu/analgéziu. Oblasť, do ktorej sa má podať injekcia, sa môže tiež ostrihať, aby sa 30 minút pred injekciou mohol aplikovať lokálny krém EMLA. BOVA vyrába rýchlejšie pôsobiaci lokálny anestetický gél, ktorý môže byť užitočný u niektorých pacientov. Vo výnimočných prípadoch sme zavádzali cefalický katéter každých 4-5 dní, aby majitelia mohli podávať IV terapiu namiesto SC injekcií. Zdá sa, že reakcie v mieste vpichu, ktoré boli hlásené v súvislosti s injekčne podávaným GS-441524 v zahraničí, sa pri remdesivire nevyskytujú.

Po 2-4 týždňoch užívania remdesiviru a po vymiznutí tekutiny v bruchu a zlepšení alebo vymiznutí očných a CNS príznakov teraz navrhujeme prechod na tablety GS-441524. Robí sa to z 3 dôvodov: (i) znižuje to náklady (ii) odstraňuje problém s bolestivosťou SC injekcií (iii) u niektorých pacientov je to efektívnejšie. Injekcie Remdesiviru sú pravdepodobne spoľahlivejšie ako perorálny GS-441524 a v najhorších prípadoch by ste sa mohli rozhodnúť podávať ich 4 týždne, ale pre väčšinu mačiek stačia 2 týždne a pohodlie a nižšie náklady na perorálnu formuláciu predbehnú všetko ostatné.

Používanie tabliet GS-441524 je v Austrálii pomerne nové, ale vo veľkej miere sa používa v zámorí. Odporúčaná perorálna dávka GS441524 je zvyčajne rovnaká ako dávka SCI/IV remdesiviru: vlhké prípady FIP dostanú 10-12 mg/kg PO SID, očné prípady 15 mg/kg PO SID a prípady CNS 20 mg/kg ( alebo vyššie). GS-441524 je ekonomickejší a je dokonca bezpečnejší ako remdesivir. V prípadoch CNS, kde sa podávajú veľké dávky, je pravdepodobne najlepšie podávať 10 mg/kg PO každých 12 hodín (BID), aby sa obišiel “stropný” efekt, o ktorom sa hovorí v súvislosti s obmedzenou absorpciou vysokých dávok.

Obrázok 6. Fokálna suchá FIP s pyogranulomatóznym zápalom intraabdominálnych lymfatických uzlín. Namiesto vykonania exploračnej laparotómie, biopsie lymfatických uzlín, histológie a imunohistológie môže byť v prípade vysokého podozrenia na FIP nákladovo efektívnejšie vyskúšať 3-dňovú IV liečbu remdesivirom. FNA zväčšenej lymfatickej uzliny je pravdepodobne ideálnou diagnostickou možnosťou pre lekárov s týmto súborom zručností.

Prečo sú dávkovania približne rovnaké? Na báze mg/kg má GS441524 dvakrát toľko aktívnych molekúl ako remdesivir (kvôli rozdielu v ich molekulovej hmotnosti), ale biologická dostupnosť GS-441524 je možno iba 50 % (absorbuje sa len polovica toho, čo sa podá, a to je ovplyvnené kŕmením a tiež efektom stropnej dávky) – takže tieto dva faktory sa navzájom rušia.

Odporúčame, aby sa tablety GS-441524 podávali s malým pamlskom, aby sa zamaskovala tabletka, pričom hlavné jedlo sa podáva o 1 hodinu neskôr. Tablety, ktoré poskytuje BOVA, sú 50 mg tablety s príchuťou tuniaka, so štyrmi deliacimi ryhami, takže ich možno rozdeliť na polovicu alebo dokonca na štvrtiny.

V situáciách, keď si majitelia nemôžu dovoliť úplnú liečbu, po prvotnej liečbe remdesivirom/GS-441524 používame meflochín (Lariam; 5 mg/kg perorálne raz denne v kapsulách alebo 62,5 mg dvakrát týždenne) .

Phillip McDonagh, Jacqui Norris, Merran Govendir a kolegovia zo Sydney School of Veterinary Science preukázali, že meflochín má antivírusový účinok . 7 K tomu pravdepodobne dochádza tým, že meflochín si uzurpuje biochemické intracelulárne dráhy využívané vírusom FIP, čo je mechanizmus, ktorý bol nedávno preukázaný aj pri klofazimíne 8 (lieku proti lepre), a niekoľkých ďalších liekoch. U niekoľkých mačiek, kde si majitelia nemohli dovoliť úplnú kúru remdesivirom, sa meflochín ukázal ako účinný pre dosiahnutie hranice klinického vyliečenia.

Hlavnou výhodou nákupu remdesiviru a GS-441524 od BOVA na liečbu prípadov FIP je, že produkty, ktoré používame, podliehajú kontrole kvality. Ide len o napísanie receptu s menom a adresou klienta, menom pacienta a dávkou, ktorá sa má podať, a kompaundátor môže zvyčajne poskytnúť vialky alebo tablety ktorémukoľvek veterinárnemu lekárovi v Austrálii do 24-48 hodín.

V súčasnosti je cena 100 mg vialky remdesiviru 250$ plus GST a poštovné (celková cena zvyčajne cca. 280$). GS-441524 sa predáva v balení 10 tabliet za 600$ plus poštovné a balné. Kúpou viacerých vialiek a tabliet súčasne sa samozrejme znížia poštovné a manipulačné poplatky. Veríme, že väčšina majiteľov sa bude cítiť oveľa pohodlnejšie, keď získa produkt od známej austrálskej spoločnosti, než aby posielali peniaze do zámoria a dúfali, že lieky neznámej kvality na čiernom trhu sa bezpečne dostanú do Austrálie bez toho, aby ich zadržala colnica.

Neexistuje žiadny dôvod, prečo by dobre motivovaný veterinár nemohol tieto prípady zvládnuť vo svojej vlastnej praxi. To je často pre majiteľa pohodlnejšie, najmä ak zápasia s každodennými injekciami a potrebujú praktika vo svojej blízkosti.

Obrázok 7: Tablety Gs-441524 od BOVA Australia. Sú s príchuťou tuniaka. Môžu byť rozdelené na polovice alebo dokonca štvrtiny. OVEĽA JEDNODUCHŠIE ako injekcie pre väčšinu mačiek. Menej stresu a menej nákladov.

Veterinári, ktorí chcú preskúmať túto možnosť, alebo majú všeobecné otázky o manažmente prípadov FIP, môžu poslať e-mail Sally Coggins (dr.sallyc@gmail.com), Richardovi Malikovi (richard.malik@sydney.edu.au), Davidovi Hughesovi (concordvets@concordvets.com.au), Grette Howard (drgretta@gmail.com) alebo profesorke Jacqui Norris ( jacqui.norris@sydney.edu.au), o radu v súvislosti s diagnózou alebo liečbou. Mnoho austrálskych veterinárnych lekárov so záujmom o FIP dosiahlo značné odborné znalosti v manažmente týchto prípadov. Napríklad Andrew Spanner v Adelaide liečil viac ako 20 prípadov s vynikajúcimi výsledkami. Je teda už mnoho lekárov pre mačaciu medicínu a odborníkov na internú medicínu so skúsenosťami s liečbou FIP, a tak majú veterinári, ktorí váhajú s liečbou svojich vlastných prípadov, možnosť doporučiť svojim klientom týchto odborníkov.

Medzi lekárov, ktorí akceptujú prípady FIP od všeobecných lekárov, patria napríklad: QLD Rhett Marshall, Marcus Gunew, Alison Jukes, Rachel Korman; NSW Katherine Briscoe, Michael Linton, Randolph Baral, Melissa Catt; VIC – Carolyn O’Brien, Keshuan Chow, Amy Lingard; WA-Martine Van Boeijen a Univerzitná veterinárna nemocnica Murdoch; TAS Moira van Dorsselaer.

Všetci títo lekári (a pravdepodobne ešte viac, o ktorých nevieme) radi prijmú prípady na diagnostiku a terapiu. Všetci s vami pravdepodobne radi prediskutujú manažment prípadov.

Obrázok 8: Bengálske mačiatko s CNS a očnou FIP (A: pred) a (B: po) po Remdesivire. Táto mačka mala tiež pľúcne granulómy.

Sally Coggins, spolupracujúca s Larou Boland, Emily Pritchard, docentkou Mary Thompsonovou a profesorkou Jacqui Norris na Sydney School of Veterinary Science, má záujem o liečbu prípadov s komplexnou diagnózou a monitorovaním poskytovaným zadarmo . Bude to tvoriť súčasť doktorandského programu Sally, takže jej budete pomáhať napredovať v štúdiu tým, že jej budete posielať prípady. Dúfame, že pomocou týchto študií, získame lepšiu predstavu o tom, ako rýchlo mačky reagujú, a kedy presne možno liečbu bezpečne ukončiť. Majitelia si budú musieť zaplatiť iba za remdesivir a GS-441524 na terapiu. Táto skupina má tiež záujem o liečbu prípadov interferónom-omega a meflochínom.

Väčšine prípadov FIP sa darí veľmi dobre pri liečbe GS-441524 alebo remdesivirom. Niels Pedersen zhromaždil úžasný zdroj pre veterinárnych lekárov, ktorí sa zaujímajú o manažment prípadov FIP – https://sockfip.org/dr – pedersen – research/ . Stránka uvádza aj niekoľko odporúčaní, ako sledovať mačky počas liečby. Nie som veľmi orientovaný na protokol, takže pre mňa sú kľúčové veci, ktoré treba sledovať, ako chuť do jedla, postoj, úroveň aktivity a zmeny telesnej hmotnosti a kondície v priebehu času. Väčšina lekárov rada monitoruje hematológiu a biochémiu séra každý mesiac, aby sa zabezpečilo, že všetky merateľné abnormality sa zlepšujú, hoci to môže byť pre pacienta stresujúce a zvyšuje to náklady na liečbu. Kompromisom je odobranie niekoľkých kvapiek krvi na sledovanie PCV, celkového proteínu v plazme (TPP) pomocou refraktometrie a farby plazmy – tak sa dá určiť, či sa anémia zlepšuje, ikterus ustupuje a či sa znižuje koncentrácia gamaglobulínu, čo má za následok nižšie TPP.

Neznepokojujte sa prechodným zvýšením koncentrácií globulínu na začiatku liečby; keď sa absorbujú výpotky s vysokým obsahom bielkovín, do plazmy pacienta sa dostane veľa imunoglobínov. Tento jav môže byť bežný až do 8. týždňa liečby, ale vymizne do 12. týždňa.

Obrázok 9: MRI obrázok v priečnej rovine po kontraste s vážením T1. Poznámka: dilatácia laterálnych komôr s veľmi miernym zvýraznením ependymálnej výstelky (oranžové šípky). Obrázok s láskavým dovolením Christine Thomas.

A čo mačiatko s multifokálnym ochorením CNS, kde je FIP CNS najpravdepodobnejšou príčinou klinických príznakov? Tradičným prístupom je sérológia (na vylúčenie kryptokokózy a toxoplazmózy), dobrá anamnéza a test tiamínu na vylúčenie nedostatku vitamínu B1, potom MRI skeny (obrázok 9) a odber CSF na analýzu tekutín a multiplexnú neuro-qPCR analýzu ). Tento prístup je veľmi drahý a existuje aj isté riziko z anestézie a najmä odberu CSF. Zistili sme, že 3-5 dňová intravenózna alebo sc. liečba remdesivirom sa môže použiť ako terapeutická skúška u mačiek s pravdepodobnou CNS FIP a je cenovo výhodnou alternatívou k úplnému diagnostickému spracovaniu, ktoré môže stáť 3-5000$ alebo viac .

Podobne, ak je voľbou exploračná laparotómia, biopsia abnormálnych tkanív, histológia a imunohistochémia pre FIP antigén na diagnostiku suchej intraabdominálnej FIP oproti 3–5-dňovej liečbe s remdesivirom alebo GS-441524, môže sa zvážiť test s použitím lieku, čo je lepšia voľba z hľadiska pohody pacienta a znížených nákladov. U väčšiny mačiek s neefuzívnou FIP nastáva rýchle zlepšenie pomocou antivírusovej terapie, s normalizáciou horúčky, zlepšením chuti do jedla a lepším celkovým postojom v priebehu 2 až 3 dní. Ak pacient nereaguje na antivírusovú terapiu, potom je samozrejme rozumná exploračná laparotómia a biopsia reprezentatívnych orgánov, keďže hlavnými diferenciálnymi diagnózami sú lymfóm a lymfocytická cholangitída.

Toto je vecou osobného prístupu každého lekára. FNA na cytologické a niekedy imunohistochemické vyšetrenie alebo PCR je presvedčivou neinvazívnou možnosťou tam, kde je táto expertíza dostupná, ale niekedy nedá definitívnu odpoveď. Niektorí veterinári trvajú na diagnostike tkaniva a pozitívnej imunohistológii alebo PCR u každého pacienta, zatiaľ čo iní by radi „liečili liečiteľné“ pomocou 3–5-dňového nasadenia remdesiviru/GS-441524 a pristúpili k exploratívnej laparotómii, až keď neexistuje jednoznačná odpoveď na terapiu.

Je neuveriteľne uspokojujúce vidieť premenu mačiek a mačiatok, ktorým nie je dobre, na normálne a šťastné mačky. Je to naozaj niečo, čo vám ako lekárovi zdvihne náladu. Je to dobrá veda a dobrá veterinárna medicína!

Závery

V minulosti bola diagnóza FIP intelektuálnym cvičením, aby sme utrpenie mačky alebo mačiatka mohli ukončiť s istotou presnej diagnózy. Teraz, vďaka celoživotnmu štúdiu FIP Dr. Nielsa Pedersena, sme schopní úspešne liečiť možno 80 % alebo viac mačiek s FIP, ak má klient dostatok financií. Je príliš skoro predpovedať, či alebo koľko z nich sa bude neskôr opakovať.

Existuje potreba intenzívneho štúdia v diagnostike a manažmente prípadov, ale s vynaložením potrebného úsilia by dobrý praktický veterinár mal byť schopný spolupracovať s odhodlaným majiteľom na dosiahnutí klinického vyliečenia. Najdôležitejšie je neklásť príliš veľa prekážok do cesty oddaného majiteľa a podporovať ho počas 12-týždňového maratónskeho liečebného kurzu tým, že mu pomôžete nájsť najlepší spôsob liečby svojho pacienta. Môže to zahŕňať sedatívnu/analgetickú liečbu, ktorá pomôže mačke zlepšiť ovládateľnosť a predchádzať nepríjemným pocitom, keď klient privedie svoju mačku na kliniku denne na injekcie remdesiviru alebo prechod na tablety GS-441524, keď je stres z injekcií pre vlastníka príliš veľký. Je dôležité zvládnuť dlhú cestu a možno poskytnúť platobný plán, ktorý umožní odhodlaným klientom zlepšiť cenovú dostupnosť liečby.

Napokon, vplyv COVID-19 na výskum koronavírusov bol skutočne hlboký a vo vývoji je niekoľko veľmi sľubných liekov, ako napríklad molnupiravir od spoločnosti Merck a ďalší perorálny liek od spoločnosti Pfizer.

CELKOVÉ ZHRNUTIE

2-stupňový prístup k terapii

1.fáza – INDUKCIA

IV/SC injekcie Remdesiviru

  • Pre mačky s vlhkou FIP: 10-12 mg/kg remdesiviru subkutánnou injekciou (SCI) raz denne (SID) počas 2 týždňov
  • Pre mačky s postihnutím oka: 15 mg/kg SID remdesivir SCI počas 2 týždňov
  • Pre mačky s neurologickými príznakmi FIP a CNS: remdesivir 20 mg/kg SID počas 2 týždňov

2. fáza – KONSOLIDÁCIA

Po 2 týždňoch injekčného podávania remdesiviru prejdite na tablety GS-441524

  • Pre mačky s vlhkou FIP: 10-12 mg/kg GS-441524 perorálne SID počas 10 týždňov
  • Pre mačky s postihnutím oka: 15 mg/kg SID GS-441524 perorálne SID počas 10 týždňov
  • Pre mačky s neurologickými príznakmi FIP a CNS: GS-441524 10 mg/kg perorálne BID (20 mg/kg/deň) počas 10 týždňov

Literatúra

  1. Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Weerasekara, S.; Hua, D.H.; Groutas, W.C.; Chang, K.O.; Pedersen, N.C. Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathog. 2016, 12, e1005531.
  2. Pedersen, N.C.; Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Eckstrand, C.; Groutas, W.C.; Bannasch, M.; Meadows, J.M.; Chang, K.O. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J. Feline Med. Surg. 2018, 20, 378–392.
  3. Murphy, B.G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N.C. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 2018, 219, 226–233.
  4. Pedersen, N.C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami,
    E.; Liepnieks, M.; Liu, H. Efficacy, and safety of the nucleoside analog GS441524 for treatment of cats with naturally occurring feline infectious peritonitis. J. Feline Med. Surg. 2019, 21, 271–281.
  5. Dickinson PJ, Bannasch M, Thomasy SM, et al. Antiviral treatment using the adenosine nucleoside analogue GS-441524 in cats with clinically diagnosed neurological feline infectious peritonitis. Journal of Veterinary Internal Medicine. 2020. doi: 10.1111/jvim.15780.
  6. Tasker S. Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests. Journal of Feline Medicine and Surgery.
    2018;20(3):228-243. doi:10.1177/1098612X18758592
  7. McDonagh, P.; Sheehy, P.A.; Norris, J.M. Identification, and characterisation of small molecule inhibitors of feline coronavirus replication. Vet. Microbiol. 2014, 174, 438–447.
  8. Yuan, S., Yin, X., Meng, X. et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature (2021).
    https://doi.org/10.1038/s41586-021-03431-4
  9. https://sockfip.org/ – NAJLEPŠÍ zdroj na internete alebo kdekoľvek pre FIP.
Obrázok 10: Dve mačky so suchou FIP po úspešnej terapii. Ako mi nie tak dávno napísal jeden zanietený mladý veterinár v e-maile – „to je dôvod, prečo som robil vedu!“

NÁKLADY:

2 kg mačiatko s vlhkou FIP
4×100 mg vialky remdesiviru – 1000$
35×50 mg tabliet GS-441524 – 2100$
Manipulácia a GST – 30$ plus 310$ = 340$
Celkom 3440$, približne 290$ týždenne počas 12 týždňov

4 kg mačka so suchou FIP
7×100 mg vialiek remdesiviru – 1750$
70×50 mg tabliet GS-441524 – 4200$
Manipulácia a GST 30$ plus 600$
Celkom 6550$, asi 545$ týždenne počas 12 týždňov

Obrázok 11: Dvaja súrodenci, u ktorých sa vyvinula FIP a boli úspešne vyliečení remdesivirom a GS441524.

Elektroforéza sérových bielkovín

Kristiina Ruotsalo, DVM, DVSc, ACVP & Margo S. Tant, BSc, DVM, DVSc
Pôvodný článok: Serum Protein Electrophoresis – General

Čo sú sérové bielkoviny?

Sérum je tekutá časť krvi, z ktorej boli odstránené červené krvinky, biele krvinky a faktory súvisiace so zrážaním krvi. Sérum obsahuje veľké množstvo bielkovín, ktoré plnia rôzne funkcie. Medzi tieto funkcie patrí zabezpečenie bunkovej výživy, ochrana pred infekciami, úloha pri zápaloch a pôsobenie ako hormóny alebo enzýmy.

Čo je elektroforéza sérových bielkovín?

Elektroforéza bielkovín je špecializovaný test, ktorý analyzuje konkrétne skupiny bielkovín v krvnom sére a meria zastúpenie každej skupiny bielkovín. Jednotlivé proteíny majú charakteristické veľkosti a elektrické náboje. Elektroforéza rozdeľuje sérové proteíny do širokých skupín na základe ich veľkosti a elektrického náboja. Výsledky analýzy sú zobrazené na špeciálnom grafe a vzor rôznych proteínov sa používa na diagnostiku konkrétnych chorôb vrátane niektorých typov rakoviny.

Aké proteíny meria test?

“Hladiny globulínu … majú tendenciu stúpať v prípade chorôb.”

V krvi je mnoho rôznych bielkovín, ale elektroforéza bielkovín sa zameriava iba na dve triedy bielkovín, nazývané albumín a globulín. Existuje iba jeden druh albumínu a nachádza sa v krvi v relatívne konštantných hladinách; je to všestranný proteín s radom dôležitých úloh, vrátane transportu látok v organizme. Naproti tomu existuje mnoho typov globulínov, z ktorých každý má špecifickú funkciu. Úrovne globulínov sú variabilnejšie ako albumín a v prípade ochorenia majú tendenciu stúpať.

Keď sa vzorka krvi analyzuje rutinnými metódami, zmerajú sa hladiny albumínu a celkového globulínu. Elektroforéza bielkovín ide ďalej a rozdeľuje celkový globulín na jeho jednotlivé časti, nazývané globulínové frakcie, ktoré sa potom merajú jednotlivo. Analýzou typov a množstiev rôznych bielkovín v krvi je často možné určiť povahu ochorenia vášho domáceho maznáčika.

Typicky sa globulíny rozdeľujú na tieto frakcie: α1 (Alfa 1), α2 (Alfa 2), β1 (Beta 1), β2 (Beta 2), γ (Gama)

Prečo sú globulíny dôležité?

Globulíny hrajú dôležitú úlohu v obrannom systéme tela; niektoré sú „prví záchranári“, ako hasiči, a rýchlo sa objavia v krvnom obehu po akomkoľvek poranení tkaniva. Ostatné, nazývané protilátky, sú produkované lymfoidnými bunkami, typom bielych krviniek, a objavujú sa v krvnom obehu pomalšie po poranení. Protilátky sú nevyhnutné pre schopnosť tela brániť sa pred napadnutím baktériami a inými organizmami spôsobujúcimi choroby.

Vysoká celková hladina globulínu v krvi vo väčšine prípadov naznačuje základný zápal alebo infekčné ochorenie, niekedy však naznačuje prítomnosť rakoviny, najmä postihujúcej lymfoidné bunky. Pri určovaní typu a distribúcie globulínov nám elektroforéza bielkovín môže pomôcť rozhodnúť, o aký druh ochorenia sa môže jednať.

Ako test funguje?

Elektroforéza belkovín je ako triedenie misky pomiešaných farebných guľôčok do oddelených skupín podľa farby a veľkosti a potom počítať, koľko guľôčok je v každej skupine. Základom testu je skutočnosť, že albumín a rôzne globulíny majú rôznu veľkosť a že každý typ proteínu nesie iný elektrický náboj, ako statickú elektrinu. Vzorka séra sa pripraví a umiestni na špeciálnu mriežku. Keď je aplikovaný elektrický prúd, rôzne proteíny migrujú po mriežke rôznymi rýchlosťami, čo spôsobuje, že sa rozdelia do skupín podľa veľkosti a elektrického náboja. Napríklad albumín je pomerne malá molekula a nesie veľa „statickej elektriny“; cestuje najďalej a najrýchlejšie zo všetkých bielkovín a je vždy prvým, ktorý sa objaví v grafe. Globulíny sú vo všeobecnosti väčšie a pohybujú sa pomalšie a protilátky, ktoré sú najväčšie z globulínov a majú najmenej „statickej elektriny“, sa pohybujú veľmi pomaly a sú poslednými, ktoré sa na grafe zobrazujú.

„… každý druh bielkovín nesie iný elektrický náboj“

Akonáhle sú proteíny rozdelené do svojich skupín, je možné zmerať množstvo každého proteínu a výsledky zobraziť v grafe. Tvar grafu nám pomáha porozumieť základnej chorobe.

Kedy by sa mala robiť elektroforéza bielkovín?

“Elektroforéza bielkovín sa odporúča vždy, keď sú celkové hladiny globulínu zvýšené a nie je známa príčina.”

Elektroforéza bielkovín sa odporúča vždy, keď sú zvýšené celkové hladiny globulínu a nie je známa príčina. Čím je vyššia hladina celkových globulínov, tým vhodnejšie je vykonať elektroforézu bielkovín. Globulíny zvyčajne rastú, ak dôjde k zápalu, poraneniu tkaniva alebo infekčnému ochoreniu. Čo je však dôležitejšie, hladiny globulínu môžu byť veľmi vysoké pri niektorých typoch rakoviny lymfoidných buniek. Keď predbežné krvné testy naznačujú, že sú zvýšené celkové hladiny globulínu, je vhodné urobiť elektroforézu bielkovín a pokúsiť sa zistiť, či je základné ochorenie zápalové alebo neoplastické.

Ako sa graf (elektroforetogram) interpretuje?

Najdôležitejšie pri interpretácii grafu elektroforézy je, či je globulín zvýšený z dôvodu nárastu mnohých rôznych globulínov alebo z dôvodu nárastu iba jedného typu globulínu. Keď je zvýšených mnoho rôznych globulínov, hovoríme o polyklonálnom zvýšení (poly = mnoho; klonálny = typ); keď je za nárast zodpovedný iba jeden typ globulínu, hovoríme o monoklonálnom zvýšení (mono = jeden; klonálny = typ). Zápal je typicky polyklonálny, zatiaľ čo lymfoidná neoplázia je pravdepodobnejšie monoklonálna. Bohužiaľ, medzi týmito dvoma všeobecnými klasifikáciami existuje určité prekrývanie.

Poskytujú výsledky vždy konečnú diagnózu?

Nie, ale niektoré závažné choroby, zápalové aj neoplastické, vytvárajú na grafe elektroforézy charakteristický vzorec, ktorý môže rýchlo viesť k definitívnej diagnóze. Pri mnohých zápalových stavoch môže elektroforéza bielkovín poskytnúť cenné informácie o závažnosti zápalu, o tom, kde môže byť lokalizovaný, a čo ho môže spôsobovať.

Príklady elektroforetogramu

Panel A: Normálny elektroforetogram na agarózovom géli u psa. Najvyšším vrcholom vľavo je albumín, za ktorým nasleduje α1 (2 vrcholy), α2 (2 vrcholy), β1 (2 vrcholy, β1a a β1b), β2 a γ (posledný plochý vrchol).
Panel B: Sérum od mačky s infekciou vírusom mačacej infekčnej peritonitídy (FIPV). Viditeľný nárast α2 globulínov (šípka), čo naznačuje odpoveď reaktantu akútnej fázy, a polyklonálnej gamapatie (šípka v oblasti γ). Tieto výsledky sú typické, ale nie špecifické, pre infekciu FIPV (je ich možné pozorovať aj pri iných zápalových stavoch).
Panel C: Sérum od psa s mnohopočetným myelómom. V oblasti γ je vysoký úzky vrchol, ktorý naznačuje monoklonálnu gamapatiu (šípka). Koncentrácie albumínu sú tiež znížené (v porovnaní s normálnym psom v paneli A).

Spoluautori: Kristiina Ruotsalo, DVM, DVSc, ACVP & Margo S. Tant, BSc, DVM, DVSc

Mačacia infekčná peritonitída (FIP): Nádej pre mačky na obzore

Sam Taylor, BVetMed (Hons), CertSAM, MANZCVS, DipECVIM-CA, FRCVS a Emi Barker BSc (Hons), BVSc (Hons), PhD, DipECVIM-CA, MRCVS sumarizujú myšlienky o prejavoch a diagnostike tejto choroby a predstavujú novú éru liečby.

Emi BarkerSamantha Taylor, VetTimes Volume 51, Issue 32, Pages 16-19 | August 31, 2021
Pôvodný článok: Feline infectious peritonitis: hope on the horizon for cats

Obrázok 1. „Klasická“ Mačka s “klasickou” FIP s objemným brušným výpotkom. Obrázok: Feline Center, Langford Vets, University of Bristol

FIP je spôsobený virulentnými mutáciami mačacieho koronavírusu (FCoV), ktoré ho transformujú z miernej a enterickej infekcie na závažné systémové ochorenie.

Rovnako ako ostatné koronavírusy, FCoV je veľký obalený RNA vírus – to je dôležité, keď vezmeme do úvahy vyhýbanie sa imunitnému systému, prežitie v prostredí, detekciu, liečbu a prevenciu. FIP má vysokú úmrtnosť a až donedávna boli liečebné postupy relatívne neúčinné.

Tento článok sumarizuje súčasné názory o prejavoch a diagnostike tejto choroby. Predstavuje tiež novú éru liečby FIP v súvislosti s nedávnou dostupnosťou legálnych liekov vo Veľkej Británii.

Čo spôsobuje FIP?

FCoV je alfakoronavírus, ktorý infikuje domáce mačky a iné mačky. Je z rovnakého rodu ako psí enterický koronavírus a vírus gastroenteritídy ošípaných. FCoV nemôže infikovať ľudí a je iba vzdialene príbuzný so SARS-CoV-2, betacoronavírusom a pôvodcom ochorenia COVID-19.

FCoV, ako biotyp mačacieho enterického koronavírusu (FECV), sa bežne deteguje vo výkaloch – najmä u mačiek žijúcich v domácnostiach s viacerými mačkami. Infekcia sa typicky šíri fekálno-orálnou cestou, keď sú mačiatka alebo mladé mačky v kontakte s mačkami vylučujúcimi. Šance na prežitie tohto obaleného vírusu v prostredí sú vo všeobecnosti zlé, pokiaľ nie je vírus uzavretý vo výkaloch, a je citlivý na väčšinu dezinfekčných prostriedkov.

U niektorých mačiek a v určitom okamihu po počiatočnej infekcii -medzi replikáciou vírusu v enterocytoch a účinnou replikáciou v makrofágoch a monocytoch – menej virulentný FECV mutuje do virulentnej formy spojenej s FIP – to znamená biotyp vírusu FIP (FIPV). V géne hrotového proteínu boli nájdené určité mutácie súvisiace s týmto prechodom, hoci žiadna z nich ešte nie je patognomonická pre FIP.

Vysoká frekvencia genomických mutácií – znak RNA vírusov – môže tiež uľahčiť vyhýbanie sa imunitnej odpovedi hostiteľa a poháňať tkanivový tropizmus, čo vedie k rôznym prejavom choroby. Prirodzený priamy prenos FIPV medzi mačkami sa považuje za zriedkavý, pričom sa všeobecne verí, že FIPV – a následne FIP – vzniká v dôsledku novej mutácie u FCoV individuálne infikovanej mačky.

Obrázok 2. Mierna žltačka a bledosť u mačky s FIP.

Jednou z mnohých komplexností FCoV a FIP je, že infekcia sa prejavuje mnohými rôznymi spôsobmi v závislosti od vírusových faktorov, ako sú kmeň a dávka, ale aj od imunitnej reakcie mačky a genetických faktorov.

Zdá sa, že silná bunkovo sprostredkovaná imunitná (CMI) reakcia na FCoV poskytuje ochranu pred FIP. Naproti tomu mačky s prevažne protilátkovo sprostredkovanou odpoveďou so slabou reakciou CMI typicky podľahnú efuzívnej „vlhkej“ forme choroby v dôsledku imunitne sprostredkovanej vaskulitídy, zatiaľ čo u mačiek so strednou CMI sa vyvinú tkanivové granulómy typické pre neefuzívnu „suchú“ formu FIP.

Je dôležité mať na pamäti, že efuzívna a neefuzívna forma FIP sa môžu výrazne prekrývať, čo vedie k širokému spektru symptómov; krátke epizódy efuzívnej formy FIP môžu nastať skôr, ako prevládne neefuzívna forma a naopak, v terminálnych štádiách neefuzívnej formy FIP sa môžu vytvárať výpotky. Mnoho mačiek s výpotkom má navyše tkanivové granulómy.

Klinické príznaky

Klasická prezentácia mladej mačky s ascitom bohatým na proteíny (obrázok 1) môže ponúknuť jednoduchšiu diagnostiku; ostatné mačky však môžu byť skôr diagnostickou výzvou. Medzi bežné nešpecifické príznaky patria letargia, anorexia a chudnutie.

Postihnuté mačky môžu byť febrilné so strednou horúčkou, typicky nižšou ako 40°C, ktorá často kolíše a zle reaguje na NSAID (nesteroidné antiflogistiká alebo nesteroidné protizápalové látky) alebo antimikrobiálne látky, a ikterus, ak je prítomný, je zvyčajne mierny (obrázok 2).

Obrázok 3. Hyféma, uveitída a hypopyón u mačky s okulárnou FIP.

Viskózne výpotky s vysokými hladinami bielkovín sa tvoria u približne 80% mačiek s FIP – väčšina (približne 85%) zahŕňa brušnú dutinu, kým menej prípadov vykazuje výpotok v hrudnej dutine (približne 20%).

Občas sa pozorujú perikardiálne výpotky, aj keď len zriedka spôsobujúce tamponádu, a veľmi zriedkavo sa vyskytujú skrotálne výpotky u nekastrovaných mačiek.

Pyogranulomatózne lézie sa môžu vyskytnúť v akomkoľvek tkanive, a zatiaľ čo bežne zahŕňajú brušné orgány (napríklad mezenterické lymfatické uzliny a obličky), ochorenie môže byť obmedzené na iné orgány, ako sú oči, mozog alebo miecha.

Očné príznaky zahŕňajú uveitídu, keratické zrazeniny, hypopyón, hyfému (obrázok 3) a retinitídu. Neurologické príznaky zahŕňajú ataxiu, záchvaty, nystagmus, hyperestéziu a zmeny správania/mentácie.

Diagnostika

Napriek tomu, že jedna abnormalita sama osebe neurčuje diagnózu FIP, ani ich absencia diagnózu nevylučuje, veterinár môže podozrenie na FIP postaviť na nasledujúcich zisteniach, pričom má na pamäti signalizáciu, klinický obraz, klinickú patológiu a výsledky zobrazovacích metód, ak nie je prítomná alternatívna diagnóza, pravdepodobnejšie vysvetlenie:

Obrázok 4. MRI sken mačky s FIP ukazujúci obštrukčný hydrocefalus a zvýšenie kontrastu mozgových blán.
  • Klinické vyšetrenie – môže odhaliť horúčku, ikterus, abdominálnu distenziu (ascites; organomegáliu), chorioretinitídu, ataxiu, deficity hlavových nervov.
  • Analýza krvi – lymfopénia, neregeneratívna anémia, mikrocytóza, neutrofília, hyperglobulinémia, nízky pomer albumín/globulín (A:G; klasicky menej ako 0,4), hyperbilirubinémia, vysoký α-1 kyslý glykoproteín (často výrazne zvýšený, viac ako 1,5 mg/ml).
  • Diagnostické zobrazovanie – výpotky, lézie v brušných orgánoch, abnormality CNS konzistentné so zosilnením meningeálnej oblasti a/alebo obštrukčný hydrocefalus (obrázok 4).
  • Analýza efúzie – neseptický pyogranulomatózny zápal s relatívne nízkym počtom buniek (celkový počet jadrových buniek vyšší ako 5 × 109/l; hlavne neutrofily a makrofágy) s vysokou koncentráciou bielkovín (často vyššou ako 35g/l) a nízkym A:G (obrázok 5).
  • Molekulárna diagnostika – pozitívne výsledky FCoV RNA RT-PCR v tekutinách (napríklad výpotky, komorová voda, CSF; Poznámka: falošne pozitívne a negatívne výsledky sú možné u plnej krvi) alebo aspirátoch tenkou ihlou (FNA) postihnutého orgánu (napríklad obličky, pečeň, mezenterické lymfatické uzliny); čím vyššia je vírusová záťaž, tým viac to svedčí o FIP. Poznámka: RT-PCR nemôže potvrdiť diagnózu FIP.

Vysoké hladiny protilátok FCoV naznačujú iba predchádzajúcu infekciu FCoV a neznamenajú diagnózu FIP

Definitívna diagnóza FIP je potvrdená pozitívnym imunohistochemickým farbením na antigén koronavírusu v makrofágoch spojených s patologickými zmenami FIP vo vzorkách tkaniva fixovaných formalínom. Odber vzoriek na histopatológiu a imunohistochemické farbenie však vyžaduje invazívne postupy, ktoré môžu byť u chorej mačky kontraindikované.

Obrázok 5. Analýza výpotku je užitočná pri diagnostike FIP; kde je to možné, odoberte vzorku tekutiny.

Alternatívne prítomnosť antigén-pozitívnych buniek koronavírusu v cytologických vzorkách (výpotok, komorová voda, cytospínové CSF preparáty alebo FNA z akýchkoľvek abnormálnych orgánov – napríklad mezenterickej lymfatickej uzliny) vykazujúcich pyogranulomatózne zmeny sú veľmi nápomocné pri diagnostike a umožnujú menej invazívne získanie vzoriek.

Niektorí vedci použili bunkové pelety pripravené z centrifugovaných vzoriek efúzie na zlepšenie citlivosti imunohistochemického farbenia (Tasker a kol, 2021).

Je však dôležité čo najspoľahlivejšie diagnostikovať FIP pred liečbou, pretože na uvedené klinické príznaky existuje mnoho ďalších diferenciálnych diagnóz – vrátane neoplázie (najmä lymfómu), iných infekčných chorôb (pyotorax, toxoplazmóza, mykobakterióza, plesňové infekcie) ) a primárne imunitne sprostredkované ochorenie (idiopatická encefalitída, uveitída, lymfocytová cholangitída). Na obrázku 6 je graf naznačujúci možné diagnostické cesty.

Minimálne invazívny odber vzoriek môže zahŕňať odber brušných alebo hrudných výpotkov a FNA abnormálnych orgánov.

Podrobnejšie diagnostické vývojové diagramy pri diagnóze FIP sú dostupné na webovej stránke Európskeho poradného výboru pre choroby mačiek (www.abcdcatsvets.org/feline-infectious-peritonitis).

Obrázok 6. Prístup k diagnostike FIP

Liečba FIP pomocou antivírusových liekov

V posledných rokoch sa publikácie zameriavali na antivírusové lieky (GS-441524, nukleozidový analóg, ktorý inhibuje vírusovú RNA polymerázu, a GC376, inhibítor vírusovej proteázy) s potenciálom vyliečiť mačky experimentálne vyvolanou (Kim et al, 2016; Murphy et al, 2018) a prirodzene získanou (Pedersen et al, 2018; 2019; Dickinson et al, 2020) FIP.

Nanešťastie, až donedávna (pozri ďalej), legálne formulácie týchto liekov neboli komerčne dostupné, aj keď niektorí majitelia získavali a podávali nezákonné formulácie svojim mačkám neznámeho pôvodu a za veľké náklady.

Remdesivir, proliečivo GS-441524, je antivírusový liek so širokým spektrom účinku proti RNA vírusom. Pôvodne bol vyvinutý na liečbu vírusu hepatitídy C a vírusu Ebola u ľudí. Jeho vývoj bol potom výrazne urýchlený kvôli celosvetovej liečbe SARS-CoV-2.

V Austrálii je remdesivir legálne dostupný veterinárnym lekárom niekoľko mesiacov ako „špeciálna“ formulácia, ktorá umožňuje veterinárom získať skúsenosti s týmto liekom pri liečbe mačiek a mačiatok s FIP, kde preukázal sľubné výsledky. Na rozdiel od GS-441524 má remdesivir nízku orálnu biologickú dostupnosť a u ľudských pacientov sa podáva vo forme intravenóznej infúzie.

Vo Veľkej Británii je remdesivir legálne dostupný prostredníctvom spoločnosti Gilead Sciences, ktorá je držiteľom patentu a vyrába liek na humánne použitie. Aktuálne dostupnou formuláciou je Veklury, prášok na rekonštitúciu s vodou pre injekčné roztoky na konečnú koncentráciu remdesiviru 5 mg/ml. Po rekonštitúcii by mal byť vychladený a spotrebovaný do 24 hodín.

Obrázok 7. Vialky s preformulovaným remdesivirom budú k dispozícii na liečbu FIP, legálne, vo Veľkej Británii od augusta 2021.

U mačiek sa neoficiálne spravidla podáva SC, aj keď niektorým mačkám môže prospieť počiatočné IV podanie. Od augusta 2021 bude remdesivir k dispozícii aj u výrobcu špeciálnych liekov ako veterinárny „špeciál“ (obrázok 7) vo Veľkej Británii. Reformulovaný remdesivir bude dodávaný v injekčných liekovkách obsahujúcich 100 mg remdesiviru, v koncentrácii 10 mg/ml, čo umožňuje menšie injekčné objemy, s dobou použiteľnosti pri vhodnom skladovaní najmenej tri mesiace.

Skúsenosti našich kolegov z Austrálie (Malik, osobná komunikácia) nám umožňujú navrhovať dávky podľa uvedeného plánu. Autori zdôrazňujú potrebu diagnostiky FIP pred použitím tohto lieku, aby sa zaistilo jeho správne použitie, pričom pripúšťajú, že diagnóza FIP môže byť predpokladaná z dôvodu klinických alebo finančných diagnostických obmedzení.

Náklady, predĺžený charakter liečebného cyklu (odporúča sa minimálne 12 týždňov), potenciálne nepohodlie pri SC injekciách a riziko relapsu je potrebné pred začatím terapie prediskutovať s majiteľmi mačiek.

Majitelia môžu byť naučení podávať každodenné injekcie svojej mačke, ale musia byť dôkladne vyškolení, aby sa vyhli neúmyselnej samoaplikácii, nesprávnej technike, ktorá môže mačke ublížiť, a aby minimalizovali riziko nežiaducej reakcie mačky na injekcie vedúcej k poraneniu uhryznutím alebo poškriabaním. Tento liečebný proces vyžaduje angažovaných majiteľov a je emocionálnym aj významným finančným záväzkom.

V závislosti od klinického stavu mačky je stále potrebná podporná terapia (napríklad IV alebo SC tekutiny, antiemetická stimulácia a chuť do jedla, analgézia, nutričná podpora prostredníctvom sondy, antimikrobiálne látky na sepsu). Mačky s uveitídou môžu vyžadovať topickú liečbu kortikosteroidmi a mačky s neurologickými príznakmi môžu potrebovať lieky proti záchvatom.

Obrázok 8. Bengálske mačiatko s okulárnou a neurologickou FIP pred (vľavo) a po (vpravo) liečbe remdesivirom.

Napriek tomu, že systémové používanie kortikosteroidov sa spravidla neodporúča súbežne s používaním antivirotík, u mačiek so silným podozrením na sekundárne imunitne sprostredkované ochorenie v dôsledku FIP (napríklad imunitne sprostredkovaná hemolytická anémia) je možné zvážiť krátkodobé podávanie kortikosteroidov.

Miera úspečnosti liečby je vysoká – 80% až 95% (Malik, osobná komunikácia; obrázok 8) – a preto máme dôvod byť optimistickí pri diskusii o liečbe s klientmi, aj keď si uvedomujeme záväzok a súvisiace náklady a potenciál relapsu.

Zvýšenie úspešnosti liečby

Liečba je dlhá a remdesivir môže byť pri aplikácii injekcie bolestivý. Liek sa po otvorení skladuje v chladničke a pred injekciou sa má zohriať na izbovú teplotu. Veľkosť ihly môže ovplyvniť nepohodlie; pre niektorých pacientov môže byť výhodnejšie rýchlejšie injekčné podanie „zelenej“ ihly (21G) s väčším priemerom, zatiaľ čo iným prospeje „oranžová“ (25G) ihla s menším priemerom. Na každú injekciu sa má použiť nová ihla.

Niektoré mačky budú musieť denne chodiť na aplikáciu injekcie na kliniku každý deň. Gabapentín alebo trazodón (oba v dávke 50 mg až 100 mg orálne na mačku), podávané dve hodiny pred termínom na zníženie úzkosti a bolesti, môžu niektorým mačkám prospieť. Iné mačky môžu potrebovať dávku buprenorfínu (0,02 mg/kg až 0,03 mg/kg transmukozálne alebo IM na klinike pred liečbou).

Na zníženie nepohodlia je možné miesto vpichu ostrihať a 45 až 60 minút pred injekciou aplikovať lokálny anestetický krém EMLA. Zdá sa, že tolerancia injekcie sa medzi jednotlivými mačkami líši.

Remdesivir pri liečbe FIP


Dávkovanie

  • FIP s výpotkami (tj ascites a/alebo pleurálny výpotok), ale bez akéhokoľvek očného alebo neurologického postihnutia: 7 mg/kg8mg/kg jedenkrát denne.
  • FIP s okulárnymi príznakmi (to znamená uveitídu alebo iné postihnutie oka, ale bez neurologického postihnutia): 10 mg/kg jedenkrát denne.
  • FIP s neurologickými príznakmi: 12 mg/kg15mg/kg jedenkrát denne.

Spôsob podávania

  • Väčšina prípadov: SC injekcia do voľnej kože medzilopatkovej oblasti.
  • Veľmi ťažké prípady: 10mg/kg sa môže spočiatku podávať intravenóznou infúziou (tj. zriediť v 10 ml fyziologického roztoku a podávať pomaly počas 10 až 20 minút), aby sa dosiahol rýchly antivírusový účinok; to môže byť prevedené po troch až štyroch dňoch na SC injekciu, akonáhle mačka začne jesť a zlepšuje sa jej zdravotný stav. Poznámka: po intravenóznej aplikácii sa u niektorých mačiek na niekoľko hodín môže dostavť depresia.

Dĺžka liečby

  • Treba počítať s liečbou v trvaní minimálne 84 dní (tj. 12 týždňov). Táto doba je založená na klinickej štúdii s GS-441524 a neoficiálnom použití remdesiviru na minimalizáciu pravdepodobnosti relapsu FIP.
  • Po 84 dňoch sa má liečba ukončiť iba vtedy, ak je pacient klinicky v poriadku a abnormálne laboratórne parametre sa vrátili do normálu.
  • Ak je reakcia na liečbu len čiastočná alebo neuspokojivá, môže byť potrebné predĺženie liečby.

Monitorovanie

  • V prvých dňoch pozorne sledujte klinické príznaky:
    – Zlepšenie by malo byť rýchle, v priebehu niekoľkých dní, s nárastom hmotnosti a zlepšením klinických príznakov.
    – Zvážte verifiikáciu diagnózy, ak nie je zaznamenané žiadne zlepšenie (s ohľadom na nasledujúce symptómy):
    Efúzie (obzvlášť pleurálne) sa môžu na jeden až dva dni zhoršiť na začiatku liečby a môžu vyžadovať terapeutickú torakocentézu alebo abdominocentézu. Zdá sa, že k tomu dochádza najčastejšie po IV liečbe. Zvážte monitorovanie raz alebo dvakrát denne pomocou ultrazvuku.
    Neurologické príznaky sa môžu spočiatku objaviť alebo zhoršiť v prvých dňoch liečby. To môže zahŕňať rozvoj záchvatov, ktoré môžu vyžadovať lekársku starostlivosť (napríklad levetiracetam 20 mg/kg až 30 mg/kg každých osem hodín).
  • Váha by mala byť pravidelne kontrolovaná a dávky podľa toho upravované.
  • Monitorujte PCV, celkové proteíny (albumín a globulín), bilirubín a ďalšie abnormálne parametre, kým sa vrátia do normálu. Frekvencia monitorovania sa medzi veterinármi líši; spravidla sa vykonáva mesačné hodnotenie biochémie a hematológie, ale malo by sa prispôsobiť financiám klienta a reakcii a správaniu mačky.
  • Sérové ​​globulíny sa môžu spočiatku zvyšovať, ale každá hyperglobulinémia zvyčajne ustúpi do 12. týždňa.
  • Uvádza sa, že remdesivir spôsobuje u ľudí reno/hepatotoxicitu, ale tie boli pozorované iba pri vyšších dávkach našimi austrálskymi kolegami, ktoré ustúpili, keď bola dávka znížená. *V závislosti od reakcie môžu byť potrebné vyššie dávky. Použitie nižších dávok na zníženie nákladov môže zvýšiť pravdepodobnosť zlyhania liečby. Upozorňujeme, že tieto odporúčania pre dávkovanie sa môžu meniť v závislosti od rastúceho množstva údajov a klinických skúseností veterinárov používajúcich tento liek. Odporúča sa konzultácia s odborníkom na mačky alebo internú medicínu, aby sa prediskutoval individuálny prípad a vhodné dávkovanie.

Ďalšia liečba

Vedci skúmajú priaznivé účinky imunostimulantov a/alebo iných antivírusových liekov, ako sú interferóny alebo meflochín, akonáhle je liečba remdesivirom ukončená, alebo ak sa injekcie považujú za príliš bolestivé. Väčšina doposiaľ publikovaných štúdií sa zamerala na použitie samotných antivirotík.

Poďakovania

Autori chcú poďakovať austrálskym kolegom Davidovi Hughesovi, Rebecce Bradyovej a Richardovi Malikovi za zdieľanie svojich skúseností s liečbou remdesivirom u mačiek s FIP. Ďakujeme aj Séverine Tasker a profesorke Gunn-Moore za pripomieky k článku.

Potrebujete poradiť s liečbou FIP?

Stephanie Sorrell a Danièlle Gunn-Moore z University of Edinburgh budú robiť nábor prípadov s cieľom sledovať reakciu mačiek vo Veľkej Británii na remdesivir, ďalšie informácie budú čoskoro nasledovať.

Ak je medzitým potrebná rada ohľadom diagnostiky a liečby suspektného prípadu FIP, pošlite e-mail na adresu fipadvice@gmail.com

Referencie

  • Dickinson PJ, Bannasch M, Thomasy SM, Murthy VD, Vernau KM, Liepnieks M, Montgomery E, Knickelbein KE, Murphy B and Pedersen NC (2020). Antiviral treatment using the adenosine nucleoside analogue GS-441524 in cats with clinically diagnosed neurological feline infectious peritonitis, Journal of Veterinary Internal Medicine 34(4): 1,587-1,593.
  • Kim Y, Liu H, Galasiti Kankanamalage AC, Sahani Weerasekara S, Hua DH, Groutas WC, Chang K and Pedersen NC (2016). Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor, PLOS Pathogens 12(3): e1005531.
  • Murphy BG, Perron M, Murakami E, Bauer K , Park Y, Eckstrand C, Liepnieks M and Pedersen NC (2018). The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies, Veterinary Microbiology 219: 226-233.
  • Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM and Chang K-O (2018). Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis, Journal of Feline Medicine and Surgery 20(4): 378-392.
  • Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M and Liu H (2019). Efficacy, and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis, Journal of Feline Medicine and Surgery 21(4): 271-281.
  • Tasker S and members of the European Advisory Board for Cat Diseases (2021). Feline infectious peritonitis guidelines, www.abcdcatsvets.org/feline-infectious-peritonitis
sk_SKSK