Záhadný nový typ kameňa u mačiek

Originálny článok: Mysterious New Stone Type In Cats

Krátka správa o výskyte nezvyčajných močových kameňoch obsahujúcich GS441524.
Obrázok 1: Mačacie urolity

V období od januára do apríla 2023 dostalo Urolitové centrum v Minnesote tri zásielky atypických kameňov (obrázok 1). Všetky tri vzorky boli získané od mačiek. Všetky tri mačky boli mladšie ako 1 rok. Mačky pochádzali zo Severnej a Južnej Ameriky. V každom prípade bol infračervený spektrografický vzor kameňov identický. Močové kamene zvyčajne obsahujú veľké množstvo fosforu, vápnika a horčíka. V týchto prípadoch sa elektrónovou disperznou spektroskopiou zistil vysoký podiel dusíka, uhlíka a kyslíka.

Záhada vyriešená. Keď sme sa opýtali na ich anamnézu, všetkým trom mačkám bola diagnostikovaná mačacia infekčná peritonitída. Všetky tri boli liečené buď liekom Remdesivir, alebo jeho metabolitom GS-441524. Vyžiadali sme si vzorky ich antivírusových liekov na analýzu. Antivírusové lieky boli spektrograficky zhodné (obrázok 2). Kamene boli zložené z GS-441524.

Obrazok 2: FT-IR spektroskopia močového kameňa pacienta a referenčnej vzorky GS-441524

Po podaní sa GS-441524 vylučuje predovšetkým močom. Hoci je GS-441524 veľmi dobre rozpustný v organických rozpúšťadlách, ako je DMSO (10-59 mg/ml), je málo rozpustný vo vodných roztokoch, ako napríklad vo vode (0,0004 až 0,1 mg/ml). Jeho obmedzená rozpustnosť robí z GS-441524 hlavného kandidáta na tvorbu kameňov. Pozorovanie močových príznakov u mačiek, ktoré dostávajú Remdesivir alebo GS-441524, je indikáciou na hľadanie kameňov. Pozorovanie atypickej kryštalúrie alebo urolitov môže byť indikáciou na obmedzenie dávky lieku (ak je to možné) a zvýšenie spotreby vody, aby sa minimalizovala tvorba kameňov.

Passhaei Y. Analyical methods for the determination of Remdesivir as a promising antiviral candidate drug for the COVID-19 pandemic. Drug Discoveries and Therapeutics. 2020;14:273-281

Wei D. et al. Potency and pharmacokinetics of GS-441524 derivatives against SARS-CoV-2. Bioorg Med Chem.2021;46:116364

2023 – Neurologická a okulárna FIP

Pôvodný článok: 2023 – NEUROLOGICAL OCULAR FIP
Publikovaný 4.1.2021, aktualizovaný 10.2.2023, Aktualizácia prekladu 8.3.2023

Základné fakty

Dr. Pedersen

Čo je to FIP? – FIP je spôsobená bežným a zväčša neškodným črevným koronavírusom, podobným tým, ktoré spôsobujú prechladnutie u ľudí a hnačku u žriebät, teliat a hydiny. Väčšina mačiek je infikovaná mačacím enterickým koronavírusom (FECV) vo veku približne 9 týždňov a môže byť opakovane infikovaná pred dosiahnutím veku 3 rokov, keď sa cykly infekcie stávajú menej častými. Špecifické mutácie, ktoré umožňujú vírusu FECV uniknúť z buniek vystieľajúcich dolnú časť čreva a infikovať najzákladnejšiu bunku imunitného systému, makrofág, sa vyskytnú približne v 10 % prípadov infekcií. Táto makrofágová infekcia je však eliminovaná u všetkých mačiek s výnimkou 0,3 – 1,4 % jedincov. Predispozičné podmienky, ktoré vedú k ochoreniu u tejto malej časti mačiek, zahŕňajú mladý vek, genetickú náchylnosť, pohlavie, preplnenosť, zlú výživu a množstvo stresujúcich udalostí v prostredí. Miesto počiatočného výskytu ochorenia je v lymfoidnom tkanive v dolnej časti tenkého čreva, slepom čreve a proximálnom hrubom čreve. Infikované makrofágy opúšťajú tieto prvotné miesta ochorenia a migrujú lokálne a v krvnom riečisku do malých žíl vo výstelke peritoneálnej dutiny, uveálneho traktu oka, ependymu a mozgových blán a chrbtice. Príznaky ochorenia sa prejavia v priebehu niekoľkých dní, niekoľkých týždňov, niekedy mesiacov a zriedkavo aj roka alebo dlhšie. Forma ochorenia, ktorá sa prejaví, sa označuje jednoducho ako vlhká (efuzívna) alebo suchá (neefuzívna). Tieto dve formy sú ľahko rozlíšiteľné, hoci môžu existovať aj prechodné formy medzi nimi. Niektoré mačky môžu mať príznaky suchej FIP, ale neskôr sa u nich vyvinie vlhká FIP, alebo naopak. Celkovo sa približne u dvoch tretín mačiek vyskytuje vlhká FIP a u jednej tretiny suchá FIP. Dĺžka trvania ochorenia do úmrtia, zvyčajne v dôsledku eutanázie, bola v minulosti len otázkou dní alebo týždňov. Menej ako 5 % chorých mačiek, hlavne tých s miernejšími formami suchej FIP, prežije pri najlepšej symptomatickej starostlivosti dlhšie ako jeden rok.

Prejavy a formy FIP

Klinické prejavy FIP – Klinické prejavy vlhkej (tabuľka 1) a suchej (tabuľka 2) FIP sa líšia podľa miesta (miest) v tele, kde infikované makrofágy skončia a spôsobia zápal. Intenzita a charakter zápalu sú zodpovedné za formu ochorenia. Vlhká FIP je akútnejšia a ťažšia forma FIP a je charakterizovaná hromadením zápalovej tekutiny buď v brušnej dutine a/alebo v hrudnej dutine. Postihnutie centrálneho nervového systému (CNS) a očí je pri vlhkej forme FIP pomerne zriedkavé (tabuľka 1). Suchá forma FIP nie je charakterizovaná difúznym zápalom a výtokom tekutiny, ale skôr menej početnými a viac tumorom podobnými léziami (t. j. granulómami) v orgánoch (napr. v obličkách, slepom čreve, hrubom čreve, pečeni, pľúcach, lymfatických uzlinách) v brušnej alebo hrudnej dutine alebo v očiach a mozgu (tabuľka 2). Zatiaľ čo mozog a/alebo oči sú postihnuté len v 9 % prípadov vlhkej formy, neurologické a/alebo očné ochorenie je hlavným klinickým príznakom u 70 % mačiek so suchou formou FIP.

TABUĽKA 1. VARIABILITA KLINICKÝCH PRÍZNAKOV EFÚZNEJ (VLHKEJ) FIP U MAČIEK PITVANÝCH NA UC DAVIS

Príznaky spojené s:výskyt (%)
Peritoneálna dutina58%
Peritoneálna a pleurálna dutina22%
Pleurálna dutina11%
Peritoneálna dutina, oči2,8%
Peritoneálna dutina, CNS *1,9%
Peritoneálna a pleurálna dutina, CNS0,9%
Peritoneálna a pleurálna dutina, oči0,9%
Pleurálna dutina, CNS, oči0,9%
Peritoneálna dutina, CNS, oči0,9%

*CNS – Centrálny nervový systém (mozog, chrbtica)

TABUĽKA 2. VARIABILITA KLINICKÝCH PRÍZNAKOV NEEFÚZNEJ (SUCHEJ) FIP U MAČIEK PITVANÝCH NA UC DAVIS

Príznaky spojené s:výskyt (%)
Peritoneálna dutina30%
CNS22%
Oči14%
CNS a oči8%
Peritoneálna dutina, oči7%
Peritoneálna a pleurálna dutina4%
Peritoneálna a pleurálna dutina, CNS3%
Peritoneálna a pleurálna dutina, oči2%
Peritoneálna dutina, CNS, oči2%
Pleurálna dutina1%

Hematoencefalická a hematookulárna bariéra

Základné fakty – Oko a centrálny nervový systém (CNS) sú chránené pred škodlivými látkami bariérami typu krv-oko (hematookulárna bariéra) a krv-mozog (hematoencefalická bariéra). Tieto bariéry majú veľký evolučný význam, pretože chránia funkcie mozgu a očí pred účinkami systémových toxínov a infekčných agensov. Takéto bariéry sa vyvíjali milióny rokov pozitívnym výberom tých najzdatnejších jedincov. Hematoencefalická bariéra u mačiek neprepustí asi 80% väčšiny liekov, zatiaľ čo hematookulárna asi 70%. Preto, ak daná dávka liečiva, ako je GS-441524, dosiahne efektívnu hladinu v krvi (plazme) 10 μM, hladiny v mozgu (mozgomiešnom moku) budú iba 2 μM a hladina v oku (komorovej vode) iba 3 μM. Vyššie hladiny sa však pravdepodobne dosahujú v zapálených tkanivách a budú klesať, keď zápal ustúpi. Toto môže byť jedno z vysvetlení rýchleho zlepšenia, ktoré sa často pozoruje v prvých dňoch liečby.

Je potrebné vziať do úvahy niekoľko ďalších aspektov týchto dvoch krvných bariér. Po prvé, ich účinnosť nepriepustnosti nežiadúcich látok sa u jednotlivcov líši. Po druhé, účinnosť tejto bariéry sa znižuje v zapálených tkanivách a zvyšuje sa, keď zápal ustúpi. To je dobré pre liečbu v počiatočných štádiách ochorenia, ale zlé pre liečbu v konečných štádiách, keď zápal zmizne a zostane iba vírus. Po tretie, neexistujú jednoduché, bezpečné alebo účinné prostriedky na oslabenie týchto bariér a jediný spôsob, ako zvýšiť hladinu liečiva v mozgu alebo v očiach, je zvýšiť ich hladinu v krvnej plazme podaním vyššej dávky, či už perorálne alebo parenterálne.

Ako tieto bariéry ovplyvňujú formy FIP – Paradoxné je, že okulárne a neurologické formy FIP sú tiež dôsledkom tých istých bariér, ale v tomto prípade u neurologickej a/alebo okulárnej FIP je hlavným problémom vstup protilátok a imunitných lymfocytov. Fenomén neurologického ochorenia po bežnej systémovej vírusovej infekcii je dobre známy u ľudí aj zvierat. Typickým príkladom je polio-encefalomyelitída u ľudí a psinka u psov. Vírus poliomyelitídy (detskej obrny) je bežným črevným patogénom a zvyčajne spôsobuje nevýraznú alebo miernu črevnú infekciu. U niektorých ľudí však vírus prenikne aj do mozgu a miechy. Ľudia vytvoria silnú systémovú imunitnú reakciu na vírus obrny, ktorá je vysoko efektívna pri eliminácii vírusu vo všetkých častiach tela, okrem nervového systému, kde sú prekážkou imunity práve limity hematoencefalickej bariéry. U týchto nešťastníkov sa vyvinie klasická neurologická forma infekcie. Podobný jav sa vyskytuje aj u psinky. Vírus psinky, ktorý úzko súvisí s ľudským vírusom osýpok, spôsobuje u mladých psov akútnu respiračnú infekciu, ktorá sa prejavuje 7-14 dní po expozícii a trvá jeden až dva týždne. Väčšina z týchto psov sa úplne zotaví, ale u časti sa o tri alebo viac týždňov vyvinie neurologické ochorenie. Táto vysoko smrteľná sekundárna forma psinky je spôsobená vírusom, ktorý z tela unikol do mozgu a miechy počas respiračnej fázy infekcie a je chránený pred imunitným systémom hostiteľa hematoencefalickou bariérou.

Rozdelenie ochorenia medzi CNS a ostatné časti tela môže tiež vysvetľovať, prečo sú krvné testy málokedy abnormálne u mačiek s primárnym neurologickým ochorením alebo u tých, ktoré relapsovali k týmto formám počas alebo po liečbe ne-neurologických foriem FIP. Ukazuje sa, že zápal na privilegovaných miestach, ako je CNS, nemusí vyvolať systémovú zápalovú reakciu a nemusí spôsobiť významné zmeny v hematológii, ani zvýšenie celkového proteínu a globulínu a zníženie pomeru albumínu a globulínu A:G.

Predbežná diagnostika očnej a neurologickej FIP

Predbežná diagnóza – Očné a neurologické ochorenia sú oveľa menej časté u mačiek s vlhkou ako so suchou FIP (tabuľky 1, 2). Vyskytujú sa aj v primárnej a sekundárnej forme. Primárne ochorenie predstavuje približne jednu tretinu prípadov suchej FIP (tabuľka 2) a lézie mimo očí a centrálneho nervového systému (CNS) buď nie sú prítomné, alebo nie sú ľahko rozoznateľné. Sekundárne neurologické a očné formy FIP sa stávajú oveľa častejšími v dôsledku liečby antivirotikami a vyskytujú sa buď v priebehu počiatočnej liečby bežných extra-okulárnych/ CNS foriem, alebo vo forme relapsu počas 12-týždňového obdobia pozorovania po liečbe.

Počiatočné podozrenie na neurologickú a/alebo okulárnu FIP je založené na veku, pôvode a prítomných klinických príznakoch. FIP sa vyskytuje najmä u mačiek mladších ako 7 rokov, tri štvrtiny z nich mladších ako 3 roky a s najvyššou incidenciou medzi 16 týždňami a 1,5 rokom. Bežnými príznakmi pri okulárnej aj neurologickej FIP boli spomalený rast u mačiatok a dospievajúcich mačiek, úbytok hmotnosti u dospelých a neurčité príznaky zlého zdravotného stavu často spojené s horúčkou.

Má sa za to, že diagnóza FIP, najmä suchej formy, je zložitá. Predbežnú diagnózu je však pomerne ľahké stanoviť vzhľadom na stereotypnú signalizáciu, klinickú anamnézu a fyzikálne nálezy a zriedkavosť zámeny ochorení v skupine s najvyšším rizikom FIP. Neurologické a/alebo očné formy FIP sa môžu zamieňať so systémovou toxoplazmózou mačiek, preto sa veľa mačiek s týmito formami FIP testuje na toxoplazmózu a lieči klindamycínom. Systémová toxoplazmóza je však mimoriadne zriedkavé ochorenie mačiek, najmä v porovnaní s FIP. FIP sa dá ľahko rozlíšiť podľa pôvodu mačky (chovná stanica, pestúnska/záchranná stanica, útulok), signalizácie (vek, pohlavie, plemeno) a základných výsledkov krvných testov. Hlboké plesňové infekcie (kokcidioidomykóza, blastomykóza, histoplazmóza) môžu spôsobiť očné a niekedy aj neurologické príznaky podobné FIP, ale sú stále zriedkavé aj v ich endemických oblastiach. Lymfóm môže byť tiež diferenciálnou diagnózou suchej FIP, ale toto ochorenie je zvyčajne sporadické a vyskytuje sa u starších mačiek. Viaceré vrodené poruchy sa tiež môžu prejavovať progresívnymi neurologickými príznakmi, ale tie sa vyskytujú hlavne u mladších mačiek a nie sú spojené so zápalovými prejavmi infekčných ochorení, ako je FIP, toxoplazmóza alebo hlboké mykózy.

Príznaky okulárnej FIP – Očné ochorenie sa vyskytuje ako jediný alebo primárny príznak asi u jednej tretiny mačiek so suchou FIP a v dvoch tretinách prípadov v spojení s extra okulárnymi léziami (tabuľka 2). Ochorenie oka je neobvyklým prejavom u mačiek, u ktorých sa pôvodne vyskytovala vlhká FIP (tabuľka 1). Počiatočným klinickým prejavom je jednostranná alebo obojstranná predná uveitída prejavujúca sa zmenou farby dúhovky, zakalením a zvyškami flokulantu v prednej komore, keratickými zrazeninami na zadnej strane rohovky a anizokóriou (nerovnaká veľkosť zreníc). U časti mačiek je sprievodným znakom retinitída (zápal sietnice), a prejavuje sa fokálnou tapetálnou hyporeflektivitou spojenou s lokálnym zápalom a mikrohemoragiou (drobné krvácanie) sietnicových ciev. U menej ako jednej tretiny mačiek s očnou FIP sa tiež prejavia neurčité alebo zjavné neurologické príznaky (tabuľka 2). V niektorých prípadoch sa vyskytuje glaukóm, zvyčajne jednostranný, a panopthalmlitis (zápal všetkých vrstiev oka), čo môže viesť k enukleácii (odstráneniu oka).

Príznaky neurologickej FIP – rovnaké prodromálne príznaky boli často pozorované u mačiek s prejavmi neurologického ochorenia, ale zahŕňajú neurčité príznaky demencie, agresívne správanie, nutkavé olizovanie neživých predmetov a iných mačiek, nechuť skákať na vyvýšené miesta, spontánne zášklby svalov, abnormálne hltacie pohyby a občasné záchvaty. Medzi neskoršie príznaky patrí zadná ataxia, neschopnosť vyskočiť na vysoké miesta, fyzická a sluchová hyperestézia, hyperreflexia a cerebelárne-vestibulárne príznaky (krížový extenzorový reflex, strata vedomej propriocepcie), záchvaty a narastajúcu nekoordinovanosť a demenciu. Príznaky postihnutia chrbtice často zahŕňajú fekalnu a/alebo močovú inkontinenciu, paralýzu chvosta a zadných končatín, bolesti v dolnej časti chrbta. Katastrofické decerebrálne príznaky sa spájajú aj s náhlou a závažnou herniáciou mozgu do miechy.

Konfirmačné testy okulárnej a neurologickej FIP

Základné fakty – Definitívna diagnóza FIP je založená na identifikácii prítomnosti vírusového antigénu alebo RNA v makrofágoch v typických výpotkoch alebo léziách pomocou PCR alebo imunohistochémie (IHC). Definitívna diagnóza môže byť u mnohých mačiek ťažký a nákladný proces a PCR/IHC môžu byť falošne negatívne až u 30% vzoriek. Vo väčšine prípadov však nie je potrebné kvôli diagnóze ísť až tak ďaleko. Na stanovenie diagnózy môže stačiť rozsiahly súhrn historických, fyzikálnych a menej priamych laboratórnych abnormalít.

Laboratórne príznaky – Diagnózu okulárnej a neurologickej FIP možno obvykle určiť spojením charakteristických zmien v mozgovomiešnom moku (CSF) a komorovej vode (vysoký obsah bielkovín, vysoké počty buniek, neutrofilov, lymfocytov, makrofágov) s príznačnými abnormalitami v anamnéze a histórii, fyzikálnymi vyšetreniami, CBC (hematológia), biochémia, alebo MRI. Celková koncentrácia proteínov je často zvýšená (priemer, 9,4 g/l; medián 3,6 g/l; rozsah 0,85–28,8 g/l), ako aj zvýšený počet erytroblastov (NRBC) (priemer 196/μL; medián 171/μL; rozsah 15–479/μL). Neutrofily sú u väčšiny mačiek dominantnou zápalovou bunkou, zatiaľ čo lymfocyty a zmes neutrofilov a lymfocytov sú pozorované v menšom pomere.

MRI je užitočný nástroj na diagnostiku neurologickej FIP, najmä v kombinácii s bežnou signalizáciou/anamnézou, typickými klinickými príznakmi a analýzou CSF. MRI identifikovala tri odlišné klinické syndrómy u 24 mačiek s pitvou potvrdenou neurologickou FIP (Rissi DR, JVDI, 2018,30: 392–399): 1) myelopatia T3-L3, 2) centrálny vestibulárny syndróm a 3) multifokálne ochorenie CNS. Vo všetkých prípadoch boli detekované abnormality MRI vrátane zvýšenia meningeálneho kontrastu, zvýšenia ependymáleho kontrastu, ventrikulomegálie, syringomyelie a herniácie foramen magnum. 15 prípadov vykazovalo hydrocefalus (10 prípadov), cerebelárnu herniáciu cez foramen magnum (6 prípadov), opuch mozgu so sploštením gyri (2 prípady) a akumuláciu fibrínu v komorách (2 prípady) alebo leptomeningy (1 prípad). Histologicky boli pozorované 3 hlavné odlišné distribúcie neuropatologických zmien, a to periventrikulárna encefalitída (12 prípadov), rombencefalitída (8 prípadov) a difúzna leptomeningitída s povrchovou encefalitídou (6 prípadov).

V jednej štúdii bol najužitočnejším antemortemovým (predsmrtným) indikátorom neurologickej FIP pozitívny titer IgG anti-koronavírusových protilátok v CSF. Titer protilátok v CSF 1: 640 alebo vyšší sa našiel iba u mačiek s FIP a RT-PCR bol vždy pozitívny. Počiatočné štúdie naznačili, že protilátka prítomná v CSF bola produkovaná, aspoň čiastočne, v CNS. V inej štúdii však bola protilátka zistená iba u mačiek so sérovými titrami 1:4096 až 1:16384 a vedci dospeli k záveru, že protilátky v CSF boli získané pasívne. Pri ďalšom pokuse merať lokálnu produkciu protilátok v CNS u mačiek s FIP sa meral albumínový kvocient a IgG index, aby sa zistilo, či proteíny v CSF pochádzajú z krvi alebo sú lokálneho pôvodu. Ani albumínový kvocient, ani IgG index neidentifikovali vzor zhodný s intratekálnou syntézou IgG u mačiek s CNS formou FIP. Záverom sa zdá, že protilátky proti koronavírusu vstupujú do CSF ​​vo vysokých hladinách, keď sú tiež vo vysokých hladinách v sére. Titre sérových koronavírusových protilátok podľa IFA u mačiek s okulárnou a neurologickou FIP skutočne patria k najvyšším pri akejkoľvek forme FIP.

PCR test realizovaný zo vzorky CSF a komorovej vody s vyšším počtom proteínov a buniek, je pre okulárnu a neurologickú FIP vysoko citlivý a špecifický. Odporúča sa však, aby sa použil iba PCR test zameraný na gén FCoV 7b, a nie menej citlivý PCR na FIPV špecifické mutácie v géne S. Tento gén FCoV sa používa na PCR často, pretože sa jedná o najpočetnejší vírusový prepis a je teda pravdepodobné, že bude detekovaný. V niektorých PCR testoch bol cieľom gén FCoV M, pretože je vysoko konzervovaný u všetkých izolátov, ale transkripty sú menej početné ako v prípade génu 7b.

Imunohistochémia na bunkách odobratých z miešnej tekutiny je rovnako citlivá a špecifická ako PCR na vzorkách s vyšším počtom bielkovín a buniek. Antigén je lokalizovaný špecificky do buniek podobným makrofágom.

Rýchla reakcia FIP na GS-441524 sa používa ako konfirmačný test stále častejšie. Mal by sa avšak použiť iba v prípadoch, že existujú aj iné podporné dôkazy diagnózy FIP. Pravdou ale je, že momentálne nie sú asi k dispozícii žiadne iné jednoduchšie alebo lacnejšie prostriedky na uľahčenie diagnostiky.

Liečba neurologickej a okulárnej FIP

Ťažkosti so získaním povolenia pre veterinárne použitie humánnych liekov – Farmaceutické spoločnosti ako Gilead Sciences a Merck odmietli kompromitovať vývoj a schvaľovacie procesy svojich sľubných liekov proti koronavírusom, ako sú GS-5734 (Veklury®/Remdesivir) a EIDD-2801 (Molnupiravir®) alebo ich príslušné biologicky aktívne formy GS-441524 a EIDD-1931. Zo zúfalstva sa majitelia mačiek po celom svete obrátili na čínsky čierny trh, aby získali lieky ako GS-441524. Tento čierny trh nebol úplne motivovaný ziskom – problém FIP v Číne tiež narastal súčasne s rastúcim počtom domácich mačiek. Navyše, aj keby spoločnosť Gilead Sciences povolila použitie GS-441524 u zvierat, okamžitá potreba efektívnej liečby FIP predbehla oficiálny proces schvaľovania a komercializácie, ktorý trvá mnoho rokov. Chemické spoločnosti a tucet alebo viac predajcov injekčných a perorálnych produktov dokázali uspokojiť dopyt po GS desaťtisícov zúfalých majiteľov mačiek po celom svete. Veterinári sa zdráhali vyvinúť tlak na humánne farmaceutické spoločnosti, ako je Gilead, aby pre ich sľubné antivírusové lieky udelili aj práva pre použitie u zvierat, stále viac sa však podieľajú na pomoci majiteľom pri liečbe. Ukazuje sa preto, že neschválené používanie humánnych liekov ako GS-441524, ktoré sú zúfalo potrebné aj pre veterinárne druhy, bude normou po mnoho rokov.

(Tento odstavec pochadza z pôvodného článku z 4.1.2021.)

Vírusovo špecifické inhibítory – Inhibícia vírusových génov regulujúcich špecifické štádiá infekcie a replikácie sa stala základom liečby chronických infekcií RNA vírusmi u ľudí, ako je HIV a vírus hepatitídy C. V súčasnosti sa ukázalo, že proti FIP sú účinné dve triedy antivírusových liekov. Prvá trieda pozostáva z inhibítorov syntézy RNA a zahŕňa nukleozidové analógy GS-441524 (účinná látka lieku Remdesvir) a EIDD-2801 (molnupiravir). Druhú triedu liekov tvoria inhibítory vírusových proteáz, ako sú GC376 (proliečivo GC373) a Nirmatrelvir (proliečivo nitrilovej modifikácie GC373). Inhibítory proteáz sú oveľa menej účinné pri prekonávaní hematoencefalickou a hematookulárnou bariérou ako nukleozidové analógy a neodporúčajú sa na liečbu neurologickej alebo okulárnej FIP.

Liečba s GS-441524 – GS-441524 sa stal liekom prvej voľby pre liečbu mačiek so všetkými formami FIP a na neschválenom čínskom trhu sú dostupné injekčné (SC) i perorálne formy. Perorálna absorpcia je však v porovnaní s injekčnou menej ako 50 % účinná, a preto je potrebné dvakrát vyššie dávkovanie perorálneho GS-441524. Dodávatelia perorálneho GS-441524 takmer nikdy nezverejňujú skutočnú koncentráciu GS-441524 v tabletách alebo kapsulách, ale skôr ich označujú ako ekvivalentnú injekčnú dávku. Účinnosť vstrebávania perorálneho GS má tiež hornú hranicu, čo sťažuje dosiahnutie vyšších hladín v krvi potrebných na dosiahnutie dostatočného množstva liečiva v mozgu a očiach. Preto ak sa u mačiek s očným a neurologickým ochorením dosahujú neuspokojivé výsledky aj napriek vysokým ekvivalentným dávkovaniam perorálneho GS-441524, mala by sa zvážiť výmena za injekčný GS-441524 skôr, ako sa začne uvažovať o zmene na liek, ako je molnupiravir.

Počiatočná dávka pre mačky s vlhkou alebo suchou FIP a bez príznakov očného alebo neurologického ochorenia je 4-6 mg/kg denne počas 12 týždňov, pričom u mladších a vlhkých prípadov je tendencia smerovať k spodnému koncu a suchých prípadov k hornému koncu. Mačky s očnými léziami a bez neurologických príznakov začínajú s dávkou 8 mg/kg denne počas 12 týždňov. Mačky s neurologickými príznakmi začínajú na dávke 10 mg/kg denne počas 12 týždňov. Ak sa u mačiek s vlhkou alebo suchou FIP na začiatku objavia očné alebo neurologické príznaky, prechádzajú na príslušné okulárne alebo neurologické dávky. Dávka GS sa upravuje každý týždeň, aby sa zohľadnil nárast hmotnosti. Prírastok na váhe môže byť u mnohých z týchto mačiek obrovský, buď preto, že sú na začiatku v žalostnom stav, alebo že ich rast bol spomalený. Ak počas liečby mačka nezačne priberať, považuje sa to za zlé znamenie. Počiatočná dávkovanie sa nemení, pokiaľ na to nie sú závažné dôvody, ako napríklad neúčinnosť liečby alebo sa nezlepšujú hodnoty krvných testov, zlepšovanie je veľmi pomalé, nízka úroveň aktivity, neodzneli pôvodné klinické príznaky alebo došlo k zmene formy ochorenia tým, že sa objavili aj očné alebo neurologické príznaky. Ak existujú dobré dôvody na zvýšenie dávkovania, malo by to byť vždy od +2 do +5 mg/kg denne a minimálne po dobu 4 týždňov. Ak tieto 4 týždne presahujú pôvodný 12-týždňový čas liečby, čas liečby sa predlžuje. Dá sa očakávať pozitívna reakcia na akékoľvek zvýšenie dávkovania a pokiaľ zlepšenie neuvidíte, znamená to, že dávkovanie stále nie je dostatočne vysoké, objavuje sa rezistencia na lieky, značka GS nie je taká, aká by mala byť, mačka nemá FIP , alebo sú prítomne aj iné choroby, ktoré liečbu mätú.

Jedným z najťažších rozhodnutí je určenie správneho momentu, kedy ukončiť liečbu. Aj keď niektoré mačky, často mladšie s vlhkou FIP, možno vyliečiť už za 8 týždňov a možno aj skôr, zvyčajná doba liečby je 12 týždňov. Niektoré mačky môžu dokonca vyžadovať úpravy dávkovania a ešte dlhšie obdobie liečby. Kritické hodnoty v krvi, ako je hematokrit, hladiny celkového proteínu, albumínu a globulínu a absolútny počet lymfocytov, sa zvyčajne normalizujú u mačiek predurčených na vyliečenie po 8 až 10 týždňoch, kedy často dôjde k neočakávanému zvýšeniu úrovne aktivity. Veríme, ale nie sú na to ešte dôkazy, že po 8-10 týždňoch, dôjde k vlastnej imunitnej reakcii mačky proti infekcii. Toto je situácia, ktorá nastáva pri liečbe ľudí s hepatitídou C, čo je tiež chronická infekcia vírusom RNA, ktorá si často vyžaduje antivírusovú liečbu až 12 alebo viac týždňov.

Mačky s okulárnym ochorením a bez neurologického postihnutia vykazujú rýchlu odpoveď na GS a úplné zotavenie zraku s minimálnym alebo žiadnym zvyškovým poškodením sa očakáva už za dva týždne. Mačky, u ktorých sa vyskytujú neurologické abnormality, počas liečby iných foriem FIP sa u nich vyvinie neurologické ochorenie alebo sa u nich prejavia neurologické príznaky počas 12-týždňového pozorovacieho obdobia po liečbe, sa tiež rýchlo zlepšujú, ale dávka je oveľa vyššia, doba liečby často dlhšia a miera vyliečenia o niečo nižšia. Zlyhania liečby u mačiek s neurologickou FIP sú spôsobené buď nedostatočnou dávkou, alebo vývojom liekovej rezistencie.

Bohužiaľ, neexistuje jednoduchý krvný test, ktorý by určil, kedy došlo k úplnému vyliečeniu mačky s neurologickým postihnutím. Mnohé mačky s neurologickou FIP vykazujú minimálne krvné abnormality, najmä tie s primárnou neurologickou FIP, a abnormality často do konca liečby chýbajú, aj keď v mozgu alebo mieche stále existujú reziduálne miesta zápalu. Okrem toho časť mačiek, ktoré sa vyliečia z infekcie, bude mať menšie až stredne závažné neurologické deficity, ktoré sú reziduálnymi účinkami predchádzajúceho ochorenia. Tieto skutočnosti sťažujú používanie výsledkov krvných testov alebo reziduálnych neurologických deficitov ako ukazovateľov vyliečenia alebo nedostatočnej liečby. Hoci dôkladné očné vyšetrenie môže zreteľne vylúčiť aktívne príznaky ochorenia, skutočný stav ochorenia v mozgu a mieche môže určiť len magnetická rezonancia, ideálne spolu s analýzou mozgovomiechového moku. Tieto postupy sú drahé, nie sú dostupné pre každého a nemusia poskytnúť definitívny dôkaz, že infekcia v CNS bola odstránená.

Strach z relapsov spôsobuje, že mnoho ľudí zapojených do liečby GS je príliš opatrných, pokiaľ ide o jeden parameter krvi, ktorý je trochu abnormálny (napr. mierne vysoký globulín alebo mierne nízky pomer A: G), alebo výsledky konečného ultrazvuku naznačujúce podozrivo zväčšené brušné lymfatické uzliny, malé množstvo brušnej tekutiny alebo nejasné nepravidelnosti v orgánoch, ako sú obličky, slezina, pankreas alebo črevá. Je potrebné pamätať na to, že normálny rozsah krvných hodnôt platí pre väčšinu zvierat, ale jedná sa o krivku v tvare zvona, a že sa nájde niekoľko neštandardných pacientov, ktorí budú mať hodnoty na okraji týchto kriviek. Ultrasonografisti musia vziať do úvahy stupeň patológie, ktorá sa môže vyskytnúť vo FIP postihnutom bruchu, a to, ako môžu jazvy a iné trvalé následky zmeniť normálny vzhľad u úspešne liečených mačiek. V situáciách, keď také otázky vyvstávajú, je lepšie sústrediť sa podrobnejšie na celkový obraz a nielen na jednu malú časť. Najdôležitejším výsledkom liečby je návrat k normálnemu zdraviu, ktorý má dve zložky – vonkajšie znaky zdravia a vnútorné znaky zdravia. Medzi vonkajšie znaky zdravia patrí návrat k normálnej úrovni aktivity, chuť k jedlu, primerané zvýšenie hmotnosti alebo rast a kvalita srsti. Posledné uvedené je jedným z najlepších kritérií pre zdravie mačky. Medzi vnútorné príznaky zdravia patrí návrat určitých kritických hodnôt k normálu na základe periodickej kontroly úplného krvného obrazu (CBC) a sérových chemických profilov. Najdôležitejšie hodnoty v CBC sú hematokrit a relatívny a absolútny celkový počet bielych krviniek, neutrofilov a lymfocytov. Najdôležitejšie hodnoty v sére pre chemickú analýzu (alebo sérovú elektroforézu) sú hladiny celkového proteínu, globulínu, albumínu a pomer A:G. Bilirubín je často zvýšený u mačiek s efúznou FIP a môže byť užitočný pri monitorovaní závažnosti a trvania zápalu. V paneloch CBC a v sére je veľa ďalších hodnôt a nie je nič neobvyklé, že niektoré z nich sú o niečo vyššie alebo nižšie ako normálne, a je lepšie tieto hodnoty ignorovať, pokiaľ nie sú výrazne zvýšené a spojené s klinickými príznakmi. Napríklad vysoký BUN a kreatinín, ktorý je tiež spojený so zvýšenou spotrebou vody, nadmerným močením a abnormalitami v močení. Počet strojovo počítaných krvných doštičiek je u mačiek notoricky nízky v dôsledku traumy z odberu krvi a zhlukovania krvných doštičiek a mal by sa vždy overiť manuálnym vyšetrením krvných náterov. Konečné rozhodnutie o ukončení alebo predĺžení liečby, keď ste konfrontovaní s nejasnými pochybnosťami o rôznych testovacích postupoch, by malo vždy vychádzať z vonkajších prejavov zdravia viac, ako z ktoréhokoľvek jednotlivého výsledku testu.

(Tento odstavec pochadza z pôvodného článku z 4.1.2021.)

Relapsy sa zvyčajne týkajú infekcií, ktoré unikli do centrálneho nervového systému (mozog, chrbtica, oči) počas liečby vlhkej alebo suchej FIP, ktoré nie sú sprevádzané neurologickými alebo očnými príznakmi. Dávky lieku GS-441524 používané na liečbu týchto foriem FIP sú často nedostatočné na účinné prekonanie hematoencefalickej alebo hematookulárnej bariéry. Hematoencefalická bariéra je dokonca účinnejšia ako hematookulárna bariéra, čo vysvetľuje, prečo sa očné lézie dajú vyliečiť ľahšie ako infekcie mozgu a/alebo miechy. Relapsy, ktoré sa vyskytnú v období po liečbe a ktoré sa týkajú očí, mozgu alebo chrbtice, sa zvyčajne liečia najmenej 8 týždňov pri počiatočnej dennej dávke aspoň o 5 mg/kg vyššej ako dávka použitá počas primárnej liečby (napr. 10, 12, 15 mg/kg denne). U mačiek, ktoré sa nedokážu vyliečiť z infekcie pri dávkach až 15 mg/kg denne, sa pravdepodobne vyvinul rôzny stupeň rezistencie na GS-441524. Čiastočná rezistencia môže umožniť potlačenie príznakov ochorenia, ale nie vyliečenie, zatiaľ čo úplná rezistencia sa prejavuje rôznou závažnosťou klinických príznakov počas liečby.

Rôzne skupiny zamerané na liečbu FIP vytvorili rôzne modifikácie v liečebných protokoloch. Niektoré skupiny budú liečiť s mimoriadne vysokou dávkou GS od začiatku, a nie zvyšovať dávku, keď je to indikované, alebo budú doporučovať ukončiť alebo predĺžiť liečbu vysokou dávkou počas posledných dvoch týždňov s nádejou, že to zníži riziko relapsu. Okrem GS sa často predpisuje systémový prednizolón, ale na stabilizáciu závažného ochorenia sa má používať iba dočasne. Systémové steroidy zmierňujú zápal, ale majú tendenciu maskovať priaznivé účinky GS, a ak sa používajú neprimerane dlho a vo vysokých dávkach, môžu interferovať s vývojom imunity proti FIP. Predpokladá sa, že obnovenie imunity voči FIP je dôležitou súčasťou úspešnej liečby GS. Niektorí ľudia preto obhajujú použitie interferónu omega alebo nešpecifických imunostimulantov na ďalšiu stimuláciu imunitného systému a niektorí prichádzajú ešte s ďalšími modifikáciami. Nie sú dôkazy o tom, že nasadenie liečby mimoriadne vysokou dávkou zlepší mieru vyliečenia. Rovnako interferón omega a nešpecifické imunostimulanty nemajú preukázané priaznivé účinky na FIP, či už sa podávajú ako jediná liečba alebo ako doplnok GS. Taktiež sa objavuje prax pridávania ďalšieho antivírusového liečiva, inhibítora vírusovej proteázy GC376, k liečbe GS u mačiek, u ktorých sa vyvinie rezistencia na GS, ale to si ešte vyžaduje ďalší výskum. Nakoniec je bežné, že majitelia, liečebné skupiny a veterinári pridávajú mnoho doplnkov, toník alebo injekcií (napr. B12) na zvýšenie krvotvorby alebo na prevenciu chorôb pečene alebo obličiek. Takéto doplnky sú ale málokedy nevyhnutné u mačiek s čistým ochorením FIP.

Molnupiravir (EIDD-2801) – Molnupiravir sa veľmi podobá lieku GS-441524, ale je to skôr cytidínový ako adenínový nukleozidový analóg. Široko sa používa ako perorálna liečba skorých prípadov COVID-19 u ľudí, ale v posledných 1 – 2 rokoch sa čoraz častejšie používa na liečbu mačiek s FIP. Vzhľadom na toxicitu pozorovanú u mačiek pri vyšších dávkach a zatiaľ neznáme chronické vedľajšie účinky sa najčastejšie odporúča pre mačky, u ktorých sa počas primárnej liečby vyvinula rezistencia na GS-441524 alebo u ktorých došlo k relapsu s neurologickými/očnými príznakmi po liečbe vysokými dávkami GS-441524. Našťastie má molnupiravir iný profil rezistencie ako GS-441524.

Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo stanovené na základe riadne kontrolovaných a monitorovaných terénnych štúdií, aké sa uskutočnili pre GC376 a GS-441524. Odhadovaná počiatočná dávka molnupiraviru u mačiek s FIP sa však získala na základe publikovaných štúdií bunkových kultúr in vitro EIDD-1931 a EIDD-2801 a iných laboratórnych štúdií a štúdií na experimentálnych zvieratách. Molnupiravir (EIDD-2801) má EC50 0,4 uM/µl proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je približne 1,0 uM/µl. Molnupiravir začína vykazovať bunkovú cytotoxicitu pri koncentráciách 400 µM alebo vyšších, zatiaľ čo GS-441524 je pri 400 µM bez toxicity. Oba majú podobnú perorálnu absorpciu okolo 40 – 50 %. Súčasná odporúčaná začiatočná dávka molnupiraviru pri neurologickej a očnej FIP je 8 – 10 mg/kg perorálne každých 12 hodín počas 84 dní. V závislosti od odpovede na liečbu môže byť potrebné zvýšiť ju na maximálne 15 mg/kg perorálne každých 12 hodín. Pri vyšších dávkach sa pravdepodobne vyskytne toxicita molnupiraviru indikovaná zmenami v kompletnom krvnom obraze.

Príčiny neúspešnej liečby

Nesprávne úpravy dávkovania – Je dôležité zahájiť liečbu vhodným dávkovaním a starostlivo ju sledovať pomocou pravidelných kontrol teploty, hmotnosti a vonkajších znakov zlepšenia zdravia. Panel chemickej analýzy CBC a séra, ktorý obsahuje základné hodnoty bielkovín (celkový obsah bielkovín, albumín, globulín (TP – albumín = globulín) a A:G, by sa mal robiť minimálne raz mesačne. Pokyny na úpravu dávkovania sú uvedené v časti o liečbe s GS-441524. Drahá elektroforéza sérových bielkovín neprináša oveľa hodnotnejšie informácie.

Nízka kvalita GS-441524 – GS-441524 nie je schválený pre uvedenie na trh v žiadnej krajine a jeho zdrojom je malý počet čínskych chemických spoločností, ktoré ho predávajú distribútorom ako čistý prášok. Predajcovia ho riedia na injekčné roztoky alebo pripravujú orálne formy na predaj pod svojimi obchodnými názvami. Neexistuje žiadny nezávislý mechanizmus na zabezpečenie kvality konečného produktu, ktorý sa predáva majiteľom mačiek. Napriek tomu sú hlavní poskytovatelia riedených foriem pre injekčné roztoky a/alebo orálne prípravky prekvapivo čestní a niektorí dokonca poskytujú obmedzené záruky, ak liečba niektorým z ich produktov chorobu nevylieči. Zdá sa však, že šarže predávané niektorými poskytovateľmi sú falšované a niektoré nie sú v stanovenej koncentrácii. Môže dochádzať aj k rozdielom medzi jednotlivými várkami, pravdepodobne kvôli občasným problémom s dodávkami surového GS predajcami alebo problémom s uspokojením potrieb a očakávaní majiteľa mačky. Rôzne skupiny FIP Warriors majú dobré informácie o najspoľahlivejších značkách.

Rezistencia na lieky – rezistencia na GS-441524 môže existovať už v čase stanovenia diagnózy, ale je to neobvyklé. Častejšie sa objavuje počas liečby a je spočiatku iba čiastočná a vyžaduje len vyššie dávkovanie. U niektorých mačiek sa môže stať úplnou. Rezistencia je najväčším problémom u mačiek s neurologickým ochorením, alebo sa u nich vyvinú mozgové infekcie počas liečby alebo v priebehu niekoľkých dní alebo týždňov po ukončení liečby. Mnoho mačiek s čiastočnou rezistenciou na lieky môže byť „liečených“ zo svojich príznakov ochorenia, ale relapsujú hneď po ukončení liečby, ako sa to stáva napríklad u liečby HIV. Existujú mačky, u ktorých sa darí čiastočne alebo úplne liečiť príznaky choroby FIP už viac ako rok, ale bez vyliečenia. Rezistencia sa nakoniec zhorší a zhoršia sa aj príznaky choroby, ťažkosti spojené s liečením sa stanú pre majiteľa neunosnými alebo sa majiteľovi vyčerpajú finančné zdroje.

Vedľajšie úcinky GS

Liečba GS-441524 je až neuveriteľne prostá systémových vedľajších účinkov. Môže spôsobiť mierne poškodenie obličiek u mačiek bez výrazného postihnutia obličiek, ale nevedie k skrytému ochoreniu alebo zlyhaniu obličiek. U niekoľkých mačiek sa pozorovali systémové liekové reakcie typu vaskulitídy a možno ich zameniť s reakciami v mieste vpichu. Tieto liekové reakcie sú však v miestach, kde sa injekcie neaplikujú, a často sa samy zastavia alebo dobre reagujú na krátkodobú nízku dávku steroidov. Hlavným vedľajším účinkom liečby GS je bolesť v miestach vpichu, ktorá sa líši od mačky k mačke a podľa schopností osoby, ktorá injekcie aplikuje (zvyčajne majiteľ). Zdureniny či vredy v mieste vpichu sa vyskytujú niekedy u majiteľov, ktorí nemenia miesto aplikácie dostatočne často (nezdržujte sa medzi lopatkami) a neaplikujú injekciu do svalových a nervových vrstiev pod podkožím. Odporúčam zvoliť miesta začínajúce jeden palec za lopatkami, dole od chrbta po 1 až 2 palce pred koreňom chvosta a jednu tretinu až polovicu cesty dole k hrudníku a bruchu. Mnoho ľudí používa pred injekciami na zmiernenie bolesti gabapentín. Zdurené miesta a vredy v mieste vpichu by sa mali zbaviť okolitej srsti a jemne sa čistiť 4 alebo viackrát denne sterilnými vatovými tyčinkami namočenými v domácom peroxide vodíka zriedenom v pomere 1:5. Zvyčajne nevyžadujú žiadne zložitejšie ošetrenie a vyliečia sa asi za 2 týždne.

Prognóza liečby s GS441524

Presné údaje o miere vyliečenia s GS-441524 zatiaľ nie sú k dispozícii, ale zdá sa, že je možné vyliečiť viac ako 80% mačiek s potvrdenou FIP. Zlyhanie liečby je dôsledkom nesprávnej diagnózy FIP, neprimeraného monitorovania liečby a úpravy dávkovania, komplikujúcich chorôb, nekvalitného GS, rezistencie voči GS alebo ekonomických ťažkostí. Miera vyliečenia je o niečo nižšia u mačiek s neurologickými formami FIP a u starších mačiek. Staršie mačky sú náchylnejšie na ďalšie chronické ochorenia, ktoré buď predisponujú mačky k FIP, alebo komplikujú celkový zdravotný stav.

Mačky s neurologickou FIP môžu trpieť trvalými reziduálnymi príznakmi ochorenia. To platí najviac pre mačky s postihnutím chrbtice a močovou a/alebo fekálnou inkontinenciou alebo zadnou paralýzou. Hydrocefalus a syringomyelia sú bežné komplikácie neurologickej FIP a do istej miery často pretrvávajú aj po vyliečení infekcie. Našťastie sa u väčšiny mačiek s neurologickou FIP obnoví normálna alebo takmer normálna funkcia napriek pretrvávajúcim stopám hydrocefalu a syringomyelie.

Legálna liečba FIP?

Dúfame, že čoskoro bude k dispozícii legálna forma GS-441524. Liečivo s názvom Remdesivir je najvačšou súčasnou nádejou, pretože Remdsivir sa pri intravenóznom podaní ľuďom, myšiam, primátom a mačkám okamžite rozkladá na GS. Remdesivir (Veklury®) bol plne schválený americkou FDA a podobné schválenie bude pravdepodobne nasledovať aj v ďalších krajinách. Ak je to tak, môže ho predpisovať akýkoľvek licencovaný ľudský lekár a aj veterinári. Avšak použitie Remdesiviru v USA bolo spočiatku obmedzené na konkrétnu podskupinu pacientov s Covid-19 a iba za kontrolovaných podmienok a s pokračujúcim zberom údajov. Kým nebudú zrušené všetky obmedzenia, nebude ľahko dostupný ani pre ľudské použitie. Nemáme skúsenosti s liečením mačiek Remdesivirom namiesto GS-441524. Dávka Remdesiviru na molárnom základe je teoreticky rovnaká ako GS-441524. GS-441524 má molekulovú hmotnosť 291,3 g/M, zatiaľ čo Remdesivir je 442,3 g/M. Preto by na získanie 1 mg GS-441524 bolo potrebných 442,3/291,3 = 1,5 mg Remdesiviru. Riedidlo pre Remdesivir je významne odlišné od riedidla použitého pre GS-441524 a určené na intravenózne použitie u ľudí. Ako sa zriedený Remdesivir bude správať, keď sa podáva subkutánne injekčne počas 12 alebo viac týždňov dennej liečby, nie je známe. U ľudí boli pozorované mierne príznaky pečeňovej a obličkovej toxicity. GS-441524 spôsobuje miernu a progresívnu renálnu toxicitu u mačiek, ale bez zjavnej pečeňovej toxicity. Nie je isté, či je renálna toxicita pozorovaná u ľudí, ktorým sa podáva Remdesivir, spôsobená jeho účinnou látkou (tj. GS-441524) alebo chemickými prísadami určenými k zvýšeniu antivírusovej aktivity.

Schvaľovací proces GC376 pre mačky (a ľudí) prebieha v spoločnosti Anivive, ale potrvá ešte dva alebo viac rokov. GC376 je inhibítor vírusovej proteázy a na rozdiel od GS-441524, ktorý inhibuje počiatočné štádium replikácie vírusovej RNA, GC376 zabraňuje replikácii vírusu v konečnom štádiu jeho replikačného procesu. Preto je nepravdepodobné, že bude mať významný synergický vírusový inhibičný účinok a jeho použitie v kombinácii bude oveľa dôležitejšie pri inhibícii liekovej rezistencie (napríklad v kombinovanej antivírusovej liečbe HIV/AIDS).

Nevhodné použitie GS-441524

Niektorí veterinárni vedci v spolupráci s hlavným čínskym dodávateľom GS-441524 obhajujú jeho použitie na elimináciu infekcie mačacím enterickým koronavírusom (FECV). Dôvodom je zabrániť výskytu mutantného vírusu spôsobujúceho FIP (FIPV) a zabrániť tak FIP. Podporu tomuto prístupu poskytli obmedzené a veľmi sporné štúdie s útulkovými mačkami, ktoré boli prirodzene vystavené FECV. Aj keď je tento prístup na prvý pohľad atraktívny, jedná sa o veľmi nesprávne použitie GS-441524 u mačiek. Infekcia FECV sa pôvodne vyskytuje u mačiatok a nie je spojená so žiadnymi významnými príznakmi choroby. Vylučovanie trvá týždne, mesiace a v niektorých prípadoch neobmedzene, ale u väčšiny mačiek nakoniec prestane, keď sa vytvorí imunita. Väčšina mačiek starších ako tri roky už nebude tento vírus vylučovať. Je vysoko nepravdepodobné, že liečba GS-441524 povedie k trvalejšej imunite, než aká je pozorovaná v prírode, a že eliminuje cykly infekcie a reinfekcie u mladších mačiek.

Aj keď naše súčasné poznatky o infekcii FECV tento prístup vážne spochybňujú, existujú ešte závažnejšie dôvody, prečo v budúcnosti nebudeme liečiť zdravé mačky GS-441525 alebo inými antivírusovými látkami. Z publikovaných štúdií už vieme, že niektoré primárne kmene FIPV sú rezistentné voči GS-441524 (a GC376). Vieme tiež, že rezistencia na lieky sa stala dlhodobým problémom u mačiek s dlhodobou liečbou na GS-441524, najmä pri neurologických formách FIP. Preto použitie liekov ako GS-441524 u veľkej populácie zdravých mačiek nepochybne povedie k rozšírenej rezistencii na enzootické FECV. Táto rezistencia sa tiež prejaví u mutácií FECV spôsobujúcich FIP (FIPV) z týchto populácií, čo znemožní použitie GS-441524 u čoraz viac mačiek s FIP. Veterinárna medicína bohužiaľ nemá prostriedky humánnej medicíny, nie je stimulovaná potenciálnym ziskom, čo by viedlo k objavovaniu, testovaniu a získaniu schválenia pre čoraz viac antivírusových liekov, aby tak mohla obísť či už prirodzenú alebo získanú liekovú rezistenciu, čo sa pri liečbe HIV/AIDS už dosiahlo (aspoň na čas).

(Táto časť pochadza z pôvodného článku z 4.1.2021.)

Niels C. Pedersen, DVM PhD
Distinguished Professor Emeritus
UC Davis, Center for Companion Animal Health January 4, 2021
, updated February 10, 2023

Aktuálne informácie o liečbe FIP v UK

Pôvodný článok: An update on treatment of FIP in the UK (1.2.2022)

Dr. Sam Taylor BVetMed(Hons) CertSAM DipECVIM-CA MANZCVS FRCVS Prof. Séverine Tasker BVSc BSc DSAM PhD DipECVIM-CA FHEA FRCVS, Prof. Danielle Gunn-Moore BSc(Hon), BVM&S, PhD, MANZCVS, FHEA, FRSB, FRCVS Dr. Emi Barker BSc BVSc PhD PGCertTLHE DipECVIM-CA MRCVS, Dr. Stephanie Sorrell BVetMed(Hons) MANZCVS DipECVIM-CA MRCVS

Vzhľadom na súčasnú situáciu Sam Taylor, Séverine Tasker, Danièlle Gunn-Moore, Emi Barker a Stephanie Sorrell diskutujú o liečebných protokoloch, ktoré pomáhajú lekárom pri zvládaní tohto vírusového ochorenia.

Úvod

Obrázok 1: Remdesivir určený na intravenóznu alebo subkutánnu aplikáciu

V auguste 2021 sa remdesivir (obrázok 1) stal legálne dostupným pre britských veterinárnych lekárov na liečbu FIP u mačiek. Odvtedy bolo a stále je úspešne liečených mnoho mačiek a mačiatok. Ako pri každom novom prípravku, so skúsenosťami sa prijímajú úpravy v protokoloch a vzhľadom na nedávne uvoľnenie (november 2021) perorálneho lieku GS-441524 (50 mg tablety) od špecializovaného výrobcu v Spojenom kráľovstve (obrázok 2) bol tento článok vypracovaný preto, aby podporil praktických lekárov pri používaní remdesiviru a GS-441524 pri liečbe FIP. Treba mať na pamäti, že liečbu môže byť potrebné prispôsobiť individuálnej mačke na základe odozvy, kompatibility a finančných možností klienta. Konkrétne protokoly uvedené nižšie môžu pomôcť veterinárom a ich klientom, ale nebudú vhodné pre všetky prípady.

Liečebné protokoly (aktualizované v novembri 2021)

Dávkovanie liekov sa oproti predchádzajúcim odporúčaniam zvýšilo na základe skúseností našich austrálskych kolegov, ktorí doteraz liečili viac ako 600 mačiek. Hoci niektoré mačky reagovali na predtým odporúčané nižšie dávky, zistili, že je možná recidíva na konci 84-dňového (12-týždňového) obdobia liečby alebo ku koncu tohto obdobia, čo viedlo k potrebe predĺženia liečby s vyšším denným dávkovaním. To bolo v konečnom dôsledku drahšie, ako keby sa liečba začala vyšším dávkovaním.

Obrázok 2: Perorálne tablety GS-441524

Pri použití remdesiviru a/alebo GS-441524 sú teraz k dispozícii možnosti liečby zahŕňajúce 12-týždňový liečebný cyklus injekčného remdesiviru, prechod z injekčného remdesiviru na perorálny GS-441524 alebo výlučne perorálny protokol GS-441524.

Navrhované dávkovanie, výhody a obmedzenia každého protokolu sú uvedené nižšie. Remdesivir sa nemôže podávať perorálne. Odporúčané dávkovanie liekov (tabuľka 1) závisí od klinického obrazu – t. j. či je prítomný výpotok alebo nie a či je prítomné očné a/alebo neurologické postihnutie – je to z dôvodu rozdielov v prieniku liečiva do tkanív. V prípade pochybností je vhodnejšie použiť vyššie dávkovanie.

Upozorňujeme, že tieto dávkovania perorálneho lieku GS-441524 sú vyššie, ako sa uvádza v niektorých publikáciách – je to preto, lebo v týchto publikáciách sa použili prípravky takzvaného GS-441524 z čierneho trhu, v ktorých nebolo potvrdené množstvo účinnej látky podanej mačkám. Dávkovania uvedené v tomto článku sú založené na skúsenostiach s používaním perorálneho prípravku so známym obsahom GS-441524, ktorý je legálne dostupný v Spojenom kráľovstve a Austrálii. Extrapolácia sa preto nedá použiť na iné perorálne prípravky, pri ktorých nie je známa účinná zložka a/alebo jej koncentrácia, alebo ich výrobca neuvádza.

Kombinované injekčné a perorálne liečebné protokoly

Rozhodnutie, kedy prejsť z injekčného remdesiviru na perorálny GS-441524, môže závisieť od tolerancie injekcií (alebo perorálneho podávania tabliet), rozdielov v cene prípravku (vrátane nákladov na ihly, injekčné striekačky, likvidáciu ostrých predmetov, straty), preferencií majiteľa a financií.

Skúsenosti naznačujú, že tento prechod sa môže uskutočniť medzi 7. a 14. dňom od začiatku intravenóznej alebo subkutánnej liečby remdesivirom. Zmenu možno vykonať priamo; remdesivir sa podáva jeden deň a tablety GS sa začnú podávať nasledujúci deň.

Zvolený protokol závisí od závažnosti ochorenia FIP u mačky. Dávkovanie je uvedené v tabuľke 1.

Závažný stav

Pokiaľ ide o závažný stav (anorexia, dehydratácia, mačka sa zvyčajne hospitalizuje):

  • Počiatočná liečba remdesivirom podávaným raz denne intravenózne (tabuľka 1) počas troch až štyroch dní – t. j. 1., 2., 3. a/alebo 4. deň. Tým sa dosiahne nasycovacia dávka lieku. Každý deň zrieďte požadovanú dávku remdesiviru na celkový objem 10 ml s fyziologickým roztokom a podávajte pomaly počas 20 až 30 minút manuálne alebo pomocou pumpy.
  • Následne podávajte raz denne SC remdesivir v rovnakej dávke (tabuľka 1) až do 7. až 14. dňa.
  • Na 8. až 15. deň prejdite na perorálne podávanie GS-441524 raz (alebo dvakrát) denne (tabuľka 1) a pokračujte minimálne do 84. dňa.

Tabuľka 1: Prehľad odporúčaní pre dávkovanie remdesiviru a GS-441524

Klinická prezentáciaRemdesivir – injekčneGS-441524 – orálne
Mačky s effúziou a bez očných alebo neurologických príznakov10 mg/kg 1x denne10-12 mg/kg 1x denne
Bez effúzie a bez očných alebo neurologických príznakov12 mg/kg 1x denne10-12 mg/kg 1x denne
Prítomné očné príznaky (effuzívna a neeffuzívna FIP)15 mg/kg 1x denne15 mg/kg 1x denne
Neurologické príznaky (effuzívna a neeffuzívna FIP)20 mg/kg 1x denne10 mg/kg dvakrát denne (t. j. 20 mg/kg v rozdelenej dávke)
Poznámka prekladateľa: v UK sa nepoužíva na legálnu liečbu injekčná forma GS-441524. Vzhľadom na to, že molekulová hmotnosť remdesiviru je cca 2x vyššia ako molekulová hmotnosť GS-441524, vychádza doporučené dávkovanie remdesiviru približne 2x vyššie ako u GS-441524. Zhodou okolností je biodostupnosť GS-441524 pri orálnom podaní cca 50% a tak je dávkovanie u tabliet s uvádzaným reálnym obsahom GS od výrobcu BOVA prakticky totožné s dávkovaním pri injekčnej aplikácii remdesiviru.

Menej závažný stav

Pokiaľ ide o menej závažný stav (normálna hydratácia, príjem potravy):

  • Úvodná liečba remdesivirom SC 1x denne (tabuľka 1) do 7. až 14. dňa.
  • Zmeňte na 1x (alebo 2x, ak je potrebná veľmi vysoká neurologická dávka) denne perorálne podávanie lieku GS-441524 (tabuľka 1) 8. až 15. deň a pokračujte najmenej do 84. dňa.

Výlučne perorálny protokol

V prípade, že injekčná liečba nie je tolerovaná/možná z finančného hľadiska, odporúča sa iba perorálny protokol liečby GS-441524:

  • 1x (alebo 2x, ak je potrebná veľmi vysoká neurologická dávka) denne perorálne GS-441524 (tabuľka 1) najmenej po dobu 84 dní.

Možné nežiadúce účinky remdesiviru:

Remdesivir sa zdá byť dobre tolerovaný. Boli však hlásené nasledujúce nežiadúce účinky:

  • Prechodný lokálny diskomfort/pichanie pri injekcii (pozri neskôr o prevencii).
  • Vznik/zhoršenie pleurálneho výpotku (nie vždy bielkovinového) počas prvých 48 hodín liečby, ktorý si niekedy vyžaduje drenáž.
  • Mačky môžu byť niekoľko hodín po intravenóznej aplikácii deprimované alebo im môže byť nevoľno.
  • Bolo hlásené zvýšenie aktivity enzýmu alanínaminotransferázy (nie je jasné, či v dôsledku základného ochorenia FIP alebo nežiaduceho účinku lieku).
  • Bola hlásená mierna periférna eozinofília.

Poznámka k váženiu mačiek

Počas liečby je veľmi dôležité vážiť mačky každý týždeň pomocou presných váh – pri úspešnej liečbe dôjde k nárastu hmotnosti a/alebo rastu mačiatok, čo si vyžiada zvýšenie dávky, aby sa zabezpečilo, že podávaná dávka antivirotika je stále vhodná pre typ liečenej FIP.

Možnosti pre klientov s obmedzeným rozpočtom

Upozorňujeme, že v ideálnom prípade by sa liečba mala podávať s použitím odporúčaných prípravkov a dávkovania čo najdlhšie (až 84 dní), aby sa zvýšila pravdepodobnosť vyliečenia.

Nižšie uvedené možnosti využite len v nevyhnutných prípadoch, pretože môže dôjsť k relapsu, ktorý si potom vyžaduje dlhšiu liečbu, čo vedie k zvýšeniu nákladov:

  • Perorálnu liečbu liekom GS-441524 podávajte len počas 84 dní, ako bolo uvedené vyššie.
  • Podávajte injekčný remdesivir alebo perorálny GS-441524 toľko dní, koľko si majiteľ môže dovoliť, a potom prejdite na perorálny meflochín 62,5 mg dvakrát až trikrát týždenne (u veľkých mačiek trikrát týždenne) alebo 20 mg až 25 mg perorálne raz denne (ak je možné zmeniť zloženie tabliet – napríklad Novalabs) na dokončenie 84-dňového liečebného protokolu; meflochín je lacnejší ako remdesivir a GS-441524, ale na posúdenie jeho účinnosti v tejto situácii je potrebný ďalší výskum.
  • Ak je potrebné zvýšiť dávku remdesiviru (napríklad v dôsledku neurologického ochorenia, ktoré sa objaví počas liečby), ale nie je možné si to dovoliť, možno pridať liečbu meflochínom ako doplnkovú liečbu, pretože je lacnejšia ako remdesivir, hoci na posúdenie účinku tejto kombinácie je potrebný ďalší výskum.
  • Mačací interferón omega sa používal aj v období po liečbe remdesivirom/GS-441524, ale na posúdenie, či je táto kombinácia potrebná, je potrebný ďalší výskum.

Podáva sa perorálna liečba s jedlom alebo bez jedla?

  • GS-441524 sa podáva nalačno (zapiť trochou vody) – jedlo sa môže podať 30 minút po podaní lieku.
  • Meflochín sa podáva s jedlom, inak často dochádza k vracaniu.

Pri podávaní perorálnych liekov nezabúdajte na podporu klientov, pretože to môže byť pre nich tiež náročné. Nasmerujte klientov na webovú stránku iCatCare, kde nájdete informácie a videá.

Ako môžem pomôcť majiteľom s aplikáciou remdesiviru SC?

Injekcia s remdesivirom môže spôsobiť prechodný lokálny diskomfort. Nasledujúce opatrenia môžu pomôcť znížiť nepríjemné pocity a zlepšiť spoluprácu:

  • Presvedčte sa, že majitelia používajú na vytiahnutie lieku z fľaštičky zakaždým novú ihlu (tým sa zníži riziko bakteriálnej kontaminácie fľaštičky, ako aj pretretie vrchnej časti fľaštičky s opakovane použiteľným tesnením alkoholom pred zavedením ihly).
  • Uistite sa, že majitelia po vytiahnutí lieku z fľaštičky a pred podaním injekcie vymenili ihlu (prepichnutie opakovane použiteľného tesnenia otupí ihlu).
  • Preferencie veľkosti ihly sa líšia; niektorí uprednostňujú ihlu 21G, aby bolo podanie injekcie rýchlejšie; iní považujú jemnejšiu ihlu 23G za lepšie tolerovanú, takže v prípade problémov sa môže oplatiť vyskúšať obe.
  • Miesta podania injekcie striedajte.
  • Remdesivir nechajte pred podaním zohriať na izbovú teplotu.
  • Na navodenie miernej sedácie/analgézie môže byť užitočný perorálny gabapentín (50 mg až 100 mg na mačku) a/alebo intramuskulárny alebo SC buprenorfín podaný najmenej 30 až 60 minút pred injekciou remdesiviru.
  • Oblasť, kam sa má injekcia aplikovať, sa môže tiež ostrihať, aby sa majiteľom pomohlo lokalizovať vhodné miesto na injekciu a aby sa 40 minút pred injekciou mohol aplikovať lokálny krém EMLA, hoci povrchová desenzibilizácia nemusí pomôcť, pretože nepríjemné pocity zvyčajne spôsobuje remdesivir pod kožou.
  • Zabezpečte, aby sa vždy podala celá dávka injekcie, a vyzvite majiteľov, aby hlásili akékoľvek nezdary, pretože to môže ovplyvniť rozhodnutia v prípade relapsu.
  • Mačky budú potrebovať niekoľko týždňov liečby. Povzbudzujte majiteľov, aby si injekciu spríjemnili používaním pamlskov v čase podávania injekcie alebo hladkaním, česaním či hraním sa s mačkou, ak je menej motivovaná jedlom. Navrhnite majiteľom, aby každý deň strávili čas so svojou mačkou pozitívnym spôsobom, aby sa predišlo akémukoľvek poškodeniu vzťahu medzi mačkou a majiteľom, ktoré môže znížiť mieru spolupráce.

Čo môžem očakávať počas liečby?

  • Počas prvých dvoch až piatich dní by ste mali pozorovať zlepšenie chovania, chuti do jedla, vymiznutie pyrexie a zníženie množstva brušnej (obrázok 3) alebo pleurálnej tekutiny, ak je prítomný výpotok ( upozorňujeme, že v niektorých prípadoch sa pleurálna tekutina môže v prvých dňoch prechodne zhoršiť – ak je mačka doma, odporučte majiteľovi merať pokojovú dychovú frekvenciu a námahu pri dýchaní) – výpotok zvyčajne ustúpi do dvoch týždňov.
  • Ak je výpotok prítomný aj po dvoch týždňoch, zvážte zvýšenie dávkovania.
  • Sérový albumín sa zvyšuje a globulín sa znižuje (to znamená, že sa normalizuje) v priebehu jedného až troch týždňov, ale všimnite si, že globulíny sa môžu spočiatku zvýšiť, keď sa absorbuje veľký objem výpotku.
  • Ústup lymfopénie a anémie môže trvať dlhšie, až 10 týždňov.
  • Mierna periférna eozinofília je bežným nálezom a môže byť priaznivým markerom pre ústup ochorenia, podobne ako u pacientov s COVID-19.
  • Veľkosť lymfatických uzlín sa v priebehu niekoľkých týždňov zmenší.
  • Ak pokrok nie je podľa očakávaní, zvážte prehodnotenie diagnózy (pozri ďalej) a/alebo zvýšenie dávkovania.
Obrázok 2. Mačka s FIP a ascitom. Efúzie by mali začať ustupovať v priebehu troch až piatich dní po začatí liečby.

Čo je potrebné sledovať počas liečby?

  • V ideálnom prípade biochémiu séra a hematológiu po dvoch týždňoch a potom každý mesiac.
  • U klientov s obmedzeným rozpočtom sledujte len hmotnosť/chovanie/efúziu/neurologické príznaky/klúčové biochemické abnormality (napríklad meranie len globulínu a bilirubínu).
  • Všimnite si, že aktivita enzýmu alanínotransaminázy (ALT) sa môže zvýšiť – nie je jasné, či je to spôsobené patológiou FIP alebo reakciou na liek, a zvyčajne to nie je dôvod na ukončenie liečby. Nie je známe, či v týchto prípadoch pomáha pridanie hepatoprotektívnej liečby (napríklad S-adenozyl-L-metionín).
  • Ultrasonografia v ambulancii na sledovanie ústupu výpotku a/alebo veľkosti lymfatických uzlín.

Ak pozorujem pozitívnu odozvu na liečbu, kedy mám liečbu ukončiť?

  • Nie skôr ako po 84 dňoch (12 týždňoch).
  • Overte vymiznutie predchádzajúcich abnormalít (klinicky, sono, biochemické a hematologické vyšetrenie).
  • Liečbu ukončite až po tom, ako bude mačka normálna (klinicky, biochemicky a hematologicky) najmenej dva týždne (ideálne štyri týždne).

Čo mám robiť, ak nepozorujem žiadnu alebo len čiastočnú odozvu na liečbu?

  • Uistite sa, že mačka má skutočne FIP – prehodnoťte diagnózu, hľadajte ďalšie patológie, zvážte opakovaný odber vzoriek (napríklad externú laboratórnu analýzu akejkoľvek tekutiny; cytológiu alebo biopsiu lymfatických uzlín).
  • Ak biochemické abnormality (najmä hyperglobulinémia a pomer albumínu ku globulínu) zostanú prítomné po 6 až 8 týždňoch, zvýšte dávkovanie ako pri relapse (pozri nižšie) o 3 mg/kg až 5 mg/kg denne a pokračujte v liečbe, pričom ju neukončite, kým sa parametre neznormalizujú aspoň 2 týždne, ako je uvedené vyššie v časti “kedy ukončiť liečbu?”. – To môže znamenať aj predĺženie liečby na viac ako 12 týždňov.

Čo mám monitorovať po liečbe?

  • Odporučte majiteľovi, aby mačku pozorne sledoval, či nedošlo k recidíve klinického stavu – toto sledovanie by malo pokračovať 12 týždňov po ukončení liečby.
  • V ideálnom prípade zopakujte biochémiu a hematológiu séra dva týždne a jeden mesiac po ukončení liečby (aby ste zistili akékoľvek zmeny, ktoré by mohli naznačovať predčasný relaps).
  • Upozorňujeme, že relaps sa môže vyskytnúť s klinickými príznakmi, ale bez akýchkoľvek významných biochemických/hematologických abnormalít.

Relaps

V prípade relapsu – napr. recidíva výpotku, pyrexia, rozvoj očných alebo neurologických príznakov alebo návrat hyperglobulinémie:

  • Uistite sa, že mačka má FIP – prehodnoťte diagnózu, zvážte ďalšie patológie, zvážte opakovaný odber vzoriek (napríklad externú laboratórnu analýzu akejkoľvek tekutiny, cytológiu alebo biopsiu lymfatických uzlín).
  • Ak sa počas liečby vyskytne relaps, zvýšte dávkovanie remdesiviru alebo GS-441524 a monitorujte liečbu ako predtým, pričom sa uistite, že liečba nebude ukončená skôr, ako bude mačka v norme aspoň dva týždne. Zvýšené dávkovanie závisí od dávkovania, ktoré mačka dostáva v čase vzniku relapsu, od povahy relapsu a od finančných možností, ale môže byť až do výšky odporúčanej dávky pri neurologickej FIP (pozri vyššie).
  • Ak sa relaps vyskytne po ukončení liečby, znovu začnite liečbu remdesivirom alebo GS-441524 s vyššou dávkou (zvyčajne o 3 mg/kg až 5 mg/kg denne vyššou ako predtým používané dávky) a liečte ďalších 12 týždňov. Použité zvýšené dávkovanie závisí od dávkovania, ktoré mačka dostávala v čase relapsu, a od povahy (napríklad závažnosti a/alebo rozvoja neurologických príznakov) relapsu, ale môže byť až do dávkovania odporúčaného pri neurologickej FIP (20 mg/kg – pozri tabuľku 1). Je možné, že niektoré mačky budú reagovať na kratšiu liečbu, ale v ideálnom prípade sa v liečbe relapsu po ukončení liečby pokračuje celých 12 týždňov, aby sa zabránilo opakovaniu relapsu.
  • Ak nie je možné zvýšiť dávkovanie remdesiviru alebo GS-441524 (napríklad už sa používa najvyššia neurologická dávka 20 mg/kg), zvážte použitie meflochínu ako doplnkovej liečby (pozri vyššie), pričom pokračujte v liečbe remdesivirom alebo GS-441524 v rovnakom dávkovaní.

Kastrácia a rutinné opatrenia v priebehu liečby FIP

  • Ak mačka reaguje na liečbu, kastrácia sa v ideálnom prípade uskutočňuje mesiac po jej ukončení. Ak však ponechanie nekastrovanej mačky spôsobuje veľký stres – napríklad pokusy o útek alebo stres, keď sú matky v období ruje, je vhodné uprednostniť kastráciu počas liečby. Ak je potrebná druhá možnosť, kastrácia by sa mala v ideálnom prípade vykonať v čase, keď mačka dobre zvláda liečbu a po kastrácii jej zostávajú ešte aspoň dva týždne liečby (takže antivírusová liečba prebieha v čase potenciálneho “stresu” po kastrácii).
  • Neexistuje žiadna kontraindikácia pre bežné odčervenie a liečbu proti blchám u mačiek liečených remdesivirom alebo GS-441524.
  • Nie sú k dispozícii žiadne informácie o vakcinácii mačiek liečených na FIP. Ak je mačka počas liečby v poriadku, má sa očkovať ako zvyčajne, pretože je stále pravdepodobné, že očkovanie bude mať ochranný účinok. U mačiek, ktoré absolvovali úvodné kolo, zvážte podanie tretej dávky vakcíny po ukončení liečby FIP (pozri WSAVA Vaccination Guidelines).
  • Ak sú potrebné veterinárne zákroky, pobyt na klinike by sa mal minimalizovať a mali by sa zaviesť protokoly a manipulácia podľa Cat Friendly Clinic, aby sa zabránilo stresu mačky.

Doplnková liečba

  • Ak mačka dostáva prednizolón, mal by sa počas podávania remdesiviru alebo GS-441524 vysaďovať a potom úplne vysadiť, pokiaľ nie je potrebný na krátkodobú liečbu špecifického imunitne sprostredkovaného ochorenia, ktoré vzniklo v dôsledku FIP – napríklad hemolytickej anémie.
  • Podporná liečba, ako sú antiemetiká, látky stimulujúce chuť do jedla, tekutinová terapia a analgetiká, sa môže podľa potreby podávať spolu s remdesivirom alebo GS-442415.

Možné budúce aktualizácie

Počas liečby týmito liekmi sa neustále učíme a odporúčania sa môžu časom zmeniť. Na mačkách sa testovali aj iné látky – napríklad inhibítory proteáz (ako GC376) a iné nukleozidové analógy (ako molpurinavir), ktoré však v súčasnosti nie sú komerčne dostupné. Ako tieto látky a iné imunomodulačné látky (ako napríklad polyprenyl imunostimulant) zapadnú do budúcich protokolov, nie je v súčasnosti známe.

Poznámka prekladateľa: Originálny článok vyšiel a bol aktualizovaný vo februári 2022, odkedy sa na trh dostal molnupiravir oficálne určený na liečbu COVID-19 u ľudí, a existuje tak istá možnosť jeho využitia aj pri liečbe FIP.

Poďakovanie

Ďakujeme Richardovi Malikovi a Sally Cogginsovej za ich rady pri príprave tohto článku.

Dr. Richard Malik DVSc MVetClinStud PhD FASM absolvoval štúdium na Univerzite v Sydney v roku 1981. Je špecialistom na internú medicínu malých zvierat a špeciálne sa zaujíma o infekčné ochorenia psov a mačiek. Pracuje v Centre pre veterinárne vzdelávanie a pomáha organizovať CPD.

Dr. Sally Coggins BVSc (hons I) MANZCVS (Feline Medicine) ukončila štúdium na Univerzite v Sydney v roku 2007 s vyznamenaním prvej triedy. Sally v súčasnosti skúma nové antivírusové terapeutiká na liečbu infekčnej peritonitídy mačiek a vedie klinické skúšky otvorené pre národný nábor.

Poradenská linka FIP

Vyššie uvedení odborníci sa spojili, aby spustili e-mailovú adresu “FIP advice” (fipadvice@gmail.com), na ktorej dobrovoľne odpovedajú na otázky týkajúce sa novej liečby a šíria informácie medzi veterinármi a veterinárnymi sestrami v Spojenom kráľovstve. Doteraz odpovedali na poradenskej linke na viac ako 150 e-mailov.

Nelicencovaný molnupiravir je účinnou záchrannou liečbou po neúspešnej nelicencovanej terapii GS-441524 u mačiek s podozrením na FIP

Meagan Roy 1, Nicole Jacque 2, Wendy Novicoff 3, Emma Li 1,Rosa Negash 1 , Samantha J. M. Evans 1 *

  1. Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
  2. Independent Researcher, San Jose, CA 95123, USA
  3. Departments of Orthopaedic Surgery and Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
  4. * Autor, ktorému treba adresovať korešpondenciu.

Akademickí redaktori: Alessia Giordano a Stefania Lauzi
Patogény 2022, 11(10), 1209; https://doi.org/10.3390/pathogens11101209
Doručené: 19.9.2022 / Revidované: 9.10.2022 / Prijaté: 19.10.2022 / Publikované: 20.10.2022
(Tento článok patrí do špeciálneho vydania Advances on Feline Coronavirus Infection)

Pôvodný článok: Unlicensed Molnupiravir is an Effective Rescue Treatment Following Failure of Unlicensed GS-441524-like Therapy for Cats with Suspected Feline Infectious Peritonitis

Abstrakt

Mačacia infekčná peritonitída (FIP) je komplexné a historicky smrteľné ochorenie, hoci nedávny pokrok v antivírusovej terapii odhalil možnosti liečby. Novšia terapeutická možnosť, nelicencovaný molnupiravir, sa používa ako liečba prvej voľby pri podozrení na FIP a ako záchranná liečba na liečbu mačiek, ktoré majú pretrvávajúce alebo recidivujúce klinické príznaky FIP po liečbe GS-441524 a/alebo GC376. Na základe údajov hlásených majiteľmi boli zdokumentované liečebné protokoly pre 30 mačiek. 26 mačiek liečených nelicencovaným molnupiravirom ako záchrannou terapiou bolo liečených priemernou začiatočnou dávkou 12,8 mg/kg a priemernou konečnou dávkou 14,7 mg/kg dvakrát denne počas stredne dlhého obdobia 12 týždňov (IQR = 10 – 15). Celkovo 24 z 26 mačiek žilo v čase písania tejto správy stále bez prejavov ochorenia. Jedna mačka bola po ukončení liečby eutanázovaná z dôvodu pretrvávajúcich záchvatov a druhá mačka podstúpila opakovanú liečbu pre recidívu klinických príznakov. Bolo hlásených málo nežiaducich účinkov, pričom najvýraznejšie – sklopené uši (1), zlomené fúzy (1) a závažná leukopénia (1) – sa vyskytli pri dávkach nad 23 mg/kg dvakrát denne. Táto štúdia prináša dôkazy o princípe použitia molnupiraviru u mačiek a podporuje potrebu budúcich štúdií na ďalšie hodnotenie molnupiraviru ako potenciálne bezpečnej a účinnej terapie FIP.

Kľúčové slová: FIP; koronavírus; antivirotikum; EIDD-2801; čierny trh

1. Úvod

Mačacia infekčná peritonitída (FIP) je komplexné a v minulosti smrteľné ochorenie spôsobené mutáciou všadeprítomného mačacieho enterického koronavírusu (FECV) [1]. Nedávne pokroky v mačacej a antivírusovej medicíne odhalili potenciálne možnosti liečby FIP. Inhibítor 3C-podobnej proteázy GC376 bol prvou cielenou antivírusovou terapiou použitou proti tomuto ochoreniu [2]. GC376 bol vysoko účinný pri zlepšovaní klinických príznakov FIP u 19 z 20 prirodzene infikovaných mačiek, ale vykazoval obmedzenú schopnosť zvládnuť dlhodobé ochorenie [2]. Pedersen a kol. pokračovali v skúmaní antivírusovej zlúčeniny GS-441524, nukleozidového analógu a aktívneho metabolitu remdesiviru (GS-5734). GS-441524 preukázal lepšiu schopnosť liečiť a kontrolovať ochorenie u prirodzene infikovaných mačiek v porovnaní s GC-376, pričom v čase písania správy bolo 25 z 31 mačiek bez ochorenia [3].
Od týchto objavov majitelia mačiek na celom svete získavajú tieto väčšinou nelicencované lieky na liečbu svojich mačiek s FIP s pozoruhodne vysokou úspešnosťou [4]. V Spojených štátoch je vysoký dopyt po legálnej liečbe FIP z dôvodu etických a právnych obáv týkajúcich sa nelicencovaných liekov GC376 a GS-441524. Okrem toho niektoré mačky s FIP vyčerpali všetky súčasné možnosti liečby z dôvodu relapsu ochorenia a/alebo zlyhania liečby po GS-441524, GC376 a/alebo kombinovanej liečbe. Preto je naliehavo potrebná účinná a legálna možnosť liečby FIP.
V súvislosti s nedávnym vypuknutím SARS-CoV-2 sa na trh dostalo množstvo nových antivirotík. Molnupiravir (EIDD-2801), vyrábaný spoločnosťou Merck, je v súčasnosti dostupný na základe povolenia na núdzové použitie (EUA) od FDA na liečbu COVID-19 u dospelých [5]. Je to perorálne proliečivo nukleozidového analógu B-D-N4-hydroxycytidínu, ktorý zvyšuje mutácie nukleotidového prechodu guanínu na adenín a cytozínu na uracil u koronavírusov [6]. Tento mechanizmus zvyšuje mieru mutácií nad akceptovanú hranicu, čo následne inaktivuje vírus [7]. Zistilo sa, že molnupiravir je bezpečný a dobre tolerovaný v dávke do 800 mg dvakrát denne u pacientov s COVID-19 [8]. Niektoré štúdie zaznamenali výrazný pokles počtu hospitalizácií a úmrtí u pacientov s COVID-19 s miernym až stredne ťažkým ochorením, hoci účinnosť sa zdá byť nedostatočná u pacientov s COVID-19 s ťažkým ochorením [7].

Vzhľadom na silný potenciál molnupiraviru na liečbu iných koronavirových infekcií začali majitelia mačiek nelicencovaný molnupiravir (alebo jeho aktívny metabolit EIDD-1931) zakúpený cez internet použivať na liečbu FIP. Použitie molnupiraviru na liečbu FIP však v súčasnosti nie je zdokumentované v žiadnej vedeckej literatúre. Nelicencovaný molnupiravir sa dá použiť ako terapia prvej voľby pri podozrení na FIP, ale i ako záchranná terapia na liečbu mačiek, ktoré majú pretrvávajúce alebo recidivujúce klinické príznaky FIP po terapii GS-441524 a/alebo GC376. Cieľom tejto štúdie je zdokumentovať toto použitie a poskytnúť dôkaz o princípe molnupiraviru ako potenciálneho lieku na FIP podľa údajov hlásených majiteľmi.

2. Materiály a metódy

Prieskum bol realizovaný pomocou programu Qualtrics XM (Qualtrics Version May-August 2022, Provo, UT, USA) na základe licencie Ohio State University. Prieskum (doplnkové údaje S1) bol napísaný v angličtine a pozostával z 94 otázok s možnosťou výberu odpovede a voľnými odpoveďami, v ktorých sa zisťovala diagnóza FIP, klinické príznaky, počiatočná terapia (používaná pred molnupiravirom), liečba molnupiravirom, nežiaduce udalosti, trvanie liečby a čas remisie. Počet otázok s voľnou odpoveďou bol obmedzený, aby sa obmedzila odchýlka pri rozpomínaní. Prieskum tiež umožnil majiteľom nahrať príslušné dokumenty (napr. veterinárne lekárske záznamy a laboratórne výsledky). Prieskum bol formátovaný s použitím otázok z predchádzajúcich štúdií, aby sa zachovala konzistentnosť jazyka a štýlu, ako aj novovytvorených otázok špecifických pre skúsenosti s liečbou molnupiravirom. Logika prieskumu diktovala, že niektoré otázky sa objavili až po výbere konkrétnej odpovede, zatiaľ čo iné sa pri výbere konkrétnej odpovede preskočili. Táto podmienená logika sa použila na zníženie skreslenia pri vypĺňaní dotazníka a únavy z vypĺňania dotazníka. Vyplnenie prieskumu trvalo približne 20 – 30 minút a v prípade potreby ho bolo možné uložiť a vyplniť neskôr. Túto štúdiu schválila Inštitucionálna kontrolná komisia Štátnej univerzity v Ohiu (protokol č. 2021E0162).

Prieskum bol účastníkom distribuovaný individuálne e-mailom a údaje sa zbierali od júna do augusta 2022. Účastníci boli vybraní z podskupiny majiteľov, ktorí hľadali terapiu molnupiravirom pre svoju mačku s podozrením na FIP prostredníctvom populárnej terapie FIP a podporných skupín na sociálnych sieťach. Kritériami zaradenia boli prieskumy týkajúce sa mačiek, u ktorých sa predpokladala FIP na základe diagnostiky od veterinárneho lekára, nereagovania na počiatočnú terapiu alebo recidívy klinických príznakov po ukončení počiatočnej terapie inej ako molnupiravir (napr. GS-441524 alebo GC376) a ukončenia 8 – 10 týždňov perorálne podávanej terapie molnupiravirom (alebo tých, ktoré následne uhynuli alebo boli počas terapie eutanazované). Do tejto štúdie bola zahrnutá aj malá skupina mačiek, ktoré dostávali molnupiravir počas 8 – 10 týždňov ako počiatočnú a jedinú terapiu, ktorá sa bude v ďalšej časti práce označovať ako terapia prvej voľby, v prípade podozrenia na FIP. Kritériom vylúčenia boli prieskumy s neúplnými údajmi alebo mačky, ktorým veterinárny lekár nediagnostikoval FIP.

3. Výsledky

3.1 Demografické údaje

Prostredníctvom podpornej skupiny FIP na sociálnych sieťach bolo identifikovaných celkovo 80 potenciálnych účastníkov a týmto účastníkom s dostupnými kontaktnými údajmi bolo zaslaných 37 výziev na vyplnenie dotazníka. Celkovo bolo zaslaných 33 dotazníkov a 21 účastníkom boli zaslané následné e-maily s cieľom získať úplné údaje z dotazníkov. Sedemnásť majiteľov pripojilo k zaslaným dotazníkom príslušné dokumenty a dvaja ďalší majitelia zaslali na e-mailovú adresu štúdie príslušné dokumenty, ktoré obsahovali veterinárne lekárske záznamy, laboratórne výsledky a diagnostické snímky. Tieto uvedené dokumenty boli použité na doloženie nežiaducich reakcií, ktoré nahlásil jeden účastník. Jedna odpoveď bola odmietnutie účasti. Dva prípady boli vylúčené, pretože mačky nemali diagnózu FIP od veterinárneho lekára (jedna z nich bola podľa hlásenia diagnostikovaná na základe straty súrodenca následkom FIP a druhá bola vyšetrená veterinárnym lekárom, ktorý dospel k záveru, že krvné testy nezodpovedajú FIP). Do tejto štúdie bolo teda zaradených celkovo 30 mačiek s podozrením na FIP, z ktorých 4 nedostali pred podaním molnupiraviru žiadnu liečbu. Tieto štyri mačky boli zaradené ako samostatná malá kohorta liečby molnupiravirom v prvej línii. Bloková schéma týchto prípadov je znázornená na obrázku 1. Zastúpené krajiny pôvodu boli Spojené štáty (25), Nemecko (2), Poľsko (2) a Švédsko (1). Stav pohlavia/kastrácie mačiek v čase diagnózy bol 40 % kastrovaných kocúrov, 40 % sterilizovaných samíc a 20 % nekastrovaných kocúrov. Priemerný vek v čase stanovenia diagnózy bol 9,7 mesiaca, s rozpätím od 1 mesiaca do 6 rokov. Väčšina mačiek bola zmiešaného alebo neznámeho plemena (70 %); bolo medzi nimi sedem čistokrvných mačiek a dve špeciálne krížené mačky (napr. kríženec balinézskej a ragdoll mačky a siamskej mačky). Odpovede označujúce mačku ako “americkú krátkosrstú” alebo “americkú dlhosrstú” boli namiesto toho kategorizované ako zmiešané plemeno, vzhľadom na bežne zaznamenaný zmätok amerických majiteľov týkajúci sa názvoslovia tohto plemena.

Obrázok 1. Tento vývojový diagram predstavuje počet prípadov v každom liečebnom bloku.

Pokiaľ ide o komorbidity, len u jednej mačky bol hlásený vírus mačacej leukémie a u jednej mačky bol reportovaný kalicivírus. Niekoľko mačiek malo v anamnéze aj vonkajšie a/alebo vnútorné parazitárne infekcie (3), konjunktivitídu/okulárne infekcie (2) a bakteriálne infekcie kože (pyodermiu) (1). Celkovo 16 mačiek malo neurologické prejavy FIP. Tri mačky mali neurologické aj okulárne prejavy FIP a dve mačky mali len okulárne prejavy FIP. Zo zvyšných prípadov bolo sedem efuzívnych, zatiaľ čo päť prípadov bolo neefuzívnych. Úplné rozdelenie typov FIP je uvedené v tabuľke 1.

MačkaVek pri diagnóze (mesiace)Pohlavie/kastračný stav pri diagnózePlemenoPredchádzajúce zdravotné ťažkostiKrajina pôvoduForma FIPTrvanie počiatočnej liečby (týždne)Obdobie bez ochoreniaDruhá terapiaTrvanie druhej terapie (týždne)Obdobie bez ochoreniaTretia terapiaTrvanie tretej terapie (týždne)Obdobie bez ochorenia
14kocúrEurópska krátkosrstáparizitárne infekcie, URI v ranom vekuNemeckoneurologickáinjekčný orálny GS-4415248žiadneinjekčný a orálny GS-44152415žiadne
215kastrovaná mačkaBarmskážiadneŠvédskoefuzívna, neefuzívna, neurologickáinjekčný GS-44152412menej ako 4 týždneinjekčný GS-4415241417 dníorálny GS-4415245 týždňovžiadne
39kastrovaný kocúrBritská krátkosrstážiadnePoľskoefuzívna, neurologická, okulárnainjekčný GS-44152413menej ako 2 týždneinjekčný GS-44152412viac ako 6 mesiacov, menej ako 1 year
45kastrovaný kocúrAbesínskažiadneUSAefuzívnainjekčný GS-44152412menej ako 2 týždneinjekčný GS-44152414menej ako 4 týždne
54kastrovaná mačkaBalinézska/Ragdol mixkalicivírus, konjunktivitída, giardióza, pásomnica, URIUSAneefuzívnainjekčný GS-44152413menej ako 8 týždňov
67kastrovaná mačkaSiamskážiadneUSAneurologickáinjekčný a orálny GS-441524, injekčný GC, injekčný a orálny molnupiravir12žiadne
77kastrovaný kocúrAmerická krátkosrstážiadneUSAneefuzívnainjekčný a orálny GS-4415245žiadne
86kastrovaná mačkaAmerická krátkosrstá/Siamská mixpásomnica, FCoVUSAefuzívna, neurologickáinjekčný a orálny GS-4415245žiadne
94kastrovaná mačkaDomáca zmiešanázlomená panvaUSAefuzívnainjekčný a orálny GS-44152414menej ako 6 mesiacovorálny GS-44152413menej ako 4 týždneorálny GS-441524/injekčný GC6 weeks in combination then 6 weeks of orálny GSžiadne
104kastrovaný kocúrDomáca zmiešanážiadneUSAefuzívnainjekčný GS-44152423menej ako 4 týždne
1172kastrovaný kocúrDomáca zmiešanáFeLVUSAneefuzívnaorálny GS-44152412menej ako 6 mesiacov
125kocúrDomáca zmiešanážiadneUSAneefuzívna, neurologická, okulárnainjekčný a orálny GS-44152417žiadne
1301.VkocúrSavannahžiadneUSAefuzívna, neurologickáinjekčný a orálny GS-44152424menej ako 6 mesiacovinjekčný a orálny GS-44152412menej ako 4 týždne
144kastrovaná mačkaDomáca zmiešanáSkin a eye infections, fleasPoľskoneefuzívna, neurologickáinjekčný GS-44152412menej ako 2 týždneinjekčný GS-44152417menej ako 4 týždne
1512kastrovaná mačkaAmerická krátkosrstážiadneUSAefuzívnainjekčný GS-441524/GC01.Vžiadne
165kastrovaná mačkaDomáca zmiešanážiadneUSAefuzívna, neurologickáinjekčný GS-44152412menej ako 4 týždne
174kocúrAmerická dlhosrstážiadneUSAokulárnainjekčný a orálny GS-441524, GC37613žiadne
186kastrovaný kocúrDomáca zmiešanážiadneUSAefuzívnainjekčný GS-44152412žiadne
1912kastrovaný kocúrDomáca zmiešanážiadneUSAneefuzívnainjekčný a orálny GS-44152412menej ako 2 týždneinjekčný GS-44152412žiadne
206kastrovaný kocúrNeznámežiadneUSAneefuzívna, neurologickáinjekčný GS-4415244žiadneorálny GS-4415243žiadne
214kastrovaná mačkaNórska lesnážiadneUSAneurologickáinjekčný GS-44152412menej ako 6 mesiacovinjekčný GS-44152401.VžiadneMolnupiravir, GS-441524, GC12 týždňovžiadne
226kastrovaný kocúrDomáca zmiešanážiadneUSAneurologická, okulárnaorálny GS-4415243žiadne
2312kastrovaná mačkaNeznámežiadneNemeckoneurologickáinjekčný GS-44152416menej ako 6 mesiacov
243kocúrDomáca zmiešanážiadneUSAneurologickáinjekčný GS-44152412menej ako 6 mesiacov
256kastrovaný kocúrAmerická krátkosrstážiadneUSAefuzívnaorálny GS-44152413menej ako 1 týždeň
261kocúrNeznámežiadneUSAneefuzívnainjekčný GS-44152412menej ako 1 týždeň
277kastrovaný kocúrDomáca zmiešanážiadneUSAneefuzívna, neurologickáMolnupiravir12menej ako 1 týždeň*Molnupiravir
2824kastrovaná mačkaDomáca zmiešanážiadneUSAefuzívnaMolnupiravir
2912kastrovaná mačkaDomáca zmiešanážiadneUSAneefuzívna, okulárnaMolnupiravir
3024kastrovaný kocúrDomáca zmiešanážiadneUSAneurologickáMolnupiravir
Tabuľka 1. Signalizácia a charakteristiky počiatočnej terapie všetkých 30 mačiek liečených nelicencovaným molnupiravirom pri podozrení na FIP.

3.2. Počiatočná liečba pred nasadením molnupiraviru

Celkovo 26 z 30 mačiek dostalo počiatočnú liečbu pri podozrení na FIP s nelicencovaným liekom GS-441524 alebo kombináciou liekov obsahujúcou nelicencovaný GS-441524 ako hlavný základný liek (na báze GS-441524). Polovica (13) mačiek bola liečená injekčne podávaným liekom GS-441524. Iba tri mačky boli liečené perorálnym liekom GS-441524, pričom ďalších sedem mačiek bolo liečených kombináciou injekčného a perorálneho lieku GS-441524 počas celého trvania liečby. Dve mačky boli liečené kombináciou nelicencovaného lieku GS-441524 a nelicencovaného lieku GC376. Kocka č. 6 bola liečená všetkými predtým uvedenými liekmi spolu s molnupiravirom počas 12 týždňov veľmi komplikovaného režimu (doplnkové údaje S2). Dávkovanie kombinovaných liekov používaných v rámci primárnej liečby (napr. GC376 a molnupiravir) sa nezisťovalo. Hlásené počiatočné dávkovania nelicencovaného lieku GS-441524 sa pohybovali od 2 mg/kg do 10 mg/kg; najčastejšie uvádzané dávkovania boli 5 – 6 mg/kg (osem mačiek) a 10 mg/kg (sedem mačiek). Väčšina (21) mačiek dostávala dávku raz denne. Iba štyrom sa dávka podávala dvakrát denne a jednej mačke sa dávka podávala najprv dvakrát denne počas jedného týždňa, potom sa prešlo na dávkovanie raz denne. Medián trvania liečby založenej na GS-441524 bol 12 týždňov (IQR = 12 – 13). U pätnástich mačiek bola počas trvania liečby hlásená zmena denných dávok. Niekoľkým mačkám sa zvýšila denná dávka podľa telesnej hmotnosti, aby sa zachovalo rovnaké dávkovanie v mg/kg. Iné zvýšili dávkovanie v mg/kg z dôvodu nedostatočnej klinickej odpovede alebo zmeny spôsobu podávania (napr. z injekčného na perorálny GS-441524). Žiadny účastník nehlásil zníženie dávky počas trvania liečby.

Celkovo 6 z 26 mačiek absolvovalo kratšiu ako priemernú 12-týždňovú liečbu na báze GS-441524 z dôvodu nedostatočnej klinickej odpovede a okamžite začali podstupovať inú liečbu. Dve zo šiestich mačiek zahájili iný spôsob alebo dávkovanie liečby nelicencovaným liekom GS-441524, ako je uvedené v tabuľke 1. Jedna mačka prešla pri druhej liečbe z injekčnej na perorálnu liečbu liekom GS-441524. U druhej mačky sa pri druhej liečbe jednoducho zvýšilo dávkovanie lieku GS-441524. Zvyšné štyri mačky začali v tomto čase liečbu nelicencovaným molnupiravirom, ako je uvedené v tabuľke 2. Z 20 mačiek, ktoré ukončili aspoň 12 týždňovú dĺžku liečby liekom GS-441524, sa u 16 z nich zaznamenala klinická remisia. Všetkých 16 bolo v remisii menej ako 6 mesiacov, pričom 2 mačky boli v remisii menej ako týždeň pred návratom klinických príznakov. Všetkých 16 začalo druhé kolo liečby, pričom 10 podstúpilo druhé kolo liečby na báze GS-441524 a 6 začalo v tomto čase liečbu molnupiravirom. Štyri mačky, ktoré ukončili liečbu liekom GS-441524, ale nedosiahli klinickú remisiu, okamžite začali liečbu molnupiravirom. Celkovo 26 mačiek podstúpilo primárnu liečbu na báze GS-441524 a všetkých 26 recidivovalo alebo nereagovalo adekvátne. Celkovo 10 z 26 absolvovalo druhé kolo liečby na báze GS-441524 a 16 začalo liečbu molnupiravirom.

MačkaKlinické príznaky na začiatku liečbyNázov značkyPočiatočné dávkovanie a frekvenciaKonečné dávkovanie a frekvenciaTrvanie liečby (týždne)Čas do zlepšeniaPretrvávajúce klinické príznakyVýsledokNežiaduce účinky
1hnačka, zvracanieAura Plus11 mg/kg dvakrát denne11 mg/kg dvakrát denne12menej ako 1 týždeňžiadneklinická remisiažiadne
2žiadne hlásenéAura12 mg/kg dvakrát denne12 mg/kg dvakrát denne12neistéžiadneklinická remisiažiadne
3anizokória, farebné škvrny v oku, polydypsia, pika, strata váhyAura 280128 mg/kg dvakrát denne14 mg/kg dvakrát denne12do 2 týždňovžiadneklinická remisiažiadne
4anorexia, letargia, strata váhyEIDD7 mg/kg dvakrát denne7 mg/kg dvakrát denne12menej ako 1 týždeňžiadneklinická remisiažiadne
5farebné škvrny v oku, hnačka, skrývanie a nedostatok socializácieAura 28016 mg/kg raz denne13 mg/kg raz denne10do 2 týždňovžiadneklinická remisiažiadne
6anizokória, zápcha, anorexia, fecal and urinárna inkontinencia, letargia, paralýza, seizures, bledé ďasná, strata váhyAura 280120 mg/kg dvakrát denne20 mg/kg dvakrát denne11menej ako 1 týždeňžiadneklinická remisiažiadne
7anorexia, ťažká chôdza, skrývanie, nedostatok socializácie, žltačka, letargiaCapella EIDD9 mg/kg dvakrát denne13 mg/kg dvakrát denne10menej ako 1 týždeňžiadneklinická remisiažiadne
8anorexia, ťažká chôdza, urinárna inkontinencia, paralýzaAura 280117 mg/kg dvakrát denne17 mg/kg dvakrát denne15menej ako 1 týždeňťažká chôdza pretrvávala 2 mesiace, stále nie je normálna, ale má normálny životklinická remisiažiadne
9kašeľ, anorexia, skrývanie, nedostatok socializácie, polydypsia, strata váhyAura 280112 mg/kg dvakrát denne16 mg/kg dvakrát denne13do 2 týždňovpolydypsia pretrvávala 1 týždeňklinická remisiažiadne
10anorexia, letargia, strata váhyAura 280112 mg/kg dvakrát denne12 mg/kg dvakrát denne16do 2 týždňovžiadneklinická remisiažiadne
11anorexia, letargia, URI, strata váhyAura 193112 mg/kg dvakrát denne12 mg/kg dvakrát denne12do 2 týždňovžiadneklinická remisiažiadne
12slepota, kývanie hlavou, ťažká chôdzaAura 280110 mg/kg dvakrát denne14 mg/kg dvakrát denne12do 3 týždňovžiadneklinická remisiažiadne
13ťažká chôdza, skrývanie, nedostatok socializácie, polyúria, letargia, anorexia, paralýza, triaškaAura 280112 mg/kg dvakrát denne12 mg/kg dvakrát denne12menej ako 1 týždeňžiadneklinická remisiažiadne
14anorexia, ťažká chôdza, skrývanie, nedostatok socializácie, letargia, nezvyčajná bojazlivosťAura 280111 mg/kg dvakrát denne16 mg/kg dvakrát denne18viac ako 4 týždnenič fyzické, ale MRI stále nie je normálnaklinická remisiažiadne
15slepota, zápcha, anorexia, hnačka, zväčšené brucho, skrývanie, nedostatok socializácie, letargia, bledé ďasná, strata váhyAura 280116 mg/kg dvakrát denne16 mg/kg dvakrát denne12menej ako 1 týždeňžiadneklinická remisiažiadne
16anorexia, ťažká chôdza, letargia, seizures, triaška, strata váhyAura 280114 mg/kg dvakrát denne14 mg/kg dvakrát denne12menej ako 1 týždeňžiadneklinická remisiažiadne
17kašeľ, anorexia, sťažené dýchanie, skrývanie, nedostatok socializácie, letargia, zvracanie, strata váhyAura 2801 a Aura 193112 mg/kg dvakrát denne17 mg/kg dvakrát denne20do 3 týždňovanorexiaklinická remisianauzea/zvracanie, anorexia
18zápcha, anorexia, ťažká chôdza, skrývanie, nedostatok socializácie, strata váhyAura 280112 mg/kg dvakrát denne12 mg/kg dvakrát denne8do 2 týždňovžiadneklinická remisiažiadne
19letargia, anorexiaAura 280112 mg/kg dvakrát denne12 mg/kg dvakrát denne7do 2 týždňovžiadneklinická remisiažiadne
20chvenie/trasenieAura 280110 mg/kg dvakrát denne23 mg/kg dva-trikrát denne10menej ako 1 týždeňv remisii cca 1 1 týždeň pred začiatkom záchvatoveutanáziaznížená chuť do jedla pri dávkovaní trikrát denne, závažná leukopénia, strata fúzov, šupinatá koža na ušiach
21ťažká chôdza, fekálna inkontinenciaAura 2801 a Aura 193113 mg/kg dvakrát denne30 mg/kg dvakrát denne14menej ako 1 týždeňťažká chôdza, obtiažne skákanie, fekálna inkontinencia pretrvávala počas štúdie (1 týždeň post treatmentu)relaps a eutanáziasklopené špičky uši, ochabnutie svalov
22farebné škvrny v oku, anorexia, ťažká chôdza, skrývanie, nedostatok socializácie, letargiaAura 280116 mg/kg dvakrát denne19 mg/kg dvakrát denne9do 2 týždňovžiadneklinická remisiažiadne
23ťažká chôdza, anorexia, strata rovnováhyAura EIDD12 mg/kg dvakrát denne15 mg/kg three times a day10do 2 týždňovťažká chôdzaklinická remisiažiadne
24slepota, farebné škvrny v okus, anorexia, sťažené dýchanie, ťažká chôdza, zväčšené brucho, urinárna inkontinencia, žltačka, letargia, paralýza, triaškaAura 280115 mg/kg dvakrát denne15 mg/kg dvakrát denne16menej ako 1 týždeňžiadneklinická remisiažiadne
25sťažené dýchanie, ťažká chôdza, skrývanie, nedostatok socializácie, letargia, URIAura 28017 mg/kg dvakrát denne7 mg/kg dvakrát denne16do 2 týždňovžiadneklinická remisiažiadne
26letargia, anorexiaAura 280114 mg/kg dvakrát denne14 mg/kg dvakrát denne15menej ako 1 týždeňneurologické zášklby, zvýšené pečeňové enzýmyklinická remisiažiadne
Tabuľka 2. Liečba a výsledné charakteristiky 26 mačiek, ktoré dostávali nelicencovaný molnupiravir ako záchrannú liečbu.

3.3. Druhé kolo liečby pred nasadením molnupiraviru

Celkovo bolo hlásené, že 10 z 26 mačiek, ktoré podstúpili úvodnú liečbu GS-441524 a následne recidivovali, absolvovalo pred začatím liečby molnupiravirom druhé kolo nelicencovanej liečby GS-441524. Väčšina mačiek opäť dostávala injekčný GS-441524 (6), pričom dve dostávali perorálny GS-441524 a dve dostávali injekčný aj perorálny GS-441524. Hlásené dávkovania sa pohybovali od 4 – 5 mg/kg do 15 mg/kg; najčastejšie používané dávkovania boli 7 – 8 mg/kg (dve mačky) a 15 mg/kg (dve mačky). Väčšina mačiek bola liečená raz denne (sedem mačiek), jedna mačka dostávala dávku dvakrát denne a jedna mačka trikrát denne. U väčšiny mačiek sa počas trvania liečby menila dávka. Dve dávky boli upravené s prírastkom hmotnosti, aby sa zachovalo rovnaké dávkovanie v mg/kg. Dávkovanie v mg/kg sa zvýšilo piatim mačkám, ktoré nereagovali adekvátne alebo sa u nich objavili nové klinické príznaky (napr. neurologické príznaky).
Medián trvania liečby bol 12,5 týždňa (IQR 9,75 – 14,25). Len dve mačky nepodstúpili aspoň 12-týždňovú terapiu. Jedna z dvoch pridala GC376 a molnupiravir k súčasnej terapii GS-441524 a druhá začala liečbu molnupiravirom ako jedinou terapiou. Z ôsmich mačiek, ktoré ukončili aspoň 12 týždňov trvajúcu terapiu liekom GS-441524, sa u dvoch nedosiahla klinická remisia. Obe mačky začali v tom čase liečbu nelicencovaným molnupiravirom. U zvyšných šiestich mačiek bolo hlásené dosiahnutie klinickej remisie po druhom kole liečby liekom GS-441524. Päť zo šiestich mačiek bolo v remisii menej ako 4 týždne, výnimkou bola jedna mačka, ktorá bola v remisii viac ako 6 mesiacov, ale menej ako rok. Sedem z desiatich mačiek začalo v tomto čase užívať nelicencovaný molnupiravir.

3.4. Tretie kolo liečby pred nasadením molnupiraviru

Zostávajúce tri mačky prešli posledným kolom liečby na báze GS-441524 pred prechodom na liečbu molnupiravirom. Mačka č. 2 dostávala perorálne GS-441524 počas 5 týždňov pred začatím liečby molnupiravirom. Mačka č. 9 bola liečená 6 týždňov perorálnou a injekčnou formou GS-441524 a potom pokračovala 6 týždňov len perorálnou formou GS-442524. Dávkovanie a frekvencia u oboch mačiek nie sú známe, keďže v prieskume sa zbierali údaje len o dvoch terapiách pred molnupiravirom. Mačka č. 21 dostávala kombináciu GS-441524, GC376 a molnupiraviru počas 12 týždňov. Dávkovanie, frekvencia a trvanie každej z nich sa v priebehu 12 týždňov radikálne menili (doplnkové údaje S3). Všetky tri mačky začali liečbu molnupiravirom bez klinickej remisie z tohto tretieho kola liečby.

3.5. Molnupiravir ako záchranná liečba

Z 26 mačiek, ktoré dostávali nelicencovaný molnupiravir ako záchrannú liečbu, väčšina používala liek značky Aura, pričom len 2 mačky používali inú značku molnupiraviru. Viac ako 81 % mačiek (18) bolo liečených liekom Aura 2801, 1 mačka bola liečená liekom Aura 1931 a ďalšie 2 mačky boli liečené oboma prípravkami Aura. Priemerné počiatočné dávkovanie bolo 12,8 mg/kg dvakrát denne. Jedna mačka dostávala dávku len raz denne a dve mačky dostávali dávku 2 až 3-krát denne. Najčastejšie používané začiatočné dávkovanie bolo 12 mg/kg dvakrát denne. Dávkovanie sa pohybovalo od 6 do 28 mg/kg dvakrát denne. Bolo hlásených 11 zmien dávkovania, pričom okrem jednej išlo o zvýšenie dávkovania. Zníženie dávkovania u mačky č. 3 nebolo nijako vysvetlené. Priemerné konečné dávkovanie bolo 14,7 mg/kg dvakrát denne, pričom tie isté tri mačky sa líšili frekvenciou dávkovania. Najčastejšie koncové dávkovanie bolo tiež 12 mg/kg dvakrát denne. Rozsah dávkovania bol 7 až 30 mg/kg dvakrát denne.

Medián trvania liečby bol 12 týždňov (IQR 10-15). Celkovo bolo udávane široké rozpätie 7 – 20 týždňov. Len osem mačiek sa liečilo kratšie ako 12 týždňov. Mačka, ktorá ukončila iba 7 týždňov liečby, bola reportovaná, že ukončila liečbu z dôvodu dosiahnutia klinickej remisie. Všetkých 26 mačiek ukončilo liečbu v trvaní 7 týždňov alebo dlhšie a všetkých 26 mačiek prežilo. Neboli hlásené žiadne prípady vynechaných dávok liečby molnupiravirom.

Majitelia hlásili zlepšenie klinických príznakov u viac ako 92 % mačiek do troch týždňov od začatia liečby molnupiravirom, pričom 84,6 % mačiek vykazovalo zlepšenie do dvoch týždňov a takmer polovica (46,2 %) do jedného týždňa. Iba dva prípady boli hlásené odlišne, pričom jedna mačka nevykazovala žiadne príznaky zlepšenia až do 1,5 mesiaca a majiteľ druhej mačky si nebol istý časovým harmonogramom a stupňom zlepšenia klinických príznakov. Celkovo bolo hlásených sedem mačiek s pretrvávajúcimi klinickými príznakmi FIP. U jednej z nich bolo hlásené vymiznutie klinických príznakov po jednom týždni pozorovacieho obdobia. U ostatných sa predpokladá, že išlo o reziduálne príznaky, ako sú ťažkosti s chôdzou alebo skákaním, tras, zmeny MRI a fekálna inkontinencia. Celý rozsah pretrvávajúcich klinických príznakov sa nachádza v tabuľke 2. Iba u troch mačiek boli hlásené nežiaduce účinky v reakcii na molnupiravir, vrátane nevoľnosti/vracania, anorexie, sklopených ušných špičiek (obrázok 2), krehkých fúzov, leukopénie, šupinatej kože a ochabovania svalov. V čase publikácie žije 24 z 26 mačiek v klinickej remisii FIP po perorálnej liečbe molnupiravirom. Jedna mačka údajne zomrela týždeň po ukončení liečby molnupiravirom v dôsledku dlhotrvajúceho záchvatu a druhá mačka (č. 21) bola bez ochorenia 4 týždne pred relapsom. Mačka č. 21 potom začala druhé kolo liečby molnupiravirom v rovnakej dávke, ale následne bola eutanizovaná z dôvodu nedostatočnej odpovede na liečbu.

Obrázok 2. Sklopené špičky uší boli hlásené ako nežiaduci účinok nelicencovanej liečby molnupiravirom u mačky č. 21.

U mačky č. 22 bola hlásená závažná leukopénia. Prostredníctvom veterinárnych záznamov sa zistilo, že mačka č. 22 má stredne ťažkú panleukopéniu s lymfopéniou, neutropéniou a normálnym hemogramom a trombogramom na 4 z 5 sekvenčných kompletných krvných testov, ktoré boli potvrdené prostredníctvom veterinárnych záznamov kompletných sekvenčných krvných testov. Prvotný zaznamenaný počet bielych krviniek bol 10 700 buniek na mikroliter (referenčný rozsah 3500 – 16 000 buniek na mikroliter). Ďalšie štyri kompletné krvné testy ukázali počet bielych krviniek v rozmedzí od 1200 do 1900 buniek na mikroliter. Prvotný počet neutrofilov bol 8560 buniek na mikroliter (referenčný rozsah 2500 – 8500 buniek na mikroliter). Ďalšie štyri počty neutrofilov sa pohybovali od 696 do 1292 buniek na mikroliter. Prvotný počet lymfocytov bol 1177 buniek na mikroliter (referenčný rozsah 1200 – 8000 buniek na mikroliter). Ďalšie štyri početnosti lymfocytov sa pohybovali od 330 do 532 buniek na mikroliter.

3.6. Molnupiravir ako primárna liečba

Malá skupina štyroch mačiek bola liečená nelicencovaným molnupiravirom ako jedinou terapiou pri podozrení na FIP, ako je uvedené v tabuľke 3. Tri z nich si údajne zvolili molnupiravir namiesto nelicencovaného náprotivku GS-441524 z dôvodu finančných obmedzení. Mačka č. 29 podstúpila 12-týždňovú liečbu 12 mg/kg perorálneho molnupiraviru dvakrát denne pred liečbou uvedenou v tabuľke 3. Táto mačka bola pred opätovným nasadením perorálneho molnupiraviru v dávke 19 mg/kg dvakrát denne počas 10 týždňov bez ochorenia menej ako jeden týždeň.

MačkaKlinické príznaky na začiatku liečbyNázov značkyPočiatočné dávkovanie a frekvenciaKonečné dávkovanie a frekvenciaTrvanie liečby (týždne)Čas do zlepšeniaPretrvávajúce klinické príznakyZáverNežiadúce účinky
* 27Skrývanie sa, nedostatok socializácie, letargia, anorexia, URI, vracanie, strata hmotnostiAura 280119 mg/kg dvakrát denne19 mg/kg dvakrát denne10menej ako 1 týždeňžiadneklinická remisiažiadne
28Anorexia, ťažkosti s chôdzou, nafúknuté brucho, skrývanie, nedostatok socializácie, letargiaAura 28018 mg/kg dvakrát denne8 mg/kg dvakrát denne13do dvoch týždňovžiadneklinická remisiažiadne
29Anizokória, slepota, zmeny farby očí, anorexia, skrývanie sa, nedostatočná socializácia, urinárna inkontinencia, letargia,Aura 280110 mg/kg dvakrát denne10 mg/kg dvakrát denne13do dvoch týždňovžiadneklinická remisiažiadne
30Skrývanie, nedostatok socializácie, letargia, bledé ďasná, úbytok hmotnostiAura 280110 mg/kg dvakrát denne12 mg/kg dvakrát denne10do dvoch týždňovžiadneklinická remisiažiadne
Tabuľka 3. Liečba a výsledné charakteristiky 4 mačiek, ktoré dostávali nelicencovaný molnupiravir ako primárnu liečbu.* Absolvovali dve kolá liečby molnupiravirom; prvé kolo je zdokumentované v tabuľke 1.

Všetky štyri mačky boli liečené perorálnym molnupiravirom Aura 2801 s priemerným začiatočným dávkovaním 11,75 mg/kg dvakrát denne (rozsah 8-19 mg/kg) a priemerným koncovým dávkovaním 12,25 mg/kg dvakrát denne (rozsah 8-19 mg/kg). Medián trvania liečby predstavoval 11,5 týždňa (IQR 10 – 13), pričom dve mačky boli liečené 10 týždňov a dve mačky boli liečené 13 týždňov. Bol vykonaný Mannov-Whitneyho test a nezistil sa žiadny významný rozdiel medzi mediánom trvania liečby molnupiravirom ako záchrannej terapie (12) a trvaním liečby molnupiravirom ako počiatočnej terapie (11,5) (p = 0,692). Všetci majitelia uviedli, že pozorovali klinické zlepšenie do dvoch týždňov a u jednej mačky sa zlepšenie prejavilo do jedného týždňa. Všetky mačky liečbu prežili, v čase publikácie boli bez prejavov ochorenia a neboli hlásené nežiaduce účinky liečby.

3.7. Molnupiravir podľa typu FIP

Uvedené informácie boli zhromaždené pre všetkých 30 mačiek a potom ďalej rozdelené podľa klinických foriem FIP. Najskôr sa posudzovalo 16 mačiek, u ktorých bola hlásená neurologická forma FIP. Následne sa ostatné mačky rozdelili podľa okulárnej (2), efuzívnej (7) a neefuzívnej (5) formy. Priemerné počiatočné dávkovanie molnupiraviru pri neurologickej forme FIP bolo 14,4 mg/kg dvakrát denne, pričom dve mačky boli liečené 2 – 3-krát denne. Priemerné koncové dávkovanie bolo 16,4 mg/kg dvakrát denne, pričom dve mačky boli liečené 2 – 3-krát denne. Najčastejšie používané začiatočné a koncové dávkovanie bolo 12 mg/kg dvakrát denne. Medián trvania liečby neurologickej FIP bol 12 týždňov (IQR 10-12,641).

V dvoch zostávajúcich prípadoch okulárnej FIP bolo priemerné počiatočné dávkovanie 11 mg/kg dvakrát denne a priemerné koncové dávkovanie bolo 13,5 mg/kg dvakrát denne. Liečba trvala v priemere 16,5 týždňa. Sedem prípadov efuzívneho ochorenia bolo liečených priemerným začiatočným dávkovaním 10,5 mg/kg dvakrát denne a priemerným koncovým dávkovaním 11,1 mg/kg dvakrát denne. Liečba trvala priemerne 13 týždňov (IQR 12 – 16). Päť neefuzívnych prípadov bolo liečených priemerným začiatočným dávkovaním 10,6 mg/kg dvakrát denne a priemerným koncovým dávkovaním 12,8 mg/kg dvakrát denne. Jedna mačka bola liečená raz denne. Priemerná dĺžka liečby predstavovala 10 týždňov (IQR 8,5 – 13,5).

3.8. Náklady a spokojnosť vlastníkov

Väčšina mačiek v tejto štúdii bola z dôvodu zlyhania/relapsu liečby alebo nedostatočnej odpovede prevedená na liečbu nelicencovaným molnupiravirom. Okrem toho, že u mačiek došlo k relapsu alebo neodpovedali na nelicencovanú liečbu na báze GS-441524, jedna mačka neznášala injekčnú formu GS a traja majitelia boli obmedzení kvôli nákladom na liečbu. Majitelia neboli povinní zverejniť finančné náklady na liečbu; tieto informácie boli poskytnuté len na dobrovoľnej báze. Okrem toho odpovede “0”, ktoré boli uvedené v správe, neboli zahrnuté do výpočtu nasledujúcich priemerov z dôvodu nemožnosti rozlíšiť, či “0” znamená žiadne náklady alebo neznáme náklady. Priemerné nahlásené náklady na prvé kolo liečby na báze GS-441524 boli 3448,83 USD a podobne priemerné hlásené náklady na druhé kolo liečby na báze GS-441524 boli 3509,09 USD. Len 4 majitelia uviedli, že platili za liečbu molnupiravirom, zatiaľ čo 16 ďalších uviedlo “0” (alebo žiadne náklady/náklady neznáme). Celkový priemer za 20 majiteľov, ktorí uviedli odpoveď na otázku v prieskume finančných nákladov (vrátane odpovedí “0”) na molnupiravir, bol 209 USD. Priemerné náklady štyroch majiteľov, ktorí neodpovedali odpoveďou “0”, boli 1045 USD. Zatiaľ čo 90 % majiteľov uviedlo, že sú “veľmi” alebo “trochu” spokojní so svojimi skúsenosťami s liečbou svojej mačky molnupiravirom, traja boli so svojimi skúsenosťami “veľmi nespokojní”. Žiaľ, nebolo poskytnuté žiadne vysvetlenie uvádzanej nespokojnosti.

4. Diskusia

V tejto práci popisujeme prvé známe použitie nelicencovaného molnupiraviru na liečbu podozrenia na FIP u mačiek podľa údajov nahlásených majiteľmi. Na liečbu mačiek, ktoré používajú nelicencovaný molnupiravir ako primárnu liečbu pri podozrení na FIP, sa podľa kombinovaných údajov z tejto štúdie zdá byť dávkovanie 12 mg/kg dvakrát denne počas približne 12 týždňov účinné na dosiahnutie klinickej remisie. Na liečbu mačiek, ktoré molnupiravir užívali ako záchrannú terapiu pri zlyhaní alebo relapse po terapii založenej na GS-441524, sa podľa kombinovaných údajov z tejto štúdie zdá, že dávkovanie 12-15 mg/kg dvakrát denne počas 12-13 týždňov je účinné na dosiahnutie klinickej remisie. Pri rozdelení podľa klinickej formy FIP sa však zistilo, že neurologické prípady FIP boli vo všeobecnosti liečené vyšším dávkovaním, ako je priemer pre všetky typy FIP. Očné, efuzívne a neefuzívne prípady boli liečené dávkovaním okolo 12 mg/kg dvakrát denne, s určitými odchýlkami. Preto sa zdá, že dávkovanie 15 mg/kg molnupiraviru dvakrát denne počas 12 týždňov je účinné pre neurologické prípady FIP. V prípade okulárnych, efuzívnych a neefuzívnych prípadov sa zdá byť účinné dávkovanie 12 mg/kg molnupiraviru dvakrát denne počas 12 – 13 týždňov.

Tieto údaje sú v určitom rozpore s navrhovaným liečebným protokolom spoločnosti vyrábajúcej nelicencovaný molnupiravir pod obchodným názvom HERO Plus 2801. Odporúčané dávkovanie v príbalovom letáku je 25 mg/kg raz denne pri efuzívnej a neefuzívnej FIP, 37,5 mg/kg raz denne pri očnej FIP a 50 mg/kg raz denne pri neurologickej FIP [9]. V príbalovom letáku lieku HERO Plus 2801 sú uvedené aj predbežné výsledky štúdie “Vplyv liečby perorálnou výživou na dobu prežitia a kvalitu života pri mačacej infekčnej peritonitíde”, ktorá zahŕňa 286 mačiek s diagnózou FIP. Podľa tohto príbalového letáku bolo 28 mačiek vyliečených po 4 týždňoch liečby a 258 mačiek bolo vyliečených po 8 týždňoch liečby, pričom v čase vypracovania správy nedošlo k žiadnemu úmrtiu [9]. Údaje z tejto štúdie ešte neboli publikované vo vedeckej literatúre.

Mačky v tejto štúdii však používali molnupiravir od iného dodávateľa, spoločnosti Aura, ktorá neposkytla špecifické odporúčania pre liečbu. Použité liečebné protokoly boli preto založené na radách a informáciách zdieľaných v skupinách na sociálnych sieťach, pracovných listoch uverejnených na internete [10,11] a informáciách o možných nežiaducich účinkoch obsiahnutých v informáciách uverejnených v rámci žiadostí o schválenie humánneho lieku [12].

Protokol liečby molnupiravirom odvodený z tejto štúdie sa viac zhoduje s nezávisle navrhnutým protokolom [10] publikovaným na Internete. Na základe údajov z bunkových kultúr in vitro EIDD-1931 a EIDD-2801, laboratórnych a terénnych štúdií GS-441524 a farmakokinetických štúdií na ľuďoch títo autori extrapolovali účinné dávkovanie perorálneho molnupiraviru [10]. Ich výpočty navrhli dávkovanie 4,5 mg/kg každých 12 h pri efuzívnej a neefuzívnej FIP, 8 mg/kg každých 12 h pri okulárnej FIP a 10 mg/kg každých 12 h pri neurologickej FIP [10]. Hoci dávkovanie v tejto štúdii bolo vo všeobecnosti vyššie ako dávkovanie navrhované uvedenými autormi, vysoká miera prežitia a nízka miera relapsov v čase ukončenia prieskumu naznačujú, že nelicencované odporúčania výrobcu nemusia predstavovať najnižšie účinné dávkovanie. V konečnom dôsledku sú veľmi potrebné kontrolované vedecké experimenty na vyhodnotenie najnižšieho účinného dávkovania molnupiraviru u mačiek s podozrením na FIP.

Niekoľko mačiek bolo liečených liekom Aura 1931, čo je aktívny metabolit molnupiraviru, EIDD-1931. Hlásené použité dávkovania boli v podobnom rozsahu ako dávkovania uvádzané pre molnupiravir. Nominálne, keďže molekulová hmotnosť EIDD-1931 je nižšia ako molekulová hmotnosť EIDD-2801, tieto mačky dostávali viac aktívneho liečiva ako mačky používajúce molnupiravir. Predchádzajúca štúdia však ukázala klesajúcu perorálnu biologickú dostupnosť so zvyšujúcimi sa dávkami u myší. Preto rozdiel v biologickej dostupnosti nemusí byť úmerný [13]. Farmakokinetické štúdie molnupiraviru aj EIDD-1931 u mačiek bohužiaľ nie sú známe.

V príbalovom letáku lieku HERO Plus 2801 neboli uvedené žiadne nežiaduce účinky, čo je v rozpore s tým, čo bolo uvedené v tejto štúdii. Spomedzi hlásených nežiaducich účinkov molnupiraviru boli najvýznamnejšie sklopené uši, vypadávanie fúzov a závažná leukopénia. V humánnej lekárskej literatúre neboli hlásené žiadne kožné alebo folikulárne lézie, ktoré by zodpovedali tu uvádzanému vypadávaniu fúzov alebo skladaniu uší. Treba však poznamenať, že mačky, u ktorých sa vyskytli tieto vedľajšie účinky, dostávali dve najvyššie dávky molnupiraviru uvedené v tejto štúdii: 23 mg/kg trikrát denne a 30 mg/kg dvakrát denne.

Počas 28-dňovej štúdie, ktorá bola prerušená kvôli závažným účinkom lieku, bola u psov hlásená závažná toxicita kostnej drene [12]. Pri dávkovaní 17 mg/kg/deň a 50 mg/kg/deň boli postihnuté všetky línie krvotvorných buniek [12]. Mačka č. 22 dostávala maximálne dávkovanie 23 mg/kg trikrát denne, čo bolo oveľa viac ako toxické dávkovanie u psov 17 mg/kg raz denne. V študovanej skupine s dávkou 17 mg/kg sa zaznamenala možnosť reverzibility, pokiaľ sa liečba zastavila [12].

Existujú obavy týkajúce sa obsahu nelicencovaných značiek molnupiraviru, pretože tieto značky nie sú v súčasnosti regulované a často nemajú uvedené skutočné zloženie. Značku Hero (rovnaký výrobca ako HERO Plus 2801) znázornenú na obrázku 3 analyzovala naša skupina v decembri 2021 prostredníctvom spoločnosti Toxicology Associates Inc. (Columbus, OH). Zistilo sa, že obsahuje 97,3 % molnupiraviru, pričom neboli zistené žiadne iné kontaminanty. Výrobok Aura 2801, ktorý používala väčšina účastníkov tejto štúdie, analyzovalo v septembri 2022 to isté laboratórium. Zistilo sa, že obsahuje 96,8 % čistého molnupiraviru. Riadenejšie posúdenie skutočného obsahu a čistoty nelicencovaných prípravkov GS-441524 aj molnupiraviru je pre veterinárnu komunitu veľmi zaujímavé a je aktívnym predmetom výskumu našej skupiny.

Obrázok 3. Obrázky obalov nelicencovaného lieku molnupiravir značky Hero.

Niektoré obmedzenia tejto štúdie vyplývajú z retrospektívneho charakteru a legálnosti použitých terapií. Po prvé, všetky údaje použité v tejto štúdii boli získané na základe hlásení vlastníkov. Úzka spolupráca s majiteľmi a správcami webových stránok sociálnych médií, ktorí podporovali túto skupinu, umožnila lepšie pochopenie a interpretáciu mnohých odpovedí z prieskumu. Vzhľadom na nedostatok definitívnej predsmrtnej diagnostiky FIP, ktorá by bola k dispozícii na praktické použitie, nebolo možné potvrdiť ani to, že mačky zaradené do tejto štúdie mali FIP. Okrem toho sú údaje pravdepodobne skreslené smerom k pozitívnym výsledkom a môžu byť zaťažené chybou pri spomínaní. Počas distribučnej fázy reagoval potenciálny účastník štúdie žiadosťou o vyradenie z nášho e-mailového zoznamu a uviedol, že sa nechce zúčastniť na štúdii. Ich mačka nereagovala na liečbu molnupiravirom a nakoniec bola utratená. Predpokladáme, že ostatní mohli mať rovnaký pocit, keďže ďalší traja eventuálni účastníci na pozvánku do štúdie nereagovali. To mohlo zúžiť počet účastníkov s nepriaznivým výsledkom a falošne zvýšiť zdanlivé ukazovatele prežitia. Preto tu uvedené údaje majú slúžiť ako dôkaz možnosti použitia molnupiraviru ako základnej alebo záchrannej liečby FIP, nie ako ukazovateľ skutočnej miery účinnosti.

U mačiek, ktoré používali nelicencovaný molnupiravir ako záchrannú liečbu, sa príčina zlyhania odpovede alebo relapsu po liečbe založenej na GS-441524 nezistila. Mohla súvisieť s kvalitou lieku, rezistenciou vírusu alebo iným faktorom. Keďže v USA v súčasnosti neexistuje žiadne testovanie ani regulácia, nelicencované verzie lieku GS-441524 alebo GC376 môžu mať nedostatočnú čistotu alebo koncentráciu, čo môže viesť k zlyhaniu liečby. Ďalšou možnou príčinou je prirodzená alebo získaná rezistencia na GS-441524. Tieto dve príčiny môžu byť tiež prepojené, pretože získaná rezistencia môže byť podporená, keď sa pri liečbe používa nedostatočné množstvo antivirotika, napríklad pri nekvalitných liekoch.

V nedávnom článku sa nezistili žiadne vírusové mutácie vyvolané liekmi SARS-CoV-2 počas liečby molnupiravirom [14]. To naznačuje, že pri liečbe molnupiravirom nie je pravdepodobné, že by sa objavila rezistencia vírusu SARS-CoV-2. Preto môže byť podobne nepravdepodobné, že by liečba molnupiravirom vyvolala rezistenciu vírusu FIPV, čo z neho robí atraktívnu terapeutickú možnosť.

Jednoznačne však existuje potreba (1) legálnej (v Spojených štátoch i inde) alternatívy k nelicencovanej liečbe liekom GS-441524 a (2) dostupnosti alternatívnych záchranných liekov, buď samostatných, alebo v kombinácii, po zlyhaní liečby liekom GS-441524. Molnupiravir má potenciál vyplniť obe tieto medzery a toto je prvá známa správa o jeho použití u mačiek v odbornej literatúre. Napriek tomu sa môžu nelicencované prípravky naďalej používať na liečbu FIP vzhľadom na náklady a široko zavedené siete, ktoré sú k dispozícii na ich získanie.

Záverom možno konštatovať, že podľa údajov hlásených majiteľmi sa nelicencovaný molnupiravir javí ako účinná liečba pri podozrení na FIP ako vhodná liečba prvej voľby aj ako záchranná liečba. Pri dávkovaní 12 – 15 mg/kg každých dvanásť hodín sú hlásené minimálne vedľajšie účinky a poskytuje možnosť prežitia pri klinickom ústupe príznakov FIP. Hoci sú skúsenosti týchto majiteľov s liečbou a zrejme aj vyliečením mačiek z FIP netradičné a potenciálne nezákonné, sú nesporne pozoruhodné a z experimentov, ktoré títo “občianski vedci” vykonávajú, sa môžeme veľa naučiť. Uvádzaním týchto skúseností sa snažíme poskytnúť východisko pre skúmanie molnupiraviru na použitie u mačiek s podozrením na FIP a zdokumentovať fenomén “skupinového zdravotníctva”, ktorý by naša profesia nemala ignorovať.

Doplnkové materiály

Nasledujúce doplňujúce informácie si môžete stiahnuť na adrese https://www.mdpi.com/article/10.3390/pathogens11101209/s1, doplňujúce údaje S1: retrospektívny prieskum štúdie s molnupiravirom; doplňujúce údaje S2: skrátený denník klinickej anamnézy kat. č. 6; doplňujúce údaje S3: Cat #21 abbreviated clinical history log.

Literatúra

  1. Felten, S.; Hartmann, K. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 201911, 1068. [Google Scholar] [CrossRef] [PubMed]
  2. Pedersen, N.C.; Kim, Y.; Liu, H.; Kankanamalage, A.C.G.; Eckstrand, C.; Groutas, W.C.; Bannasch, M.; Meadows, J.M.; Chang, K.-O. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J. Feline Med. Surg. 201820, 378–392. [Google Scholar] [CrossRef] [PubMed]
  3. Pedersen, N.C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami, E.; Liepnieks, M.; Liu, H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J. Feline Med. Surg. 201921, 271–281. [Google Scholar] [CrossRef] [PubMed]
  4. Jones, S.; Novicoff, W.; Nadeau, J.; Evans, S. Unlicensed GS-441524-Like Antiviral Therapy Can Be Effective for At-Home Treatment of Feline Infectious Peritonitis. Animals 202111, 2257. [Google Scholar] [CrossRef] [PubMed]
  5. Merck & Co., Inc. Authorized for Emergency Use in the Treatment of COVID-19. Lagevrio. 2022. Available online: https://www.lagevrio.com/patients/ (accessed on 26 August 2022).
  6. Gordon, C.J.; Tchesnokov, E.P.; Schinazi, R.F.; Götte, M. Molnupiravir promotes SARS-CoV-2 mutagenesis via the RNA template. J. Biol. Chem. 2021297, 100770. [Google Scholar] [CrossRef]
  7. Singh, A.K.; Singh, A.; Singh, R.; Misra, A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab. Syndr. Clin. Res. Rev. 202115, 102329. [Google Scholar] [CrossRef] [PubMed]
  8. Khoo, S.H.; Fitzgerald, R.; Fletcher, T.; Ewings, S.; Jaki, T.; Lyon, R.; Downs, N.; Walker, L.; Tansley-Hancock, O.; Greenhalf, W.; et al. Optimal dose and safety of molnupiravir in patients with early SARS-CoV-2: A Phase I, open-label, dose-escalating, randomized controlled study. J. Antimicrob. Chemother. 202176, 3286–3295. [Google Scholar] [CrossRef] [PubMed]
  9. FIP Warriors CZ/SK® (2022, May 20). Eidd-2801 (Molnupiravir). Available online: https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/ (accessed on 26 August 2022).
  10. Pedersen, N.C.; Jacque, N. Alternative Treatments for Cats with FIP and Natural or Acquired Resistance to GS-441524. Sock it to Fip. Available online: https://sockfip.org/https-sockfip-org-wp-content-uploads-2022-03-approaches-to-drug-resistance-in-cats-treated-with-gs-441524-for-fip-v3-pdf/ (accessed on 26 August 2022).
  11. Pedersen, N.C. The Long History of Beta-d-n4-Hydroxycytidine and Its Modern Application to Treatment of COVID-19 in People and FIP in Cats. Sock it to Fip. Available online: https://sockfip.org/https-sockfip-org-wp-content-uploads-2022-04-the-long-history-of-beta-d-n4-hydroxycytidine-and-its-modern-application-to-treatment-of-covid-19-in-people-and-fip-in-cats-v2-pdf/ (accessed on 8 October 2022).
  12. European Medicines Agency. Committee for Medicinal Products for Human Use (CHMP) Assessment Report: Use of Mol-Nupiravir for the Treatment of COVID-19. 2022. Available online: www.ema.europa.eu/contact (accessed on 8 October 2022).
  13. Painter, G.R.; Bowen, R.A.; Bluemling, G.R.; DeBergh, J.; Edpuganti, V.; Gruddanti, P.R.; Guthrie, D.B.; Hager, M.; Kuiper, D.L.; Lockwood, M.A.; et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antivir. Res. 2019171, 104597. [Google Scholar] [CrossRef] [PubMed]
  14. Fletcher, T.; Ah Donovan-Banneld, I.; Penrice-Randal, R.; Goldswain, H.; Rzeszutek, A.; Pilgrim, J.; Bullock, K.; Saunders, G.; Northey, J.; Dong, X.; et al. Characterisation of SARS-CoV-2 genomic variations in response to mol-nupiravir treatment in the AGILE Phase IIa clinical trial. Res. Sq. 2022. [Google Scholar] [CrossRef]

Úloha molnupiraviru pri liečbe mačiek s FIP v Austrálii

Richard Malik, Centrum pre veterinárne vzdelávanie, Univerzita v Sydney
Pôvodný článok: A key role for molnupiravir in the management of cats with FIP in Australia, 10-2022

Všetci určite poznáte štandardný spôsob liečby FIP v Austrálii, pri ktorom sa používa remdesivir (IV alebo SCI), GS-441524 (tablety) a meflochín. Tieto tri lieky predstavujú základnú výbavu pre veterinárnych lekárov mačiek v Austrálii, hoci konkrétne detaily a liečebné schémy sa u jednotlivých mačiek líšia podľa ich klinických príznakov a podľa predstáv ošetrujúceho lekára, ktorý prípad rieši, a finančných zdrojov majiteľa. Remdesivir má tú výhodu, že je vhodný na intravenóznu aj subkutánnu liečbu, čo môže byť užitočné v niektorých prípadoch pri pokročilom ochorení alebo v prípadoch, keď je brušné ochorenie také rozsiahle, že existujú obavy, koľko GS-441524 sa vstrebe. Predpokladám, že polyprenyl imunostimulant už nikto nepoužíva napriek nedávnej práci edinburskej skupiny, ktorá preukázala jeho určitú účinnosť.1

Obrázok 1: Britská krátkosrstá mačka z Hongkongu s vlhkou (efuzívnou) FIP. Fotografie s láskavým dovolením Chrisa Simpsona.

Niektorí lekári a klienti v skutočnosti uprednostnia úplné vynechanie remdesiviru a prejdú priamo na tablety GS-441524, ktoré sú lacnejšie, a vzdajú sa potreby vysokých nákladov na hospitalizáciu počas niekoľkodňovej intenzívnej liečby. Diskutuje sa o tom, aký je optimálny čas parenterálneho podávania remdesiviru pred prechodom na tablety GS-441524. Na začiatku sme odporúčali dva týždne parenterálnej liečby, ale napríklad kolegovia z Royal Veterinary College podávajú remdesivir intravenózne 4 – 5 dní a potom prechádzajú na perorálnu liečbu GS-441524.

Meflochín je užitočný liek, ktorý sa môže použiť v kombinácii s liekom GS-441524, alebo sa môže podať, keď si majitelia už nemôžu dovoliť vysokú cenu liečby, v čase, keď sa mačke darí dobre, ale pravdepodobne ešte nie je vyliečená. O najlepšom dávkovacom režime tohto repurpovaného lieku sa vedú diskusie. V pôvodnej práci sa navrhovalo, že ¼ tablety Larium (62,5 mg) podávaná dvakrát týždenne je primeraná, zatiaľ čo ja uprednostňujem 20 až 25 mg na mačku raz denne. Túto dávku často začínam podávať mačkám, keď sa blíži koniec liečby liekom GS-441524, a meflochín podávam niekoľko mesiacov, aby mal imunitný systém mačky trochu viac času na “odstránenie” všetkého vírusu FIP, ktorý sa skrýva v bunkách mononukleárneho fagocytárneho systému.

Obrázok 2: Tekutina s vysokým obsahom bielkovín z brušnej dutiny mačky na obrázku 1.

Zistil som, že liečebné režimy založené na týchto liekoch zvyčajne vedú k úspešnej liečbe mačiatok a mačiek s FIP, hoci jednotlivé prípady môžu byť veľmi náročné.

Podľa môjho názoru sú najväčšou prekážkou úspešnej liečby veľmi vysoké náklady na liečbu. Ďalším problémom je požiadavka 84-dňovej liečby na úplnú elimináciu vírusu.

Samotné lieky sú veľmi drahé, najmä u dospelých mačiek alebo pacientov s ochorením CNS (ktoré si vyžadujú vyššie dávky v mg/kg, aby lieky prenikli do CNS), a to zahŕňa nielen veľmi vysoké náklady na lieky, ale aj náklady na počiatočnú stabilizáciu a priebežné konzultácie na monitorovanie. Výsledkom je, že liečba je pre mnohých majiteľov finančne nedostupná, často hneď od začiatku, a ak sa počas liečby vyvinie rezistencia vírusu FIP, požiadavka na veľmi vysoké dávky, často na dlhšie obdobie, robí liečbu náročnou aj pre najoddanejšieho majiteľa.

Majitelia sa snažili obísť vysoké náklady na liečbu používaním lieku GS-441524 z čierneho trhu, ktorý je bežne dostupný u mnohých dodávateľov. Hoci to nie je legálne, majitelia a najmä chovatelia mačiek si ho vo veľkom zaobstarávali a mnohé mačky boli vďaka týmto liekom zachránené.2 Problémom je, že si nie sme istí skutočnými dávkami alebo kvalitou či produktom, ktorý sa podáva v rôznych farebných tabletách, a naše testovanie ukázalo, že dávka, aj keď je uvedená na obale, môže byť vyššia alebo nižšia ako hodnota uvádzaná výrobcom. Okrem toho nevieme posúdiť rozdiely medzi jednotlivými šaržami liekov z čierneho trhu. Väčšina austrálskych veterinárnych lekárov preto odporúča klientom používať legálne produkty poskytované spoločnosťou BOVA Australia a dodávateľský reťazec je spoľahlivý a pravidelná kontrola kvality zabezpečuje, že každá tableta obsahuje 50 mg lieku GS-4415624, ako je uvedené.

Obrázok 3: Röntgenový snímok mačky z obrázka 1 s vlhkou FIP.

Pandémia COVID viedla k obrovskému výskumu v oblasti prevencie a liečby koronavírusového ochorenia a v súčasnosti sú v Austrálii a inde bežne dostupné dva produkty na perorálnu liečbu ľudských pacientov infikovaných SARS-CoV2, a to molnupiravir a paxlovid.3 Niels Pedersen poskytol na svojej webovej stránke SOC FIP zhrnutie histórie molnupiraviru, ktoré som pripojil k tejto monografii. Kľúčová časť je vystrihnutá a vložená nižšie (s určitými úpravami):

Ako sa očakávalo, molnupiravir bol nedávno testovaný u mačiek s FIP najmenej jedným čínskym predajcom lieku GS-441524 a predbežné výsledky boli uvedené na webovej stránke FIP Warriors CZ/SK. Terénna štúdia pozostávala z 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP, ktoré boli pozorované na klinikách pre spoločenské zvieratá v USA, Spojenom kráľovstve, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. Medzi 286 mačkami, ktoré sa zúčastnili na testoch, nedošlo k žiadnemu úmrtiu, vrátane siedmich mačiek s očnou (n=2) a neurologickou (n=5) FIP. Dvadsaťosem z týchto mačiek bolo vyliečených po 4 – 6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky zostali zdravé aj po 3 – 5 mesiacoch, čo je obdobie, počas ktorého by sa u mačiek, ktoré neboli úspešne vyliečené, očakával relaps.

Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná vo forme rukopisu, predložená na odborné posúdenie a publikovaná. Napriek tomu sa teraz predáva majiteľom mačiek s FIP. Najmenej jeden ďalší veľký predajca lieku GS-441524 má tiež záujem o používanie molnupiraviru na liečbu FIP, čo naznačuje dopyt po ďalšej antivirotickej liečbe mačiek s FIP.

Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo publikované. Najmenej jeden predajca z Číny však vo svojom reklamnom letáku na výrobok s názvom Hero-2801 poskytol niektoré farmakokinetické údaje a údaje z terénnych testov molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP. V 28/286 prípadoch dostalo tento liek v dávke 30 – 40 mg/kg každých 24 hodín, t. j. ekvivalent 15 – 20 mg/kg každých 12 hodín. Pre porovnanie, dávka pre ľudí je 800 mg každých 12 hodín alebo približne 10 mg/kg denne.

Obrázok 4: Údaje poskytnuté o “Hero 2018” od spoločnosti FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir).
https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/

Zdá sa, že odporúčania na dávkovanie sa líšia. Pôvodne sa navrhovalo:

  • FIP: 25mg/kg q24h
  • Očná FIP: 37,5 mg/kg q24h
  • Neurologická FIP: 50 mg/kg q24h

Dĺžka liečby 5-10 týždňov v závislosti od závažnosti ochorenia a konkrétnej mačky.

Neskôr bol tento návrh upravený na základe podnetov od Nielsa Pedersena a skupiny UC Davis:

  • FIP: približne 5-7 mg/kg q12h počas 84 dní.
  • Očná FIP: 8-10 mg/kg q12h počas 84 dní.
  • Neurologická FIP: 10-15 mg/kg q12h počas 84 dní.

Tieto odporúčania vychádzajú z predpokladov na základe publikovaných informácií a je potrebné získať viac skúseností s molnupiravirom v teréne. Sam Evans práve prezentoval niektoré údaje o použití molnupiraviru na záchrannú liečbu na konferencii ISCAID v Glasgowe. Na Kalifornskej univerzite v Davise prebieha aktívny klinický výskum, na ktorom sa podieľajú Brian Murphy a Krystal Regan a ktorého cieľom je stanoviť optimálne dávkovanie a dávkovací interval molnupiraviru, ktorý sa začal v júli 2022.

Je otázne, či sa molnupiravir ukáže bezpečnejší a účinnejší ako GS-441524 pri liečbe FIP, ale tretie antivirotikum by sa mohlo ukázať ako mimoriadne užitočné pri prevencii rezistencie na GS-441524 (ako koktail antivirotík s rôznymi profilmi rezistencie) alebo pri liečbe mačiek, ktoré už nereagujú dobre na GS-441524. Veľkou neznámou je, či molnupiravir bude bez dlhodobých vedľajších účinkov.

Keďže sa zdá, že uvedené dávky v skúškach sú trochu sporné, ja som používal 10 mg/kg dvakrát denne, ale všimnite si, že sa tvrdí, že pokusné mačky dostávali 100 mg/kg raz denne bez zistiteľných nežiadúcich účinkov (pozri obrázok 4).

Kľúčový fakt: Molnupiravir používam u vybraných pacientov už asi 2 mesiace v dávke 10 mg/kg dvakrát denne. Možno by bolo rozumné zvýšiť túto dávku na 15 mg/kg dvakrát denne, najmä pri ochorení CNS. Zdá sa, že vyššie dávky sú pravdepodobne bezpečné a možno aj účinnejšie, ale zdráham sa ich odporúčať, kým nezískame viac dlhodobých dát.

Nakoniec, a to skutočne okrajovo, paxlovid je kombinácia dvoch liekov podávaných súčasne, pričom jeden sa používa na inhibíciu metabolizmu druhého lieku; nemôžem nájsť žiadny precedens pre jeho použitie u mačiek, čo je škoda, pretože u ľudí je to účinnejší z dvoch dostupných perorálnych liekov na COVID. V Austrálii stojí približne rovnako ako molnupiravir, ale pri nákupe z webových stránok v Indii je porovnateľne drahší ako molnupiravir. V plnej miere sa môže ukázať ako veľmi užitočný liek na liečbu FIP, ak sa ukáže ako bezpečný. U ľudí je jedným z problematických vedľajších účinkov odporná chuť v ústach, takzvané “paxlovidové ústa”, čo by sa mohlo ukázať ako katastrofálne, ak by sa to prejavilo u mačiek, pretože majú sklon k peneniu slín.

Aké je teda miesto molnupiraviru v terapii mačiatok a mačiek s FIP? Ako ho dostať? Koľko stojí?

Každý si môže kúpiť molnupiravir na vlastné použitie alebo na použitie u mačiek tak, že si nechá vystaviť lekársky predpis a predloží ho v lekárni. Cena je približne 1 146,39 dolárov
(https://www.pbs.gov.au/medicine/item/12910L) v závislosti od prirážky v lekárni. Obchodný názov je Lagevrio (Merck Sharp & Dohme) a škatuľka obsahuje 40×200 mg kapsúl. Liek bol predbežne schválený TGA vo februári 2022 na liečbu COVID-19 u dospelých, ktorí nevyžadujú kyslík a u ktorých existuje riziko progresie do ťažkého COVID-19.

Na liečbu mačky s hmotnosťou 4 kg dávkou 10-15 mg/kg bid potrebujete 80 mg až 120 mg denne počas 84 dní alebo 6 720 až 10 080 mg. Krabička so 40×200 mg kapsulami predstavuje 8 000 mg, takže ak zohľadníte poplatok za prípravu na vhodnú dávku pre mačku – liečba vysokými dávkami stojí približne 1100 – 2200 dolárov, čo je o dosť lacnejšie ako GS-441524 alebo remdesivir. Takže teraz máme alternatívnu liečbu k tej, ktorú používame v súčasnosti. Aké sú dôkazy? Je farmakokinetika u mačiek dobre známa? Odpoveď na oboje je – nevieme to s istotou, pretože dôkazy neboli podrobené odbornému preskúmaniu, ale presvedčivé nepublikované neoficiálne informácie naznačujú, že ide o účinnú terapiu. A pravdepodobne budeme mať do roka dobré informácie o PK od skupiny Davis.

A teraz to začína byť trochu zložitejšie! Austrália má systém, ktorý umožňuje ľuďom dovážať lieky zo zahraničia pre ich osobnú potrebu a pre potrebu ich rodinných príslušníkov. Dôvodom je, že ľudskí pacienti, ktorým sú predpísané drahé neregistrované lieky, a teda lieky, na ktoré sa nevzťahuje systém PBS, si musia sami nájsť spôsob, ako sa k týmto liekom dostať. Nie je známe, koľko Austrálčanov dováža lieky, ale je to legálne v rámci schémy osobného dovozu. Azda najlepším príkladom je “Klub nákupcov FixHepC” (https://fixhepc.com/), ktorý založili austrálski lekári pre infekčné choroby a praktickí lekári doktori John a James Freemanovci.5 Predtým, ako boli lieky na hepatitídu C dotované z PBS, tisíce Austrálčanov využívali tento klub nákupcov na dovoz cenovo dostupných liekov na hepatitídu C za 1 – 2 % maloobchodnej ceny. Túto iniciatívu podporovala Austrálska spoločnosť pre HIV, vírusovú hepatitídu a medicínu sexuálneho zdravia a mnohí austrálski lekári usmerňovali pacientov, aby si lieky kupovali týmto spôsobom.

“Každý z nich zaplatil 1000 až 2000 dolárov, aby sa uzdravil, namiesto 84 000 dolárov, ktoré si v Amerike účtovala spoločnosť Gilead Sciences. Stále je to drahé, ale pre mnohých je to aspoň cenovo dostupné.”

Je to však spojené s určitým rizikom.
Internetový trh s liekmi je nedostatočne regulovaný, pretože funguje medzi hranicami jurisdikcie a nekvalitné výrobky sú bežné. Podľa niektorých údajov je až 25 % liekov v obehu mimo krajín s vysokými príjmami neštandardných. Najväčším rizikom je nedostatočné množstvo účinnej látky, čo môže viesť k neúmyselnému nedostatočnému liečeniu. Pre lekárov je to zložitý priestor, v ktorom sa musia pohybovať z klinického aj medicínsko-právneho hľadiska. Nie je jasné, kam až siaha povinnosť lekára poskytovať starostlivosť. V súčasnom kódexe správania sa uvádza, že správna lekárska prax zahŕňa “zachovávanie práva pacienta na prístup k potrebnej úrovni zdravotnej starostlivosti a vždy, keď je to možné, mu v tom pomáhať.” Nie je dôvod domnievať sa, že by sa to nevzťahovalo aj na pomoc pacientom pri dovoze liekov, ktoré by si inak nemohli dovoliť, ak by to bolo jednoznačne v ich záujme.

Môj vlastný názor je, že sa jedná o rovnakú situáciu pre veterinárov malých zvierat, ktorí sa podieľajú na liečbe mačiek s FIP, a prísaha veterinárneho lekára, ktorú nedávni absolventi zložili, by toto tvrdenie podporila.

Ako si teda môže klient objednať molnupiravir na liečbu svojej mačky s FIP?

Obrázok 5; Snímka obrazovky korešpondencie s výrobcami lieku Molcovir 200 mg
  1. Prejdite na internet a nájdite URL adresu webovej stránky s názvom IndiaMART https://www.indiamart.com/ a vyhľadajte Molcovir 200mg – v súčasnosti je URL adresa: https://m.indiamart.com/isearch.php?s=Molcovir+200mg&prdsrc=1&countryiso=AU&qu-cx=1&stype=attr=1
  2. Vezmú si vaše údaje a opýtajú sa, o aký liek máte záujem. Potom pošlú váš dopyt niekoľkým lekárňam a požiadajú vás o cenové ponuky. Výrobcovia, s ktorými máme najviac skúseností, sú Dolphin pharmaceuticals a Mediseller, pričom jeden z nich akceptuje platbu cez PayPal namiesto použitia vašej kreditnej karty. Upozornia vás, že clo je vašou vlastnou záležitosťou, ale urobia všetko pre to, aby vám pomohli lieky označiť tak, aby bolo jasné, že nejde o nelegálny liek. Kým sa vám nevráti cenová ponuka, nemôžete nič kúpiť. Na obrázku 5 je uvedený snímok obrazovky korešpondencie so spoločnosťou. Keď akceptujete cenovú ponuku, potom zariadia platbu a následne zaslanie. V súčasnosti je pri kúpe piatich balení cena 30 amerických dolárov (42 austrálskych dolárov) za balenie plus 65 amerických dolárov poštovné. Liečba 4 kg mačky s FIP CNS v dávke 10-15 mg/kg bid počas 84 dní bude pravdepodobne v rozmedzí 100 – 150 austrálskych dolárov. Náklady na liečbu tej istej mačky remdesivirom/GS-441524 sú 6550 USD, ak zoberieme do úvahy len náklady na lieky.

Takže náklady na liečbu mačky molnupiravirom z Indie v rámci schémy osobného dovozu budú predstavovať približne 2 % nákladov na konvenčnú liečbu GS-441524.
To znamená, že žiadna mačka nemusí byť utratená kvôli vysokým nákladom na liečbu –

Obrázok 6; Generický molnupiravir (Molcovir 200 mg kapsuly) zakúpený od spoločnosti IndiaMART a dovezený do Austrálie po preclení

Praktickou otázkou je, ako získať molnupiravir včas. Pri nákupe z tejto webovej stránky to trvá približne 3 týždne, kým sa liek dostane do Austrálie a preclí sa. Jednou z možností by teda bolo začať liečbu remdesivirom a/alebo GS-441524 a prejsť na molnupiravir hneď, ako liek dorazí. Alternatívou je vytvoriť “klub nákupcov”, možno s podporou farmakologickej pobočky Austrálskej a novozélandskej veterinárnej akadémie (Australian and New Zealand College of Veterinary Science Pharmacology chapter), a ten bude zdrojom molnupiraviru, kým si klient nebude môcť zabezpečiť dovoz vlastných zásob. Ďalšou možnosťou by bolo, keby nejaká zložená lekáreň doviezla liek od spoľahlivého výrobcu a upravila ho do veľkosti vhodnej pre mačky a mačiatka, možno ako 60 mg odmeranú tabletu, ktorá by sa dala rozdeliť na polovicu.

Aký je najlepší spôsob liečby mačky s FIP v roku 2022 v Austrálii?

Táto otázka nie je taká jednoduchá, ako by sa mohlo zdať. Remdesivir a GS-441524 majú na konte veľa úspechov ako liečba FIP u mačiatok a mačiek a vyhovuje nám aj nízka dávka meflochínu ako doplnkový liek na konsolidáciu liečby. Väčšina z nás, ktorí sme asistovali pri liečbe mačiek, však poznáme prípady, keď sa u vírusu FIP počas liečby vyvinula získaná mutačná rezistencia. Často sa to dá obísť zvýšením podávaných dávok lieku GS0-441524, ale mnohí majitelia si tento postup jednoducho nemôžu dovoliť.

Rutinné používanie kombinovanej terapie prípadov FIP s použitím GS-441524 a molnupiraviru sa teda dá odporučiť a je skutočne možné, že kombinovaná terapia by mohla byť účinnejšia a rýchlejšia, pretože útočí na dva rôzne ciele vo víruse FIP, a to by potenciálne mohlo viesť ku skráteniu doby liečby. Myšlienka 84-dňovej terapie pochádza zo základnej práce Neila Pedersena a možno aj z predpokladu, že životnosť makrofágov v tkanivách je približne 84 dní, takže na kompletnú elimináciu všetkého vnútrobunkového vírusu, ktorý sa ukrýva v systéme mononukleárnych fagocytov, musíme liečiť dlhšie ako 84 dní životnosti makrofágu.

Pre mnohých klientov sú však obrovské náklady na liečbu neprekonateľným problémom a pre mnohých, a dovolím si tvrdiť, že pre väčšinu klientov, bude možnosť liečiť ich mačiatko alebo mačku za 200 dolárov (náklady na lieky) tým najpodstatnejším argumentom.

Aká je nevýhoda molnupiraviru? Veľkou neznámou je, či molnupiravir nebude mať dlhodobé toxické účinky, keďže účinná látka, N4-hydroxycytidín, je mimoriadne silný mutagén a čas liečby FIP je oveľa dlhší ako 5 dní odporúčaných na liečbu Covid-19 u ľudských pacientov. Pravdepodobnosť vedľajších účinkov je teda teoreticky vyššia. Pre mňa je to úplne teoretické riziko, ale je to niečo, čo musíme u pacientov, ktorých liečime, sledovať, uvedomujúc si možnosť neskoršieho vzniku rakoviny v niektorých prípadoch.

Literatúra

1. Černá, P.; Ayoob, A.; Baylor, C.; Champagne, E.; Hazanow, S.; Heidel, R.E.; Wirth, K.; Legendre, A.M.; Gunn-Moore, D.A. Retrospective Survival Analysis of Cats with Feline Infectious Peritonitis Treated with Polyprenyl Immunostimulant That Survived over 365 Days. Pathogens 202211, 881. https://doi.org/10.3390/pathogens11080881

2. Jones, S.; Novicoff, W.; Nadeau, J.; Evans, S. Unlicensed GS-441524-Like Antiviral Therapy Can Be Effective for at-Home Treatment of Feline Infectious Peritonitis. Animals 202111,2257. https://doi.org/10.3390/ani11082257

3. Atmar RL, Finch N. New Perspectives on Antimicrobial Agents: Molnupiravir and Nirmatrelvir/Ritonavir for Treatment of COVID-19. Antimicrob Agents Chemother. 2022 Aug 16;66(8):e0240421. doi: 10.1128/aac.02404-21. Epub 2022 Jul 12. PMID: 35862759; PMCID: PMC9380556.

4. https://ccah.vetmed.ucdavis.edu › files › inline-files (this is a fantastic review of this subject, although some of the arithmetic is wrong. Highly recommended for people who are interested in drug development and action.)

5. https://www.smh.com.au/healthcare/fixhepc-the-buyers-club-for-hepatitis-c-drug-inundated-with-inquiries-20151002-gjzud9.html

6. https://insightplus.mja.com.au/2022/28/importing-medicines-from-overseas-guidance-needed/

7. https://www.tga.gov.au/products/unapproved-therapeutic-goods/personal-importation-scheme

Klinické a molekulárne súvislosti medzi COVID-19 a mačacou infekčnou peritonitídou (FIP)

Arjun N. Sweet, Nicole M. André, Alison E. Stout, Beth N. Licitra and Gary R. Whittaker
Julia A. Beatty, Academic Editor and Séverine Tasker, Academic Editor

Pôvodný článok: Clinical and Molecular Relationships between COVID-19 and Feline Infectious Peritonitis (FIP)

Abstrakt

Výskyt ťažkého akútneho respiračného syndrómu 2 (SARS-CoV-2) viedol lekársku a vedeckú komunitu k riešeniu otázok týkajúcich sa patogenézy a klinickej prezentácie COVID-19; relevantné klinické modely okrem ľudí však stále chýbajú. U mačiek sa môže všadeprítomný koronavírus, popisovaný ako mačací koronavírus (FCoV), prejavovať ako mačacia infekčná peritonitída (FIP) – hlavná príčina úmrtnosti mladých mačiek, ktorá je charakterizovaná ako ťažký systémový zápal. Rôznorodé mimopľúcne príznaky FIP a rýchlo progredujúci priebeh ochorenia spolu s blízkym etiologickým agensom predstavujú určitý stupeň prekrývania s COVID-19. Tento článok sa zaoberá molekulárnymi a klinickými vzťahmi medzi FIP a COVID-19. Aj keď medzi týmito dvoma syndrómami existujú kľúčové rozdiely, tieto podobnosti podporujú ďalšie skúmanie mačacích koronavírusov ako prirodzene sa vyskytujúceho klinického modelu pre koronavírusové ochorenie u ľudí.

Kľúčové slová: mačacia infekčná peritonitída, SARS-CoV-2, COVID-19, mačky

1. Úvod

V 60. rokoch 20. storočia bola opísaná mačacia infekčná peritonitída (FIP) ako ochorenie domácich mačiek a následne sa zistilo, že ide o vírusovú etiológiu, konkrétne o mačací koronavírus (FCoV) [1,2]. U väčšiny mačiek má infekcia vírusom FCoV za následok mierne až nevýrazné klinické príznaky, avšak u malej časti mačiek sa vyvinie závažné ochorenie a podľahnú systémovej forme ochorenia, známej ako FIP [3]. V priebehu rokov od objavenia FCoV zostali mnohé znaky FCoV nepochopené. Podobne pandémia COVID-19, spôsobená výskytom SARS-CoV-2, nastolila mnoho rovnako náročných otázok týkajúcich sa patogenézy, prenosnosti a liečby. Rozsiahly prenos FCoV/SARS-CoV-2 a nenápadný nástup závažných príznakov v prípade FIP aj COVID-19 obmedzuje možnosť včasného odhalenia ochorenia – to, čo môže začať len ako mierne alebo dokonca nevýrazné klinické príznaky alebo symptómy, môže rýchlo viesť k systémovému ochoreniu [3,4]. Domnievame sa, že FIP môže predstavovať cenný, prirodzene sa vyskytujúci mimopľúcny model COVID-19.

FCoV aj SARS-CoV-2 patria do čeľade Coronaviridae [4,5], aj keď do rôznych rodov (obrázok 1). FCoV spolu s podobnými živočíšnymi koronavírusmi, ako je psí koronavírus (CCoV) a vírus prenosnej gastroenteritídy (TGEV) u ošípaných, patria do rodu alfakoronavírusov. Do rodu alfakoronavírusov sa zaraďujú aj komunitné respiračné (CAR) ľudské koronavírusy 229E a NL63 [6], pričom druhý menovaný sa spája s bežným prechladnutím, krupom a prípadne Kawasakiho chorobou u detí [7]. Naproti tomu SARS-CoV-2 spolu so SARS-CoV ( pôvodca vypuknutia ťažkého akútneho respiračného syndrómu v rokoch 2002 – 2003) a koronavírusom blízkovýchodného respiračného syndrómu (MERS-CoV) patria do rodu betakoronavírusov [8], pričom SARS-CoV-2 a SARS-CoV patria do línie B (sarbecovírus) a MERS-CoV do línie C (merbecovírus). Medzi menej príbuzné betakoronavírusy patrí ľudský koronavírus CAR OC43 (spojený s bežným prechladnutím), vírus myšej hepatitídy (MHV) a bovinný koronavírus, ktorý je spojený so zápalom pľúc a hnačkou u hovädzieho dobytka; tieto vírusy sú v línii A (embekovírus).

Obrázok 1
Fylogenetický strom hrotových proteínov vybraných koronavírusov. Fylogenetický strom maximálnej vierohodnosti bol zostrojený pomocou programu MEGAX (100 bootstrapov) z viacnásobného zarovnania sekvencií hrotových proteínov. Hrotové sekvencie aminokyselín boli získané z GenBank NCBI. Príslušné čísla sú: vírus transmisívnej gastroenteritídy/TGEV (P07946), koronavírus ťažkého akútneho respiračného syndrómu 2/SARS-CoV-2 (YP_009724390.1), koronavírus blízkovýchodného respiračného syndrómu/MERS-CoV(AFS88936. 1), vírus hepatitídy myší/MHV-1 (ACN89742), koronavírus ťažkého akútneho respiračného syndrómu/SARS-CoV (AAT74874.1), koronavírus mačiek/FCoV-Black (EU186072. 1), bovinný koronavírus/BCoV (P15777), psí koronavírus/CCoV (AY436637.1), ľudský koronavírus/HCoV-OC43(NC_006213.1), HCoV-229E(NC_002645.1) a HCoV-229E(NC_002645.1).

FCoV možno klasifikovať dvoma spôsobmi, pričom prvý sa týka formy ochorenia. Mačací enterický koronavírus (FECV) sa považuje za pôvodcu miernej gastrointestinálnej formy ochorenia, zatiaľ čo vírus mačacej infekčnej peritonitídy (FIPV) sa spája so smrteľnou systémovou infekciou známou ako FIP [3]. FIPV sa od FECV odlišuje svojou schopnosťou infikovať a účinne sa replikovať v monocytoch a makrofágoch [9], čím vyvoláva systémový zápal. FIPV sa spája so spektrom klinických následkov. Na jednom konci spektra je efuzívna alebo “mokrá” FIP, ktorá rýchlo progreduje a zahŕňa hromadenie vysoko proteínového exsudátu v brušnej a/alebo hrudnej dutine. Na druhej strane spektra je neefuzívna alebo “suchá” FIP, ktorá môže postihnúť mnohé orgánové systémy, ale zvyčajne sa vyznačuje neurologickými a očnými príznakmi. Nefuzívna FIP má vo všeobecnosti zdĺhavejší priebeh ochorenia a je menej častá ako jej efuzívny náprotivok. FCoV možno tiež rozdeliť na dva sérotypy – typ I alebo typ II – na základe hlavných rozdielov v hrotovom proteíne vírusu, ktoré ovplyvňujú väzbu na receptor a odpoveď protilátok [10]. Receptorom pre FCoV typu II je mačacia aminopeptidáza N (fAPN) [11], zatiaľ čo receptor pre vírusy typu I nie je identifikovaný. Typ I FCoV predstavuje prevažnú väčšinu prípadov FIP [12].

Klasifikácia vírusu SARS-CoV-2 na rôzne varianty na základe genetických mutácií stále prebieha, pretože vírus sa naďalej vyvíja. Vírusové línie, ktoré vykazujú potenciál zvýšenej prenosnosti, odolnosti voči liečbe, odolnosti voči vakcínam alebo zvýšenej chorobnosti a úmrtnosti, boli označené ako varianty vzbudzujúce obavy (VOC). Spektrum ochorení spojených s COVID-19 je široké a siaha od asymptomatických a miernych infekcií až po syndróm akútnej respiračnej tiesne (ARDS), syndróm systémovej zápalovej reakcie (SIRS) a multiorgánové zlyhanie a smrť. Systémový zápal pri SARS-CoV-2 nie je spojený s makrofágmi a monocytmi (ako pri FIP), ale zodpovedá za širokú škálu mimopľúcnych príznakov. Zdá sa, že sa na tom podieľa receptor SARS-CoV-2, angiotenzín konvertujúci enzým-2 (ACE-2), ktorý zohráva dôležitú úlohu v systéme renín-angiotenzín a rozvoji prozápalového stavu [13]. Multisystémový zápalový syndróm (MIS) detí a dospelých, ako aj postakútny priebeh infekcie SARS-CoV-2 (PASC), známy aj ako “dlhý COVID”, sú potenciálnymi dôsledkami infekcie COVID-19.

2. Prenos

Ako skupina sú koronavírusy známe svojou schopnosťou spôsobovať respiračné aj črevné ochorenia a zvyčajne sa prenášajú jednou alebo obidvomi cestami. Zatiaľ čo FCoV sa považuje za fekálno-orálny a SARS-CoV-2 je primárne respiračný, pacienti s COVID-19 môžu vylučovať infekčný vírus v stolici [14], často po dlhšiu dobu, a FCoV môže ľahko infikovať oronasálnou cestou, čo je bežná metóda pokusného očkovania mačiek [15].

Vo väčšine prípadov je infekcia FCoV samoobmedzujúca, a hoci vírus možno detekovať systémovo, replikácia mimo črevného epitelu je slabá. Táto forma vírusu, označovaná ako FECV, je ľahko prenosná fekálno-orálnou/oronasálnou cestou, pričom bežnými zdrojmi infekcie sú spoločné koterce a prehltnutie vírusových častíc pri čistení. Súčasné chápanie rozvoja FIP zahŕňa vnútornú mutáciu: v malej podskupine prípadov FECV vedie komplexná kombinácia hostiteľských a vírusových faktorov k mutácii (mutáciám), ktorá umožňuje účinnú replikáciu v makrofágoch a monocytoch [16]. Tieto letálne varianty sa klasifikujú ako FIPV a spájajú sa so systémovým zápalom, zlyhaním orgánov a smrťou. FIPV sa vo všeobecnosti považuje za neprenosný, pretože faktory, ktoré zvyšujú jeho tropizmus na makrofágy, zrejme obmedzujú jeho fekálno-orálne šírenie [17]. V chovných staniciach a útulkoch boli zaznamenané ohniská FIP. V týchto situáciách môže stres z preplnenia a vysoké hladiny vírusu v prostredí podporovať premenu FECV na FIPV. Existujú dôkazy, že niektoré kmene FCoV môžu byť k tomuto prerodu náchylnejšie ako iné [18,19].

Infekcia vírusom SARS-CoV-2 je primárne zameraná na respiračný epitel, ale podobne ako v prípade FCoV sa vírus môže objaviť systémovo bez príslušných príznakov infekcie [20,21]. Asymptomatickí jedinci sú dobre zdokumentovaným zdrojom SARS-CoV-2 [22,23,24] a prenos zahŕňa inhaláciu aerosólov aj kontakt s kvapôčkami [25]. Inkubačné doby SARS-CoV-2 a FECV sa pohybujú od 2 do 14 dní [26]. Inkubačná doba FIP je veľmi variabilná, ovplyvnená časom do vnútornej mutácie a imunitnou odpoveďou jedinca. K nástupu FIP môže dôjsť niekoľko týždňov až mesiacov po počiatočnej infekcii [27,28,29,30]. Multisystémový zápalový syndróm u detí (MIS-C), závažný prejav SARS-CoV-2, sa tiež oneskoruje za počiatočnou infekciou s mediánom nástupu 4 týždne. S rozvojom MIS-C neboli spojené žiadne vírusové faktory, ale predpokladá sa imunitne sprostredkovaná zložka.

Vertikálny prenos FIP prostredníctvom placenty alebo mlieka sa považuje za zriedkavý. V prvej experimentálnej štúdii, v ktorej bola infikovaná dojčiaca mačka, jedno zo štyroch mačiatok podľahlo FIP [28]. Zdá sa, že materské protilátky účinne zabraňujú prenosu až do veku približne šiestich týždňov, keď sa znižujú hladiny protilátok a mačiatka sú náchylné na prenos fekálno-orálnou cestou [31]. Táto imunita získaná od matky však môže byť prekonaná v ranom veku vysokou úrovňou expozície FCoV – švajčiarska štúdia preukázala, že mačiatka vo veľkých chovoch vykazujú infekciu vo veku dvoch týždňov [32,33]. Vertikálny prenos predstavuje pri infekcii SARS-CoV-2 riziko. Placentárny prenos je zriedkavý, ale bol zdokumentovaný u plodov matiek infikovaných SARS-CoV-2 [34,35,36], čo dokazuje detekcia vírusu v plodovej vode, krvi novorodenca, pupočníkovej krvi a placentárnom tkanive. Prípady prenosu boli zdokumentované na začiatku aj na konci tehotenstva, ale k infekcii novorodenca vírusom SARS-CoV-2 nemusí vždy dôjsť v maternici. K infekcii môže dôjsť aj počas pôrodu alebo pri blízkom kontakte s matkou. Neonatálne výsledky matiek infikovaných COVID-19 zostávajú naďalej predmetom štúdia, pričom je problematické rozlíšiť vplyv infekcie SARS-CoV-2 a komorbidít matky. Napriek tomu sa zdá, že infekcia novorodencov nie je bez následkov, pričom v jednej analýze sa uvádza, že približne 50 % infikovaných novorodencov vykazuje klinické príznaky súvisiace s COVID-19 vrátane horúčky a respiračných a gastrointestinálnych príznakov [37].

3. Všeobecná klinická prezentácia

Klinické príznaky spojené s FIP aj COVID-19 zahŕňajú horúčku, hnačku, depresiu, slabosť, anorexiu a dyspnoe [1]. Typický prejav COVID-19 bežne zahŕňa nešpecifické príznaky vrátane horúčky, suchého kašľa, únavy, dýchavičnosti a myalgie [38]. Anosmia (strata čuchu) a ageúzia (strata chuti) boli tiež často hlásené pri COVID-19 a predstavujú špecifickejšie symptomatické ukazovatele ochorenia [39]. Môže sa vyskytnúť pneumónia, syndróm akútnej respiračnej tiesne (ARDS) a sepsa. Zdá sa, že muži sú vystavení vyššiemu riziku vzniku závažnejších prejavov COVID-19 [40,41], pričom niekoľko malých štúdií potvrdzuje rovnakú súvislosť medzi samčím pohlavím a vznikom FIP u mačiek [42,43].

Klasickým prejavom FIP je vznik výpotku v brušnej a/alebo hrudnej dutine; hoci tento prejav bol zaznamenaný aj u COVID-19 [44], je veľmi zriedkavý. Okrem toho sa FIP prejavuje v rôznych telesných systémoch, ktoré majú podobnosť s mimopľúcnymi prejavmi COVID-19 (obrázok 2 a obrázok 3). Najpodobnejším znakom oboch ochorení je endotelová dysfunkcia. Charakteristickým znakom patológie FIP je vaskulitída [45,46] s léziami charakterizovanými perivaskulárnym edémom a infiltráciou, degeneráciou cievnej steny a proliferáciou endotelu [47]. V prípade COVID-19 sa predpokladá, že mimopľúcne príznaky sú spôsobené vírusom sprostredkovanou endoteliitídou, ktorá vedie k vaskulitíde, predovšetkým v žilách s malým postihnutím arteriol [48,49]. V nasledujúcich častiach popíšeme tieto mimopľúcne príznaky a poukážeme na kľúčové podobnosti a rozdiely.

Obrázok 2
Súhrn systémových klinických príznakov a patologických stavov spojených s FIP. Je známe, že FIP je systémová infekcia s rôznorodými prejavmi. Sú tu zhrnuté možné systémové klinické príznaky spojené s FIP, ktoré zahŕňajú orgánové systémy, ktoré sú tiež postihnuté COVID-19. Najčastejšie príznaky FIP sú zvýraznené červenou farbou.

Obrázok 3
Súhrn systémových klinických príznakov, symptómov a patológií súvisiacich s COVID-19. Respiračné príznaky COVID-19 sú hlavným prejavom ochorenia. Infekcia SARS-CoV-2 u ľudí však môže mať za následok aj rôzne mimopľúcne príznaky. Sú tu zhrnuté systémové klinické príznaky a symptómy spojené s COVID-19, ktoré zahŕňajú orgánové systémy, ktoré sú tiež postihnuté FIP. Najčastejšie príznaky COVID-19 sú zvýraznené červenou farbou. ARDS znamená syndróm akútnej respiračnej tiesne.

4. Biomarkery

Zápalové biomarkery sú významné ako prognostické ukazovatele v prípade COVID-19 a ako prostriedok na odlíšenie FIP od iných ochorení. Pri FIP sa zdá, že expresia IL-6 je zvýšená v ascitickej tekutine mačiek infikovaných FIP, pravdepodobne prostredníctvom zvýšenej expresie v srdci a pečeni [50,51]. Pri infekcii FIP sú zvýšené aj iné proteíny akútnej fázy. Alfa-1-kyslý glykoproteín (AGP) sa skúmal ako diagnostický marker FIP, ale môže byť zvýšený aj pri iných stavoch, čím sa obmedzuje jeho špecifickosť [52,53]. Sérový amyloid A (SAA) je ďalším proteínom akútnej fázy, ktorý zrejme rozlišuje medzi infekciou FIPV a FECV, pričom mačky infikované FIPV vykazujú vyššie hladiny SAA v porovnaní s mačkami infikovanými FECV a kontrolnými mačkami bez SPF [54], ale má obmedzené použitie pri rozlišovaní FIP od iných efuzívnych stavov [55].

Podobne ako v prípade FCoV majú jedinci trpiaci ťažkými formami COVID-19 vyššie hladiny SAA v porovnaní s jedincami s miernejšou formou COVID-19 [56]. Vyššie hladiny SAA sa uvádzajú aj u pacientov, ktorí zomreli na COVID-19, v porovnaní s tými, ktorí prežili [57]. C-reaktívny proteín (CRP) je ďalší marker, ktorý sa ukazuje ako sľubný biomarker pri infekciách FCoV aj SARS-CoV-2. Syntéza CRP pečeňou je indukovaná expresiou IL-6 ako odpoveď na zápal [58] a je zvýšená v prípadoch FIP [59]. Zvýšené hladiny CRP v počiatočných štádiách COVID-19 sa spájajú s ťažším priebehom ochorenia a vyššou úmrtnosťou [60,61,62], čo viedlo k odporúčaniu používať ho ako prognostický ukazovateľ pri hodnotení rizika u pacientov hospitalizovaných pre COVID-19. Naopak, v jednom metaprieskume sa zistilo, že hladiny IL-6 sú síce zvýšené, ale minimálne o jeden rád nižšie u pacientov s COVID-19 ako u pacientov s ARDS a sepsou nesúvisiacou s COVID-19, čo naznačuje iný mechanizmus imunitnej dysregulácie [63].

D-dimér, hoci nie je špecifický pre COVID-19 alebo FIP, je ďalším zaujímavým biomarkerom. D-dimér sa uvoľňuje pri rozpade fibrínu a používa sa ako klinický nástroj na vylúčenie tromboembólie [64]. Trombotické príhody boli často zdokumentované u COVID-19 vo viacerých orgánových systémoch [65,66] a zvýšené hladiny D-diméru sú spojené s vyššou morbiditou a mortalitou [67,68]. Podobne sa trombotické príhody môžu vyskytnúť aj pri FIP a vysoké hladiny D-dimérov spolu s ďalšími príznakmi diseminovanej intravaskulárnej koagulácie (DIC) možno pozorovať v konečných štádiách FIP pri prirodzených aj experimentálnych infekciách [69,70].

5. Patofyziológia

5.1. Neurologická

FIP je jedným z hlavných infekčných neurologických ochorení mačiek a príznaky spojené s infekciou centrálneho nervového systému (CNS) sú dobre zdokumentované [71]. Príznaky CNS sa zaznamenávajú približne v 40 % prípadov suchej FIP a môžu sa prejavovať ako nystagmus, torticollis, ataxia, paralýza, zmenené správanie, zmenená mentácia a záchvaty [72]. Široké spektrum príznakov podporuje záver, že infekcia nie je obmedzená na určitú časť CNS [73]. Infekcia v CNS je obmedzená na monocytovú a makrofágovú líniu a vedie k pyogranulomatóznemu a lymfoplazmacytickému zápalu, ktorý zvyčajne postihuje leptomeningy, choroidálny plexus a periventrikulárny parenchým [74].

Dokumentácia neurologických príznakov spojených s infekciou CNS vírusom SARS-CoV-2 je v porovnaní s inými koronavírusmi obmedzená [75]. Pozorované príznaky sú rôzne, od bolesti hlavy a zmätenosti až po záchvaty a akútne cerebrovaskulárne príhody [76]. Odhalenie vírusu v mozgu je zriedkavé, čo naznačuje, že príznaky nemusia priamo súvisieť s infekciou CNS. Vírusové častice boli pozorované v endotelových bunkách neurálnych kapilár a v podskupine kraniálnych nervov, hoci takáto detekcia nekoreluje so závažnosťou neurologických príznakov [77]. Často nie sú zjavné dôkazy priamej infekcie. Namiesto toho sa zaznamenávajú zápalové mediátory, ako napríklad aktivovaná mikroglia, ktoré môžu prispievať k mikrovaskulárnemu poškodeniu a ochoreniu. [78,79].

Ďalšie porovnanie neurozápalových vlastností SARS-CoV-2 a FCoV môže priniesť nový pohľad na neurologické prejavy COVID-19. Pre pochopenie progresie COVID-19 a rozsahu infekcie CNS je nevyhnutné ďalšie skúmanie neurologických príznakov spojených so SARS-CoV-2.

5.2. Oftalmologická

Očné prejavy FIP sú častejšie pri suchej forme ochorenia [80]. Bola pozorovaná mydriáza, iritída, odlúčenie sietnice, konjunktivitída, hyféma a keratické precipitáty [81]. Najčastejším očným prejavom FIP je uveitída, ktorá môže postihovať prednú aj zadnú uveu [80]. Vírusový antigén sa môže zistiť aj v epiteliálnych bunkách niktitujúcej membrány, avšak detekcia vírusového antigénu nerozlišuje medzi FECV a FIPV [82].

Medzi očné prejavy COVID-19 patrí konjunktivitída, chemóza, epifora, hyperémia spojiviek a zvýšená produkcia sĺz [83]. Uveitída – bežná očná prezentácia FIP – bola pozorovaná aj pri infekcii SARS-CoV-2 [84,85]. Zistenie vírusu v slznej tekutine viedlo k obavám z očného prenosu v prvých mesiacoch pandémie COVID-19 [83,86]. RNA SARS-CoV-2 bola zistená v slzných sekrétoch a bola izolovaná z očných sekrétov, čo podporuje možnosť oftalmologického prenosu [87,88]. Je zaujímavé, že v uvedenej prípadovej štúdii v Číne sa z 12 pacientov s oftalmologickými príznakmi vrátili pozitívne spojivkové testy len u 2 pacientov, čo naznačuje obmedzenú citlivosť pri detekcii vírusu zo spojivkových vzoriek [83].

5.3. Kardiovaskulárna

Perikardiálny výpotok je menej častým prejavom FIP, ale v literatúre je dobre zdokumentovaný [26,89,90,91]. FCoV bol zistený v perikarde mačky s opakovaným perikardiálnym výpotkom, u ktorej sa neskôr objavili neurologické príznaky [92]. Priama infekcia srdca vírusom FCoV bola zdokumentovaná v prípadovej štúdii z roku 2019, v ktorej sa uvádza myokarditída spojená s FIP s výraznou hypertrofiou ľavej komory a zväčšením predsiení [93]. Imunohistochémia (IHC) odhalila prítomnosť makrofágov infikovaných FCoV a pridružených pyogranulomatóznych lézií. [26]. Je zaujímavé, že ťažká infekcia SARS-CoV-2 s dôkazom replikácie vírusu v srdci a pľúcach bola nedávno zdokumentovaná u mačky s už existujúcou hypertrofickou kardiomyopatiou (HCM) [94].

Na rozdiel od FIP sa zdá, že poškodenie srdca spojené s infekciou SARS-CoV-2 je oveľa rozšírenejšie. V štúdii na 187 pacientoch sa zistilo, že 27,8 % prípadov COVID-19 vykazovalo dôkazy o poškodení myokardu, o čom svedčia zvýšené hladiny srdcového troponínu (TnT) [95]. Vysoké hladiny TnT boli zase spojené s vyššou úmrtnosťou. V retrospektívnej multicentrickej štúdii 68 pacientov s COVID-19 sa zaznamenalo 27 úmrtí, ktoré bolo možné pripísať poškodeniu myokardu a/alebo zlyhaniu krvného obehu ako jednej z hlavných príčin úmrtnosti, pričom zvýšené hladiny C-reaktívneho proteínu a IL-6 boli spojené s vyššou úmrtnosťou [96]. Zvýšenie takýchto zápalových biomarkerov v krvi naznačuje, že rýchly zápalový charakter COVID-19 môže mať obzvlášť škodlivý vplyv na funkciu srdca. Pri infekcii COVID-19 sa zaznamenal difúzny edém, ako aj zvýšená hrúbka steny a hypokinéza [97]. U pacientov s COVID-19 bola pozorovaná aj tamponáda srdca, pričom v perikardiálnej tekutine boli zistiteľné hladiny SARS-CoV-2 [98]. Na rozdiel od FIP, pri ktorej sa pri myokarditíde pozorovala priama invázia makrofágov infikovaných FCoV do myokardu, infekcia myokardu vírusom SARS-CoV-2 nie je jednoznačne spojená s infiltráciou mononukleárnych buniek alebo myokarditídou [99]. To vedie k úvahám o viacerých systémových faktoroch pri nepriaznivých výsledkoch srdca – najmä o dysregulácii zápalových cytokínov. Vplyv infekcie SARS-CoV-2 na kardiovaskulárny systém je dôležitým prvkom nášho prehlbujúceho sa chápania morbidity a mortality spojenej s COVID-19.

5.4. Gastroenterologická

FCoV sa vylučuje vo výkaloch a prenáša sa oronazálnou cestou. Počiatočná infekcia FCoV je zameraná na črevný trakt – infekcia môže byť subklinická alebo sa u mačiek môže objaviť hnačka a menej často zvracanie. Primárna infekcia trvá niekoľko mesiacov a vírus sa môže vylučovať mesiace až roky [100,101]. Zdá sa, že bunky stĺpcového epitelu hrubého čreva slúžia ako rezervoár pre perzistentnú infekciu a vylučovanie [21]. Príznaky bývajú mierne a samovoľné a len malá časť zvierat prejde do štádia FIP. Fibrinózna serozitída a pyogranulomatózne lézie s vaskulitídou sú klasickými léziami FIP a možno ich nájsť v tenkom aj hrubom čreve postihnutých mačiek [102]. FIP môže spôsobiť solitárne masové lézie v črevnej stene, hoci sa to pokladá za zriedkavú prezentáciu (26/156 mačiek v jednej štúdii) [103]. Tieto sa zvyčajne nachádzajú v hrubom čreve alebo ileocekálnom spoji a majú pyogranulomatózny charakter.

Pri infekcii COVID-19 sú často hlásené gastroenterologické príznaky. ACE2, bunkový receptor pre SARS-CoV-2, je široko exprimovaný v žľazových bunkách žalúdočného, dvanástnikového a rektálneho epitelu. V týchto tkanivách sa zistila vírusová RNA a nukleokapsid [104], čo podporuje ich vhodnosť na replikáciu SARS-CoV-2. Gastrointestinálne (GI) príznaky sa pohybujú od všeobecného nechutenstva až po hnačku, nevoľnosť, vracanie a bolesti brucha [105,106]. Ak vylúčime menej špecifický príznak nechutenstva, viaceré metaanalýzy odhadujú prevalenciu GI príznakov u pacientov s COVID-19 na približne 10 % až 20 %, pričom najčastejšie hláseným príznakom je hnačka [106,107,108]. Zaujímavé je, že GI symptómy u COVID-19 boli pozorované bez sprievodu respiračných príznakov [105].

Vylučovanie vírusu vo výkaloch vyvoláva v prípade COVID-19 značné obavy, pretože RNA SARS-CoV-2 môže byť naďalej prítomná vo výkaloch aj po dosiahnutí nedetekovateľných hladín vo vzorkách z horných dýchacích ciest [109]. Hoci samotná detekcia vírusovej RNA v stolici nemusí nevyhnutne svedčiť o prítomnosti infekčných viriónov, v stolici boli zistené životaschopné vírusové častice [110]. Vírusový antigén pretrváva v bunkách gastrointestinálneho traktu aj v rekonvalescentnej fáze, a to až 6 mesiacov po vyliečení [20]. V jednej prípadovej štúdii bola perzistujúca infekcia hrubého čreva spojená s pretrvávajúcimi gastrointestinálnymi príznakmi v prípade “dlhého COVID” [111], čo zavádza paralelu k úlohe epitelu hrubého čreva ako rezervoáru FCoV.

5.5. Dermatologická

Dermatologické zmeny boli hlásené pri infekciách SARS-CoV-2 aj FIPV. Hoci sú papulózne kožné lézie zriedkavé, sú primárnym dermatologickým prejavom FIP, pričom niekoľko dostupných kazuistík dokumentuje papuly [81,112,113,114]. Pri histologickom vyšetrení sa v niekoľkých kazuistikách FIP zaznamenala pyogranulomatózna dermatitída, flebitída, periflebitída, vaskulitída a nekróza [81,112,113,114,115].

Prvá správa o dermatologických prejavoch spojených s COVID-19 bola zaznamenaná v nemocnici Lecco v Lombardii v Taliansku [116]. V tejto štúdii sa u 18/88 pacientov (20,4 %) prejavilo kožné postihnutie, pričom 8/18 pacientov bolo pozorovaných pri nástupe ochorenia a 10/18 po hospitalizácii [116]. Klinické príznaky zahŕňali erytematóznu vyrážku (14/18 pacientov), difúznu urtikáriu (3/18 pacientov) a vezikuly podobné ovčím kiahňam (1/18 pacientov) [116]. Lézie sa pozorovali predovšetkým na trupe (torze) a pruritus bol mierny alebo chýbal [116]. Pokračovanie pandémie prinieslo lepšiu charakteristiku prvých pozorovaných dermatologických príznakov, ako aj identifikáciu zriedkavejších prezentácií. Zdá sa, že najčastejším dermatologickým prejavom COVID-19 je exantémová vyrážka, často charakterizovaná makulopapulóznymi léziami [117,118]. Ďalším prevažujúcim dermatologickým príznakom sa zdá byť aj urtikária [118,119]. Dôležité je, že ani exantém, ani urtikária nie sú špecifické pre COVID-19, čo obmedzuje ich pozitívnu prediktívnu hodnotu. Exantém podobný varicelle bol pozorovaný pri infekcii SARS-CoV-2 a môže byť špecifickejším prejavom vzhľadom na jeho nízku prevalenciu pri vírusových ochoreniach. Najmä s chýbajúcimi léziami v ústnej dutine a pruritom pozorovaným pri vyrážke spojenej s COVID-19, spolu s predchádzajúcou anamnézou infekcie varicelou, sa špecifickosť tejto prezentácie posilňuje [118].

5.6. Teriogenologická

Vo viacerých prípadoch FIP sa pozorovala orchitída a periorchitída s fibrinopurulentnými alebo granulomatóznymi infiltrátmi, ako aj hypoplastické semenníky [1,26,120]. Zápalové mediátory z tuník obklopujúcich semenníky spôsobili zväčšenie semenníkov u mačiek s FIP [26,120]. Pri efuzívnej FIP sa pozorovalo zväčšenie mieška v dôsledku edému a peritonitídy tuník [16]. Napriek zjavnej patológii samčieho reprodukčného systému mačiek sa FCoV v sperme nezistil, čo znižuje pravdepodobnosť pohlavného spôsobu prenosu [121]. Patológia reprodukčného systému samíc pri FIP je zdokumentovaná v literatúre menej, ale boli pozorované makroskopické lézie prítomné vo vaječníkoch mačiek infikovaných FIPV. Okolité cievy maternice a vaječníkov týchto mačiek boli obklopené lymfocytmi, makrofágmi, plazmatickými bunkami a neutrofilmi [122].

Podobne ako pri FIP sa patológia COVID-19 prejavuje aj v reprodukčnom systéme mužov. V jednej štúdii, v ktorej sa skúmali semenníky 12 pacientov s COVID-19, sa zistil edém, ako aj lymfocytárna a histiocytárna infiltrácia, čo zodpovedá vírusovej orchitíde [123]. Tieto vzorky sa vyznačovali aj poškodením semenotvorných kanálikov s výrazným vplyvom na Sertoliho bunky, ako aj zníženým počtom Leydigových buniek. V samostatnej štúdii bolo poškodenie zárodočných buniek výraznejšie napriek podobným hodnotám Sertoliho buniek medzi jedincami infikovanými SARS-CoV-2 a neinfikovanými kontrolami, čo predstavuje priamejšiu súvislosť medzi infekciou a plodnosťou [124]. Rozsah, v akom môže SARS-CoV-2 pretrvávať v mužskom reprodukčnom trakte, sa naďalej skúma. Hoci sa SARS-CoV-2 zistil v ľudskom semene, je otázne, či to predstavuje skutočnú infekciu semenníkov alebo je to dôsledok narušenej krvno-epididymálnej/deferentnej bariéry [125,126].

Naše poznatky o COVID-19 v reprodukčnom systéme žien sú stále obmedzené množstvom literatúry a veľkosťou vzoriek existujúcich štúdií. Napriek tomu je pochopenie rozsahu SARS-CoV-2 v ženskom reprodukčnom trakte nevyhnutné na rozpoznanie akýchkoľvek škodlivých vplyvov na plodnosť. ACE2 sa exprimuje vo vaječníkoch, oocytoch a maternici, ale obmedzená koexpresia proteáz, ako sú TMPRSS2 a katepsíny L a B, s ACE2 vyvoláva otázky o pravdepodobnosti infekcie vaječníkov/ maternice [127,128]. Zatiaľ čo v jednej štúdii 35 žien s diagnózou COVID-19 sa SARS-CoV-2 vo vaginálnej tekutine ani v exfoliovaných bunkách z krčka maternice nezistil, v prípadovej štúdii z Talianska sa SARS-CoV-2 zistil vo vaginálnej tekutine prostredníctvom RT-PCR (Ct 37,2 na 7. deň a Ct 32,9 na 20. deň od začiatku príznakov), čo naznačuje, že infekcia ženského reprodukčného systému je možná [129,130].

5.7. Imunologická odpoveď

FIP je klasicky charakterizovaná ako imunitne sprostredkované ochorenie na základe skorých pozorovaní cirkulácie komplementu a imunoglobulínov, a to aj vo forme imunitných komplexov [131]. Boli opísané zložky imunitných reakcií typu III a IV [132]. Predpokladá sa, že vaskulitída a vaskulitíde podobné lézie zohrávajú úlohu pri systémových komplikáciách COVID-19, ktoré nemožno vysvetliť priamou orgánovou infekciou, ako je mikrotrombóza v mozgu, obličkách, slezine a pečeni [133]. V literatúre o COVID-19 bola identifikovaná jedna správa o hypersenzitivite typu III [134]; zdá sa však, že imunitné komplexy nehrajú dôležitú úlohu v patológii COVID-19. Mechanizmus vírusového klírensu a zápalové účinky imunitnej odpovede sú dôležitými oblasťami štúdia v prípade FIP aj COVID-19. Predchádzajúca práca skúmajúca SARS-CoV preukázala nevyhnutnosť CD4+ T buniek pre klírens vírusu [135,136]. Deplécia T-buniek bola uznaným dôsledkom FCoV a pozorovalo sa, že súvisí s ťažšími prípadmi COVID-19 [137,138,139]. Okrem toho sa pri ochorení FIP znižujú regulačné T bunky aj NK bunky v krvi, mezenterických lymfatických uzlinách a slezine [140]. Vysoké hladiny IL-6 boli už skôr preukázané v ascite FIP [50] a podobne sa zdá, že zvýšené hladiny IL-6 súvisia so závažnosťou ochorenia a jeho výsledkom u pacientov s COVID-19 [141]. Cytokínová búrka, charakterizovaná nadmernou expresiou zápalových cytokínov, bola zapojená do patogenézy oboch infekcií. Pri FIP sa táto patológia spája s aktiváciou monocytov a makrofágov, zatiaľ čo pri COVID-19 je spojenie s makrofágmi a monocytmi menej jasné [142]. Pri zvažovaní rovnováhy medzi bunkami sprostredkovanou imunitou a humorálnou imunitou prvé správy naznačovali súvislosť so silnou humorálnou imunitou, ktorá vedie k FIP [143]. U pacientov s COVID-19 však môže humorálna imunita zohrávať prospešnejšiu úlohu [144], najmä vzhľadom na potenciálny klinický prínos konvalescenčnej plazmy/séra [145].

Počas vývoja vakcíny proti SARS-CoV-2 bol obzvlášť dôležitý proces posilňovania infekcie závislý od protilátok (ADE), pri ktorom komplexy vírusu a protilátok posilňujú infekciu. Ukázalo sa, že FIPV vykazuje ADE v prítomnosti protilátok proti FIPV [146]. Zdá sa, že toto zosilnenie infekcie je špecifické pre sérotyp, pričom pasívna imunizácia mačiek proti FIPV typu I alebo typu II vedie k ADE až po napadnutí tým istým sérotypom, pre ktorý bola vykonaná imunizácia [147]. V dôsledku toho je ADE významnou výzvou smerom k vývoju vakcín proti FIP. Pri ochoreniach spôsobených ľudskými koronavírusmi sa ADE ešte len musí úplne pochopiť. Pri SARS-CoV sa zistilo, že vyššie koncentrácie anti-spike protilátok majú vyšší neutralizačný účinok, zatiaľ čo sa predpokladá, že zriedenejšie koncentrácie prispievajú k ADE in vitro [148]. Pri SARS-CoV-2 sa ADE pozorovala v monocytových líniách, ale nesúvisela s reguláciou prozápalových cytokínov [149]. Modelovanie sekvencií hrotových proteínov identifikovalo možné mechanizmy ADE, ktoré zahŕňajú interakciu s receptormi Fc na monocytoch a tukových bunkách [150]. Ak by ADE zohrávala úlohu pri SARS-CoV-2, najpravdepodobnejším mechanizmom by bola nadmerná aktivácia imunitnej kaskády prostredníctvom aktivácie buniek vrodenej imunity sprostredkovanej Fc [151,152]. V súčasnosti neexistuje dostatok dôkazov poukazujúcich na ADE s patogenézou SARS-CoV-2 a na vyhodnotenie skutočného rozsahu rizika je potrebný ďalší výskum.

6. Molekulárne podobnosti medzi hrotovými proteínmi FCoV a SARS-CoV-2

Vírusový hrotový (spike) proteín je hlavným faktorom tkanivového a bunkového tropizmu a viaže bunkový receptor [153]. V súčasnosti je dobre známe, že SARS-CoV-2 viaže angiotenzín konvertujúci enzým-2 (ACE-2) ako primárny receptor, čo je spoločná vlastnosť so SARS-CoV. Pre SARS-CoV-2 existujú aj iní väzboví partneri vrátane heparan sulfátu ako nešpecifickej väzby a neuropilínu-1 (NRP-1), čo môže byť príčinou tropizmu vírusu pre čuchový a centrálny nervový systém [154,155]. Naopak, väčšina alfakornavírusov vrátane FCoV typu II využíva na vstup vírusu aminopeptidázy (APN) [9,153,156]. Receptor pre FCoV typu I je potrebné ešte objasniť. Hrotový proteín tiež sprostredkúva fúziu membrán, ktorá sa aktivuje zložitým procesom riadeným proteázami hostiteľskej bunky [153]. Zatiaľ čo FCoV typu I má dve miesta aktivácie štiepenia proteázou, označené S1/S2 a S2′, FCoV typu II má len jedno miesto aktivácie štiepenia (S2′) [10]. Na porovnanie, SARS-CoV-2 je podobný FCoV-1 (a v súčasnosti jedinečný pre vírusy súvisiace so SARS) v tom, že má dve identifikované štiepne miesta (S1/S2 a S2′), pričom prvé z nich, furínové štiepne miesto alebo FCS, sa považuje za významný faktor pandemického šírenia [157,158,159]. V oboch prípadoch prítomnosť štiepnych miest S1/S2 odlišuje FCoV-1 a SARS-CoV-2 od ich blízkych príbuzných. Zdá sa, že význam aktivačného miesta štiepenia priamo súvisí s proteázami potrebnými na vírusovú infekciu, a teda s ďalšou zložkou tkanivového tropizmu. Pri FCoV typu I sa prechod od FECV k makrofágovo tropickému FIPV prvýkrát preukázal pomocou aminokyselinových substitúcií v mieste štiepenia S1/S2 na patologických vzorkách potvrdených FIP, ktoré podľa predpokladov znižujú proteolytický priming furínu podobnými proteázami pred aktiváciou fúzneho procesu sprostredkovaného S2′ [72,160,161]. Pri SARS-CoV-2 sú TMPRSS-2 alebo iné príbuzné trypsínu podobné proteázy hlavným aktivátorom fúzie a vstupu na S2′ [162] (tabuľka 1), pričom furínu podobné proteázy primujú hrot a S1/S2 [163] a najmä sa ukázalo, že sú rýchlo regulované po adaptácii na bunky Vero E6 v kultúre a pravdepodobne aj v mimopľúcnych ľudských tkanivách [164]. Zdá sa teda, že medzi týmito dvoma vírusmi existujú pozoruhodné podobnosti v adaptácii hostiteľských buniek.

VírusSkupinaReceptorKonsenzuálna sekvencia S1/S2 v cirkulujúcich vírusochKonsenzuálna sekvencia S2′ v cirkulujúcich vírusoch
SARS-CoV-2BetakoronavírusACE2SPRRAR|S
(*SHRRAR|S a SRRRAR|S)
SKPSKR|S
FCoV-1Alfakoronavírus (“klad A”)neznámySRRSRR|S (u FECV; mutovaný u FIPV)KR|S
FCoV-2Alphacoronavirus (“klad B”)APNneprítomnýYRKR|S
Tabuľka 1
Zhrnutie SARS-CoV-2 a dvoch sérotypov FCoV. Hrotový glykoproteín koronavírusov, sprostredkovaný proteolytickým štiepením, je hlavnou hnacou silou väzby na bunkový receptor a membránovej fúzie. Taxonomická klasifikácia, hostiteľský receptor a aminokyselinové sekvencie proteolytického štiepneho miesta S1/S2 a S2′ sú zhrnuté nižšie.
*, Nahradená v bežných variantoch.

7. Prevencia a liečba: Od sociálneho odstupu k vakcínam

Doteraz bola úloha opatrení v oblasti zdravia obyvateľstva/verejného zdravia hlavnou hnacou silou pri zmierňovaní šírenia FCoV aj SARS-CoV-2 [3,31,165,166]. V tomto ohľade sa pre postihnuté obyvateľstvo zaviedlo mnoho opatrení na zníženie sociálneho odstupu vrátane príkazov zostať doma, zatvorenia prevádzok, ktoré nie sú nevyhnutné, a obmedzenia verejných zhromaždení [167]. Aj keď sa neoznačujú ako sociálny dištanc, podobné metódy sa často zavádzajú alebo odporúčajú aj v populáciách mačiek [3]. Dreschler a kol. sumarizujú metódy, ktoré boli odporúčané v populáciách mačiek, najmä v prostredí s viacerými mačkami, vrátane zníženia počtu mačiek v jednej miestnosti, častého čistenia klietok a zoskupovania mačiek podľa vylučovania a/alebo sérologického stavu [168]. Dreschler uvádza, že karanténa mačiek vystavených FCoV/FIPV s cieľom obmedziť šírenie FCoV v populácii nie je ani účinná, ani výhodná vzhľadom na pravdepodobnosť rozsiahlej infekcie FCoV v prostredí s viacerými mačkami, ako aj na mesiace, ktoré sú potrebné na rozvoj (a neistotu pri rozvoji) FIP. Naopak, karanténa osôb vystavených SARS-CoV-2 má potenciál znížiť šírenie choroby a úmrtnosť [169]. Bez ohľadu na rozsah zoskupenia alebo oddelenia je potrebné starostlivo zvážiť u mačiek aj u ľudí sociálne ťažkosti, ktoré spôsobuje oddelenie. V prípade mačiek, najmä v súvislosti s predčasným odstavením od ich matiek, sa musí v procese odstavenia venovať osobitná pozornosť zabezpečeniu primeranej socializácie mačiatok. Podobne aj v prípade COVID-19 môže byť proces karantény a/alebo izolácie pre jednotlivcov psychicky zaťažujúci. Často sa musí vykonávať dôkladná analýza nákladov a prínosov, aby sa porovnali prínosy karantény a izolácie pre verejné zdravie s negatívnou psychickou záťažou pre osoby, na ktoré sa vzťahuje, aby sa zabránilo zbytočnej/neúčinnej karanténe. V prípade potreby by sa malo poskytnúť odôvodnenie, ako aj podpora na zlepšenie pohody [170].

Hoci je vakcína proti FIP komerčne dostupná (Primucell), prínos očkovania proti FIP je stále nízky. Primucell je intranazálna vakcína, ktorá používa oslabený izolát sérotypu 2 FIPV Hoci je vakcína proti FIP komerčne dostupná (Primucell), prínos očkovania proti FIP je stále nízky. Primucell je intranazálna vakcína, ktorá používa oslabený izolát sérotypu 2 FIPV (FIPV-DF2), podávaný v dvoch dávkach s odstupom 3 až 4 týždňov mačkám vo veku najmenej 16 týždňov [171]. V placebom kontrolovanej experimentálnej štúdii na 138 mačkách vakcinované mačky nevykazovali signifikantne nižší výskyt FIP v porovnaní s kontrolami počas dvanásťmesačného sledovaného obdobia štúdie. Po úprave na titre FCoV mali mačky s nižšími titrami protilátok (100 alebo menej) v čase prvej vakcinácie v porovnaní s mačkami s vyššími titrami (400 alebo viac) významne nižší výskyt FIP [172]. Vzhľadom na vysokú prevalenciu FCoV, najmä v prostredí s viacerými mačkami, však pokusy o zmiernenie výskytu FIP prostredníctvom vakcinácie mačiek, ktoré sú FCoV-naivné vo veku najmenej 16 týždňov, môžu byť nerealizovateľné vzhľadom na vysoký potenciál infekcie FCoV počas 16 týždňov pred vhodnosťou vakcinácie. V dôsledku toho Americká asociácia nemocníc pre zvieratá a Americká asociácia praktických lekárov pre mačky vakcináciu proti FIP neodporúča [173].

ADE zostáva hlavným problémom vakcín proti FIP. Niekoľko štúdií sa pokúsilo znížiť výskyt FIP u experimentálne infikovaných mačiek rekombinantnými a inými experimentálnymi vakcínami, ale opakovane sa uvádza ADE. V jednej placebom kontrolovanej štúdii, v ktorej boli čistokrvné britské krátkosrsté mačky a domáce krátkosrsté mačky bez špecifických patogénov (SPF) vakcinované jednou z dvoch rekombinantných vakcín proti FIPV typu 2 (FIPV-DF2), vykazovali obe kandidátske vakcíny výrazne zníženú až žiadnu ochranu pred výzvou FIPV u ne-SPF mačiek – pričom väčšina ne-SPF zvierat vykazovala ADE [174]. V samostatnej štúdii imunizácia mačiatok vakcínovým vírusom rekombinovaným s génom pre hrotový glykoproteín FIPV významne skrátila čas prežitia po výzve FIPV v porovnaní s mačiatkami imunizovanými vakcínovým vírusom prírodného typu. Dôležité je, že v skupine imunizovanej proti FIPV sa pozorovali nízke hladiny neutralizačných protilátok [175]. Obavy z ADE po imunizácii FIPV zostávajú zložitou výzvou v prevencii FIP.

Vakcíny COVID-19, na rozdiel od očkovania proti FIP, zohrali významnejšiu úlohu pri zmierňovaní šírenia infekcie. Bolo vyrobených niekoľko typov vakcín, ktoré preukázali bezpečnosť a účinnosť pri prevencii symptomatickej infekcie, závažného ochorenia a úmrtia na COVID-19 – okrem iného vrátane mRNA vakcín (Pfizer/BioNTech a Moderna), vírusových vektorových vakcín (Janssen, AstraZeneca) a inaktivovaných vírusových vakcín (Bharat Biotech, Sinovac) [176,177,178,179,180,181]. Prvé dve vakcinačné platformy používajú ako imunogén glykoproteín hrotu SARS-CoV-2, zatiaľ čo vakcíny s inaktivovaným vírusom majú potenciál vyvolať imunitnú odpoveď aj na iné vírusové zložky okrem hrotového glykoproteínu. Napriek priaznivému bezpečnostnému profilu vakcín COVID-19 sa po očkovaní vyskytli nežiaduce reakcie, z ktorých niektoré boli sprostredkované protilátkami analogicky k obavám z ADE pri vakcínach FIP. Trombóza bola zdokumentovaným problémom najmä pri vakcínach AstraZeneca, ako aj Janssen. Hoci sa presné mechanizmy skúmajú, v súčasnosti sa predpokladá, že zápalová reakcia vedie k zvýšeným hladinám protilátok aktivujúcich krvné doštičky, ktoré sa viažu na faktor 4 krvných doštičiek a vedú k hyperkoagulačnému stavu [182,183]. Na rozdiel od vyššieho výskytu ADE pri experimentálnych vakcínach FIP je výskyt trombotických príhod po podaní vakcíny COVID-19 nízky [184].

Okrem primárnych konečných cieľov štúdií vakcín, ktoré sa sústreďovali na prevenciu symptomatickej infekcie, závažného ochorenia a úmrtia na COVID-19, sa mnohé štúdie vakcín fázy 3 nezaoberali pozorovaním s cieľom posúdiť stupeň prevencie asymptomatickej infekcie. Priaznivá účinnosť proti asymptomatickej infekcii je dôležitá z hľadiska verejného zdravia, najmä vzhľadom na to, že asymptomatickí jedinci môžu prenášať COVID-19 a že rutinné monitorovacie testovanie je náročné na zdroje a ťažko sa koordinuje vo veľkom rozsahu [22]. Dôležitým prínosom smerom k tejto oblasti sú reálne štúdie, ktoré skúmajú účinnosť vakcíny, ktoré poukazujú na znížené riziko infekcie SARS-CoV-2, ako aj na zníženú vírusovú záťaž pri vakcínových “prelomových” infekciách [185,186,187,188]. Takéto dôkazy podporujú používanie vakcín proti SARS-CoV-2 ako ochranného opatrenia nielen proti závažnému COVID-19, ale aj ako rozhodujúceho prínosu pri zvládaní výskytu ochorenia.

8. Klinická starostlivosť a terapeutické možnosti

V roku 1963, keď boli opísané prvé klinické prípady FIP (pred poznaním vírusovej etiológie), sa zistilo, že sa často skúšala antibiotická liečba, ktorá však zjavne nepriniesla žiadny úžitok [189]. Od tejto prvej správy a bez účinnej vakcíny sa u mačiek s FIP vyskúšalo množstvo terapií. Ribavirín, nukleozidový analóg, predtým poskytol sľubné výsledky proti FCoV pri skúmaní in vitro [190], avšak pri podávaní mačkám ako experimentálna liečba viedol v niektorých prípadoch k horším výsledkom [191]. Podobne sa na začiatku pandémie COVID-19 ribavirín využíval v niekoľkých dávkach a v kombinácii s ďalšími liekmi [192] a bol navrhnutý protokol štúdie na skúmanie prínosu u ľudských pacientov [193]. V liečbe hospitalizovaných pacientov s COVID-19 sa však rýchlo dostal do popredia iný priamo pôsobiaci antivírusový liek (DAA) (remdesivir), nukleozidový analóg, ktorý pôsobí ako terminátor reťazca a v porovnaní s ribavirínom vyvoláva menšie obavy z toxicity, pričom sa používa v injekčnej forme. Napriek počiatočnému nadšeniu sa remdesivir nepreukázal ako účinný u pacientov s takýmito ochoreniami v robustných klinických skúškach; niekoľko správ však preukázalo klinický prínos príbuzného nukleozidového analógu GS-441524 pri liečbe mačiek s FIP vrátane efuzívnych, neefuzívnych a neurologických foriem ochorenia [194,195,196,197]. V čase písania tejto správy sa v Austrálii a Spojenom kráľovstve uskutočňujú výskumy účinnosti remdesiviru pri liečbe FIP. Je zaujímavé, že remdesivir je prolieková forma lieku GS-441524 [195]. Nedávno sa do klinických testov pre COVID-19 dostali dve perorálne dostupné DAA, ktoré v súčasnosti čakajú na schválenie FDA; molnupiravir (MK-4482/EIDD-2801), modifikovaná forma ribavirínu, a Paxlovid (inhibítor proteázy PF-07321332 v kombinácii s ritonavirom, ktorý zlepšuje polčas PF-07321332) zameraný na hlavnú proteázu (Mpro). Je pozoruhodné, že účinná látka Paxlovidu je príbuzná GC-376 a predtým sa ukázala ako účinná v klinickej štúdii FIP [196]. Bude veľmi zaujímavé sledovať priebeh vývoja, schvaľovania FDA a používania týchto DAA v súvislosti s príslušnými ochoreniami spôsobenými SARS-CoV-2 a FCoV.

Vzhľadom na zápalovú povahu FIP aj COVID-19 sa liečba často zameriava na kontrolu imunitnej reakcie. Hoci sa mačkám s FIP často podávajú glukokortikoidy v snahe zmierniť zápalové prejavy ochorenia, klinický prínos je zanedbateľný [198]. Zdá sa, že používanie kortikosteroidov u pacientov s COVID-19 nie je bezvýznamné, pričom niektoré štúdie vykazujú negatívne profily [199]. Ich podávanie však môže byť prínosom v ťažkých prípadoch COVID-19 prostredníctvom pozorovaného zníženia úmrtnosti [200,201]. Cyklosporín, imunosupresívny liek, ktorý sa často používa na prevenciu odmietnutia orgánov u pacientov po transplantácii a na liečbu niektorých autoimunitných ochorení, sa skúmal pri FIP aj SARS-CoV-2. Štúdia in vitro s cyklosporínom A (CsA) s použitím vírusu FCoV typu II preukázala zníženie replikácie vírusu [202], pričom liečba 14-ročnej mačky CsA po neúspešnej liečbe IFN viedla ku klinickému zlepšeniu, zníženiu vírusovej záťaže a času prežitia viac ako 260 dní [203]. Hoci v súčasnosti neexistujú žiadne kontrolované štúdie týkajúce sa použitia CsA pri liečbe pacientov s COVID-19, okrem otázok týkajúcich sa bezpečnosti boli naznačené aj potenciálne mechanizmy účinku [204,205,206]. Okrem toho analóg cyklosporínu A, alisporivir, preukázal in vitro účinky na replikáciu vírusu [207], podobne ako dôkazy, ktoré ukazujú, že replikáciu iných koronavírusov brzdí blokovanie cyklofilínu A [208].

Pri FIP aj COVID-19 sa predpisovali mnohé antibiotiká, ale nie pre ich antimikrobiálne vlastnosti, ako skôr pre protizápalové účinky [198]. Doxycyklín napríklad mohol pomôcť pri predĺžení prežívania u mačky s FIP [209]. Či by doxycyklín znamenal prínos pre pacientov s COVID-19, nie je v súčasnosti známe, ale bol navrhnutý ako možná súčasť liečby ochorenia [210].

Interferóny boli predmetom výskumu aj pri liečbe FIP bez jasnej súvislosti s klinickým zlepšením [211]. U ľudských pacientov s COVID-19 bola kombinovaná liečba interferónom-β-1b s lopinavirom, ritonavirom a ribavirínom v porovnaní len s lopinavirom a ritonavirom spojená so zníženou dĺžkou vylučovania vírusu a zlepšením klinických výsledkov v miernych až stredne ťažkých prípadoch [212].

Monoklonálne protilátky zamerané na zložky imunitnej odpovede majú potenciál znížiť hladinu zápalových cytokínov. V malej štúdii na mačkách experimentálne infikovaných vírusom FIPV-1146 sa preukázal prínos anti-TNF-α pri zvládaní ochorenia [213]. Tocilizumab, monoklonálna protilátka proti IL-6, sa podával pacientom s COVID-19 [214]. Vzhľadom na rozdielne hlásené klinické výsledky je v súvislosti s Tocilizumabom potrebný ďalší výskum [215,216].

Prenos poznatkov medzi druhmi bude mať nepochybne vplyv na mačky aj na ľudí a dokonca aj na iné druhy. Hoci mnohé zlúčeniny sú účinné, keď sa študujú in vitro, ich použitie in vivo môže viesť k odlišným výsledkom vrátane toxicity. Okrem toho, to, že zlúčenina môže vykazovať sľubné výsledky u jedného druhu, neznamená, že rovnaký účinok bude pozorovaný aj u iných druhov, najmä pri porovnávaní podobných, ale odlišných vírusov a vírusom vyvolaných ochorení.

9. MIS-C a PASC

V apríli 2020 zverejnila Národná zdravotná služba Spojeného kráľovstva upozornenie na zvýšený výskyt multisystémového zápalového syndrómu u detí – mnohé z nich boli pozitívne testované na COVID-19 [217]. Ako pandémia postupovala, štúdie z iných krajín skúmajúce tento zápalový stav poskytli viac podrobností smerom ku klinickému pochopeniu toho, čo sa teraz označuje ako MIS-C, zriedkavej prezentácie COVID-19 u detských pacientov. MIS-C zahŕňa viaceré orgánové systémy. Kardiovaskulárna dysregulácia pri MIS-C sa často pozoruje vo forme komorovej dysfunkcie, perikardiálneho výpotku a aneuryziem koronárnych tepien [218,219]. Gastrointestinálne príznaky napodobňujú apendicitídu a zahŕňajú bolesti brucha, vracanie a hnačku. Terminálna ileitída je častým nálezom na zobrazovacích vyšetreniach [220]. U mnohých pacientov sa vyskytujú aj neurokognitívne príznaky vrátane bolesti hlavy a zmätenosti. Závažnejšie neurologické komplikácie vrátane encefalopatie a mozgovej príhody sú menej časté [218,221].

Jednou z oblastí, v ktorej sa FIP a COVID-19 klinicky významne prekrývajú, je zriedkavý zápalový prejav infekcie SARS-CoV-2 – multisystémový zápalový syndróm u detí (MIS-C). MIS-C sa pozoruje v pediatrickej populácii, podobne ako FIP bežne postihuje mladé mačky [43]. Podobne ako FIP má MIS-C systémovú prezentáciu zahŕňajúcu viaceré orgánové systémy – okrem iného gastrointestinálne, kardiovaskulárne a hematologické abnormality [222]. Podobne ako pri vlhkej forme FIP sa aj pri MIS-C objavujú pleurálne výpotky a ascites [223]. Oba syndrómy vykazujú prekrývanie aj v cievnej patológii. FIP vykazuje granulomatóznu vaskulitídu, ktorá sa prekrýva s Kawasakiho vaskulárnym syndrómom pozorovaným pri MIS-C [224]. Predpokladá sa, že MIS-C je postinfekčné ochorenie súvisiace s predchádzajúcou infekciou SARS-CoV-2 [223,225]. Aj FIP má oneskorený nástup po prvej expozícii FCoV a vyskytuje sa len v malej podskupine prípadov. Hoci mačky s FIP môžu stále vylučovať FCoV vo výkaloch, predpokladá sa, že mutácie spojené s prechodom biotypu z FECV na FIPV nie sú prenosné – čo podporuje určitý stupeň podobnosti obmedzeného infekčného rozsahu FIP aj MIS-C.

Nedávno bol definovaný stav postakútnych následkov COVID-19 (PASC), ktorý zahŕňa stratu pamäti, gastrointestinálne ťažkosti, únavu, anosmiu, dušnosť atď. a častejšie sa označuje ako “dlhodobý COVID”. Spolu s MIS-C je PASC veľmi aktívnym predmetom výskumu, ktorý zhrnuli iní [226], a spolu predstavujú vynikajúci východiskový bod pre využitie mačacej medicíny ako modelu patogenézy vyvolanej koronavírusmi, a to možno neočakávaným spôsobom [224].

10. Infekcia SARS-CoV-2 u mačiek

Mačky sa v súčasnosti stali všeobecne rozšírenými hostiteľmi pre infekcie SARS-CoV-2, čiastočne vďaka relatívnej podobnosti ľudských a mačacích receptorov ACE2. Po hlásených prípadoch v Hongkongu a Belgicku v marci 2020 sa najpozoruhodnejšia skorá prirodzená infekcia vyskytla v zoologickej záhrade Bronx v New Yorku, USA. V apríli sa u štyroch tigrov a troch levov objavili mierne respiračné symptómy od ich chovateľov, pričom PCR a sekvenovaním sa zistil SARS-CoV-2 [227]. Následne sa infekcia domestikovaných aj nedomestikovaných mačiek stala pomerne bežnou v prípadoch, keď sú majitelia a ošetrovatelia pozitívni na SARS-CoV-2. Z klinického hľadiska sa infekcia SARS-CoV-2 u mačiek považuje za prevažne asymptomatickú, pričom niektoré zvieratá vykazujú mierne respiračné príznaky [228,229,230]. Vo všeobecnosti sa zdá, že závažné respiračné príznaky sa u mačiek nevyskytujú, hoci závažné respiračné ťažkosti môžu v niektorých prípadoch súvisieť so základnou hypertrofickou kardiomyopatiou (HCM) mačiek [94]. V Spojenom kráľovstve bol tiež zaznamenaný zvýšený výskyt myokarditídy psov a mačiek spojený s prudkým nárastom variantu B.1.1.7 (Alfa) [231]. Sú jednoznačne potrebné ďalšie štúdie v tejto oblasti, ako aj možné súvislosti medzi koronavírusovými infekciami u mačiek a multisystémovým zápalovým syndrómom u detí (MIS-C), ktorý, ako bolo uvedené vyššie, je zriedkavým prejavom COVID-19.

Štúdie na laboratórnych zvieratách boli tiež kľúčové pre pochopenie infekcie SARS-CoV-2 u mačiek, ktoré sú veľmi citlivé na infekciu oronasálnou výzvou. U experimentálne infikovaných mačiek sa potvrdili mierne respiračné príznaky alebo asymptomatická infekcia, vylučovanie vírusu, prenos vírusu z mačky na mačku a vznik silnej neutralizačnej protilátkovej reakcie. Nedávne štúdie ukázali, že po opakovanej infekcii mačiek existuje dlhodobá imunita, ale u mačiek sa môžu vyvinúť dlhodobé následky vrátane pretrvávania zápalu a iných pľúcnych lézií [232]. Celkovo možno povedať, že podobne ako v prípade SARS-CoV v roku 2003, najmä mačky môžu byť dôležitým zdrojom informácií o patogenéze a imunitných reakciách vyvolaných SARS-CoV-2.

Poďakovania

Ďakujeme Annette Choi za pomoc s obrázkom 1 a všetkým členom Whittaker Lab za užitočné diskusie počas prípravy tohto rukopisu.

Autorské podiely

Na tomto článku sa podieľali všetci autori. Všetci autori si prečítali publikovanú verziu rukopisu a súhlasili s ňou.

Financovanie

Práca v autorovom laboratóriu je čiastočne financovaná z výskumných grantov Národného inštitútu zdravia, nadácie EveryCat Foundation a Cornell Feline Health Center. AES bola podporovaná programom NIH Comparative Medicine Training Program T32OD011000. Štúdie o FIP podporuje aj Fond Michaela Zemskeho pre choroby mačiek.

Konflikt záujmov

Autori neuvádzajú žiadny konflikt záujmov.

Poznámky pod čiarou

Poznámka vydavateľa: MDPI zostáva neutrálne, pokiaľ ide o jurisdikčné nároky v publikovaných mapách a inštitucionálnu príslušnosť.

Literatúra

  1. Wolfe, L.G.; Griesemer, R.A. Feline infectious peritonitis. Pathol. Vet. 19663, 255–270. [Google Scholar] [CrossRef] [PubMed]
  2. Holzworth, J. Some Important Disorders of Cats. Cornell Vet. 196353, 157–160. [Google Scholar]
  3. Hartmann, K. Feline infectious peritonitis. Vet. Clin. N. Am. Small Anim. Pract. 200535, 39–79. [Google Scholar] [CrossRef] [PubMed]
  4. Chen, J.; Qi, T.; Liu, L.; Ling, Y.; Qian, Z.; Li, T.; Li, F.; Xu, Q.; Zhang, Y.; Xu, S.; et al. Clinical progression of patients with COVID-19 in Shanghai, China. J. Infect. 202080, e1–e6. [Google Scholar] [CrossRef] [PubMed]
  5. Coronaviridae Study Group of the International Committee on Taxonomy of Virus. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 20205, 536–544. [Google Scholar] [CrossRef]
  6. Perlman, S.M.K. Coronaviruses, Including Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). In Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Disease, 9th ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 2072–2080. [Google Scholar]
  7. Abdul-Rasool, S.; Fielding, B.C. Understanding Human Coronavirus HCoV-NL63. Open Virol. J. 20104, 76–84. [Google Scholar] [CrossRef]
  8. Letko, M.; Marzi, A.; Munster, V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 20205, 562–569. [Google Scholar] [CrossRef]
  9. Rottier, P.J.; Nakamura, K.; Schellen, P.; Volders, H.; Haijema, B.J. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J. Virol. 200579, 14122–14130. [Google Scholar] [CrossRef]
  10. Jaimes, J.A.; Millet, J.K.; Stout, A.E.; Andre, N.M.; Whittaker, G.R. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses 202012, 83. [Google Scholar] [CrossRef]
  11. Tresnan, D.B.; Levis, R.; Holmes, K.V. Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J. Virol. 199670, 8669–8674. [Google Scholar] [CrossRef]
  12. Benetka, V.; Kubber-Heiss, A.; Kolodziejek, J.; Nowotny, N.; Hofmann-Parisot, M.; Mostl, K. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet. Microbiol. 200499, 31–42. [Google Scholar] [CrossRef]
  13. Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 202144, 13–34. [Google Scholar] [CrossRef]
  14. Xiao, F.; Sun, J.; Xu, Y.; Li, F.; Huang, X.; Li, H.; Zhao, J.; Huang, J.; Zhao, J. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. Emerg. Infect. Dis. 202026, 1920–1922. [Google Scholar] [CrossRef]
  15. Sykes, J.E. Feline Coronavirus Infection. In Canine and Feline Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2014; pp. 195–208. [Google Scholar] [CrossRef]
  16. Pedersen, N.C. A review of feline infectious peritonitis virus infection: 1963-2008. J. Feline Med. Surg. 200911, 225–258. [Google Scholar] [CrossRef] [PubMed]
  17. Pedersen, N.C.; Liu, H.; Scarlett, J.; Leutenegger, C.M.; Golovko, L.; Kennedy, H.; Kamal, F.M. Feline infectious peritonitis: Role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Res. 2012165, 17–28. [Google Scholar] [CrossRef] [PubMed]
  18. Brown, M.A. Genetic determinants of pathogenesis by feline infectious peritonitis virus. Vet. Immunol. Immunopathol. 2011143, 265–268. [Google Scholar] [CrossRef] [PubMed]
  19. Healey, E.A.; Andre, N.M.; Miller, A.D.; Whittaker, G.R.; Berliner, E.A. An outbreak of FIP in a cohort of shelter-housed cats: Molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a “circulating virulent-avirulent” theory of FIP pathogenesis. J. Feline Med. Surg. Open Rep. 20228, 20551169221074226. [Google Scholar] [CrossRef]
  20. Cheung, C.C.L.; Goh, D.; Lim, X.; Tien, T.Z.; Lim, J.C.T.; Lee, J.N.; Tan, B.; Tay, Z.E.A.; Wan, W.Y.; Chen, E.X.; et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 202271, 226–229. [Google Scholar] [CrossRef] [PubMed]
  21. Kipar, A.; Meli, M.L.; Baptiste, K.E.; Bowker, L.J.; Lutz, H. Sites of feline coronavirus persistence in healthy cats. J. Gen. Virol. 201091, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
  22. Rothe, C.; Schunk, M.; Sothmann, P.; Bretzel, G.; Froeschl, G.; Wallrauch, C.; Zimmer, T.; Thiel, V.; Janke, C.; Guggemos, W.; et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N. Engl. J. Med. 2020382, 970–971. [Google Scholar] [CrossRef]
  23. Bai, Y.; Yao, L.; Wei, T.; Tian, F.; Jin, D.Y.; Chen, L.; Wang, M. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020323, 1406–1407. [Google Scholar] [CrossRef] [PubMed]
  24. Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci. 202063, 706–711. [Google Scholar] [CrossRef]
  25. Jin, Y.H.; Cai, L.; Cheng, Z.S.; Cheng, H.; Deng, T.; Fan, Y.P.; Fang, C.; Huang, D.; Huang, L.Q.; Huang, Q.; et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil Med. Res. 20207, 4. [Google Scholar] [CrossRef] [PubMed]
  26. Wolfe, L.G.; Griesemer, R.A. Feline infectious peritonitis: Review of gross and histopathologic lesions. J. Am. Vet. Med. Assoc. 1971158 (Suppl S2), 987. [Google Scholar]
  27. Wege, H.; Siddell, S.; ter Meulen, V. The biology and pathogenesis of coronaviruses. Curr. Top. Microbiol. Immunol. 198299, 165–200. [Google Scholar] [CrossRef]
  28. Hardy, W.D., Jr.; Hurvitz, A.I. Feline infectious peritonitis: Experimental studies. J. Am. Vet. Med. Assoc. 1971158 (Suppl S2), 994. [Google Scholar]
  29. Robison, R.L.; Holzworth, J.; Gilmore, C.E. Naturally occurring feline infectious peritonitis: Signs and clinical diagnosis. J. Am. Vet. Med. Assoc. 1971158 (Suppl. 2), 981–986. [Google Scholar]
  30. Sherding, R. Feline Infectious Peritonitis (Feline Coronavirus). Saunders Man. Small Anim. Pract. 2006, 132–143. [Google Scholar] [CrossRef]
  31. Addie, D.D.; Jarrett, O. A study of naturally occurring feline coronavirus infections in kittens. Vet. Rec. 1992130, 133–137. [Google Scholar] [CrossRef]
  32. Lutz, H.; Gut, M.; Leutenegger, C.M.; Schiller, I.; Wiseman, A.; Meli, M. Kinetics of FCoV infection in kittens born in catteries of high risk for FIP under different rearing conditions. In Proceedings of the Second International Feline Coronavirus/Feline Infectious Peritonitis Symposium, Glasgow, Scotland, 4–7 August 2002. [Google Scholar]
  33. Addie, D.D.; Paltrinieri, S.; Pedersen, N.C. Secong international feline coronavirus/feline infectious peritonitis, symposium Recommendations from workshops of the second international feline coronavirus/feline infectious peritonitis symposium. J Feline Med. Surg. 20046, 125–130. [Google Scholar] [CrossRef]
  34. Vivanti, A.J.; Vauloup-Fellous, C.; Prevot, S.; Zupan, V.; Suffee, C.; Do Cao, J.; Benachi, A.; De Luca, D. Transplacental transmission of SARS-CoV-2 infection. Nat. Commun. 202011, 3572. [Google Scholar] [CrossRef]
  35. Shende, P.; Gaikwad, P.; Gandhewar, M.; Ukey, P.; Bhide, A.; Patel, V.; Bhagat, S.; Bhor, V.; Mahale, S.; Gajbhiye, R.; et al. Persistence of SARS-CoV-2 in the first trimester placenta leading to transplacental transmission and fetal demise from an asymptomatic mother. Hum. Reprod. 202136, 899–906. [Google Scholar] [CrossRef]
  36. Fenizia, C.; Biasin, M.; Cetin, I.; Vergani, P.; Mileto, D.; Spinillo, A.; Gismondo, M.R.; Perotti, F.; Callegari, C.; Mancon, A.; et al. Analysis of SARS-CoV-2 vertical transmission during pregnancy. Nat. Commun. 202011, 5128. [Google Scholar] [CrossRef]
  37. Raschetti, R.; Vivanti, A.J.; Vauloup-Fellous, C.; Loi, B.; Benachi, A.; De Luca, D. Synthesis and systematic review of reported neonatal SARS-CoV-2 infections. Nat. Commun. 202011, 5164. [Google Scholar] [CrossRef]
  38. Lovato, A.; de Filippis, C. Clinical Presentation of COVID-19: A Systematic Review Focusing on Upper Airway Symptoms. Ear Nose Throat J. 202099, 569–576. [Google Scholar] [CrossRef] [PubMed]
  39. Wee, L.E.; Chan, Y.F.Z.; Teo, N.W.Y.; Cherng, B.P.Z.; Thien, S.Y.; Wong, H.M.; Wijaya, L.; Toh, S.T.; Tan, T.T. The role of self-reported olfactory and gustatory dysfunction as a screening criterion for suspected COVID-19. Eur. Arch. Otorhinolaryngol. 2020277, 2389–2390. [Google Scholar] [CrossRef]
  40. Peckham, H.; de Gruijter, N.M.; Raine, C.; Radziszewska, A.; Ciurtin, C.; Wedderburn, L.R.; Rosser, E.C.; Webb, K.; Deakin, C.T. Male sex identified by global COVID-19 meta-analysis as a risk factor for death and ITU admission. Nat. Commun. 202011, 6317. [Google Scholar] [CrossRef] [PubMed]
  41. Vahidy, F.S.; Pan, A.P.; Ahnstedt, H.; Munshi, Y.; Choi, H.A.; Tiruneh, Y.; Nasir, K.; Kash, B.A.; Andrieni, J.D.; McCullough, L.D. Sex differences in susceptibility, severity, and outcomes of coronavirus disease 2019: Cross-sectional analysis from a diverse US metropolitan area. PLoS ONE 202116, e0245556. [Google Scholar] [CrossRef] [PubMed]
  42. Norris, J.M.; Bosward, K.L.; White, J.D.; Baral, R.M.; Catt, M.J.; Malik, R. Clinicopathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990–2002). Aust. Vet. J. 200583, 666–673. [Google Scholar] [CrossRef] [PubMed]
  43. Riemer, F.; Kuehner, K.A.; Ritz, S.; Sauter-Louis, C.; Hartmann, K. Clinical and laboratory features of cats with feline infectious peritonitis–a retrospective study of 231 confirmed cases (2000–2010). J. Feline Med. Surg. 201618, 348–356. [Google Scholar] [CrossRef]
  44. Hambali, N.L.; Mohd Noh, M.; Paramasivam, S.; Chua, T.H.; Hayati, F.; Payus, A.O.; Tee, T.Y.; Rosli, K.T.; Abd Rachman Isnadi, M.F.; Manin, B.O. A Non-severe Coronavirus Disease 2019 Patient With Persistently High Interleukin-6 Level. Front. Public Health 20208, 584552. [Google Scholar] [CrossRef]
  45. August, J.R. Feline infectious peritonitis. An immune-mediated coronaviral vasculitis. Vet. Clin. N. Am. Small Anim. Pract. 198414, 971–984. [Google Scholar] [CrossRef]
  46. Hayashi, T.; Goto, N.; Takahashi, R.; Fujiwara, K. Systemic vascular lesions in feline infectious peritonitis. Nihon Juigaku Zasshi 197739, 365–377. [Google Scholar] [CrossRef]
  47. Stout, A.E.; Andre, N.M.; Zimmerberg, J.; Baker, S.C.; Whittaker, G.R. Coronaviruses as a cause of vascular disease: A comparative medicine approach. eCommons 2021. [Google Scholar] [CrossRef]
  48. Varga, Z.; Flammer, A.J.; Steiger, P.; Haberecker, M.; Andermatt, R.; Zinkernagel, A.S.; Mehra, M.R.; Schuepbach, R.A.; Ruschitzka, F.; Moch, H. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020395, 1417–1418. [Google Scholar] [CrossRef]
  49. Becker, R.C. COVID-19-associated vasculitis and vasculopathy. J. Thromb. Thrombolysis 202050, 499–511. [Google Scholar] [CrossRef]
  50. Goitsuka, R.; Ohashi, T.; Ono, K.; Yasukawa, K.; Koishibara, Y.; Fukui, H.; Ohsugi, Y.; Hasegawa, A. IL-6 activity in feline infectious peritonitis. J. Immunol. 1990144, 2599–2603. [Google Scholar] [PubMed]
  51. Malbon, A.J.; Fonfara, S.; Meli, M.L.; Hahn, S.; Egberink, H.; Kipar, A. Feline Infectious Peritonitis as a Systemic Inflammatory Disease: Contribution of Liver and Heart to the Pathogenesis. Viruses 201911, 1144. [Google Scholar] [CrossRef]
  52. Mestrinho, L.A.; Rosa, R.; Ramalho, P.; Branco, V.; Iglesias, L.; Pissarra, H.; Duarte, A.; Niza, M. A pilot study to evaluate the serum Alpha-1 acid glycoprotein response in cats suffering from feline chronic gingivostomatitis. BMC Vet. Res. 202016, 390. [Google Scholar] [CrossRef] [PubMed]
  53. Selting, K.A.; Ogilvie, G.K.; Lana, S.E.; Fettman, M.J.; Mitchener, K.L.; Hansen, R.A.; Richardson, K.L.; Walton, J.A.; Scherk, M.A. Serum alhpa 1-acid glycoprotein concentrations in healthy and tumor-bearing cats. J. Vet. Intern. Med. 200014, 503–506. [Google Scholar] [CrossRef]
  54. Giordano, A.; Spagnolo, V.; Colombo, A.; Paltrinieri, S. Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection. Vet. J. 2004167, 38–44. [Google Scholar] [CrossRef]
  55. Hazuchova, K.; Held, S.; Neiger, R. Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions. J. Feline Med. Surg. 201719, 809–816. [Google Scholar] [CrossRef] [PubMed]
  56. Li, H.; Xiang, X.; Ren, H.; Xu, L.; Zhao, L.; Chen, X.; Long, H.; Wang, Q.; Wu, Q. Serum Amyloid A is a biomarker of severe Coronavirus Disease and poor prognosis. J. Infect. 202080, 646–655. [Google Scholar] [CrossRef] [PubMed]
  57. Zinellu, A.; Paliogiannis, P.; Carru, C.; Mangoni, A.A. Serum amyloid A concentrations, COVID-19 severity and mortality: An updated systematic review and meta-analysis. Int. J. Infect. Dis. 2021105, 668–674. [Google Scholar] [CrossRef] [PubMed]
  58. Nehring, S.M.; Goyal, A.; Bansal, P.; Patel, B.C. C Reactive Protein; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
  59. Vanderschueren, S.; Deeren, D.; Knockaert, D.C.; Bobbaers, H.; Bossuyt, X.; Peetermans, W. Extremely elevated C-reactive protein. Eur. J. Intern. Med. 200617, 430–433. [Google Scholar] [CrossRef]
  60. Yang, M.; Chen, X.; Xu, Y. A Retrospective Study of the C-Reactive Protein to Lymphocyte Ratio and Disease Severity in 108 Patients with Early COVID-19 Pneumonia from January to March 2020 in Wuhan, China. Med. Sci. Monit. 202026, e926393. [Google Scholar] [CrossRef]
  61. Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020127, 104370. [Google Scholar] [CrossRef]
  62. Sharifpour, M.; Rangaraju, S.; Liu, M.; Alabyad, D.; Nahab, F.B.; Creel-Bulos, C.M.; Jabaley, C.S.; Emory, C.-Q.; Clinical Research, C. C-Reactive protein as a prognostic indicator in hospitalized patients with COVID-19. PLoS ONE 202015, e0242400. [Google Scholar] [CrossRef]
  63. Leisman, D.E.; Ronner, L.; Pinotti, R.; Taylor, M.D.; Sinha, P.; Calfee, C.S.; Hirayama, A.V.; Mastroiani, F.; Turtle, C.J.; Harhay, M.O.; et al. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir. Med. 20208, 1233–1244. [Google Scholar] [CrossRef]
  64. Adam, S.S.; Key, N.S.; Greenberg, C.S. D-dimer antigen: Current concepts and future prospects. Blood 2009113, 2878–2887. [Google Scholar] [CrossRef]
  65. Wichmann, D.; Sperhake, J.P.; Lutgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schroder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19: A Prospective Cohort Study. Ann. Intern. Med. 2020173, 268–277. [Google Scholar] [CrossRef]
  66. Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N. Engl. J. Med. 2020383, 120–128. [Google Scholar] [CrossRef] [PubMed]
  67. Yu, H.H.; Qin, C.; Chen, M.; Wang, W.; Tian, D.S. D-dimer level is associated with the severity of COVID-19. Thromb. Res. 2020195, 219–225. [Google Scholar] [CrossRef] [PubMed]
  68. Kermali, M.; Khalsa, R.K.; Pillai, K.; Ismail, Z.; Harky, A. The role of biomarkers in diagnosis of COVID-19-A systematic review. Life Sci. 2020254, 117788. [Google Scholar] [CrossRef] [PubMed]
  69. Tholen, I.; Weingart, C.; Kohn, B. Concentration of D-dimers in healthy cats and sick cats with and without disseminated intravascular coagulation (DIC). J. Feline Med. Surg. 200911, 842–846. [Google Scholar] [CrossRef] [PubMed]
  70. Weiss, R.C.; Dodds, W.J.; Scott, F.W. Disseminated intravascular coagulation in experimentally induced feline infectious peritonitis. Am. J. Vet. Res. 198041, 663–671. [Google Scholar] [PubMed]
  71. Marioni-Henry, K.; Vite, C.H.; Newton, A.L.; Van Winkle, T.J. Prevalence of diseases of the spinal cord of cats. J. Vet. Intern. Med. 200418, 851–858. [Google Scholar] [CrossRef] [PubMed]
  72. Andre, N.M.; Cossic, B.; Davies, E.; Miller, A.D.; Whittaker, G.R. Distinct mutation in the feline coronavirus spike protein cleavage activation site in a cat with feline infectious peritonitis-associated meningoencephalomyelitis. JFMS Open Rep. 20195, 2055116919856103. [Google Scholar] [CrossRef]
  73. Diaz, J.V.; Poma, R. Diagnosis and clinical signs of feline infectious peritonitis in the central nervous system. Can. Vet. J. 200950, 1091–1093. [Google Scholar]
  74. Crawford, A.H.; Stoll, A.L.; Sanchez-Masian, D.; Shea, A.; Michaels, J.; Fraser, A.R.; Beltran, E. Clinicopathologic Features and Magnetic Resonance Imaging Findings in 24 Cats With Histopathologically Confirmed Neurologic Feline Infectious Peritonitis. J. Vet. Intern. Med. 201731, 1477–1486. [Google Scholar] [CrossRef]
  75. Zhou, L.; Zhang, M.; Wang, J.; Gao, J. Sars-Cov-2: Underestimated damage to nervous system. Travel Med. Infect. Dis. 2020, 101642. [Google Scholar] [CrossRef]
  76. Asadi-Pooya, A.A.; Simani, L. Central nervous system manifestations of COVID-19: A systematic review. J. Neurol. Sci. 2020413, 116832. [Google Scholar] [CrossRef] [PubMed]
  77. Matschke, J.; Lutgehetmann, M.; Hagel, C.; Sperhake, J.P.; Schroder, A.S.; Edler, C.; Mushumba, H.; Fitzek, A.; Allweiss, L.; Dandri, M.; et al. Neuropathology of patients with COVID-19 in Germany: A post-mortem case series. Lancet Neurol. 202019, 919–929. [Google Scholar] [CrossRef]
  78. Paniz-Mondolfi, A.; Bryce, C.; Grimes, Z.; Gordon, R.E.; Reidy, J.; Lednicky, J.; Sordillo, E.M.; Fowkes, M. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Med. Virol. 202092, 699–702. [Google Scholar] [CrossRef] [PubMed]
  79. Lee, M.H.; Perl, D.P.; Nair, G.; Li, W.; Maric, D.; Murray, H.; Dodd, S.J.; Koretsky, A.P.; Watts, J.A.; Cheung, V.; et al. Microvascular Injury in the Brains of Patients with Covid-19. N. Engl. J. Med. 2021384, 481–483. [Google Scholar] [CrossRef] [PubMed]
  80. Andrew, S.E. Feline infectious peritonitis. Vet. Clin. N. Am. Small Anim. Pract. 200030, 987–1000. [Google Scholar] [CrossRef]
  81. Cannon, M.J.; Silkstone, M.A.; Kipar, A.M. Cutaneous lesions associated with coronavirus-induced vasculitis in a cat with feline infectious peritonitis and concurrent feline immunodeficiency virus infection. J. Feline Med. Surg. 20057, 233–236. [Google Scholar] [CrossRef] [PubMed]
  82. Hok, K. Demonstration of feline corona virus (FCV) antigen in organs of cats suspected of feline infectious peritonitis (FIP) disease. APMIS 199098, 659–664. [Google Scholar] [CrossRef] [PubMed]
  83. Wu, P.; Duan, F.; Luo, C.; Liu, Q.; Qu, X.; Liang, L.; Wu, K. Characteristics of Ocular Findings of Patients With Coronavirus Disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020138, 575–578. [Google Scholar] [CrossRef]
  84. Mazzotta, C.; Giancipoli, E. Anterior Acute Uveitis Report in a SARS-CoV-2 Patient Managed with Adjunctive Topical Antiseptic Prophylaxis Preventing 2019-nCoV Spread Through the Ocular Surface Route. Int. Med. Case Rep. J. 202013, 513–520. [Google Scholar] [CrossRef] [PubMed]
  85. Francois, J.; Collery, A.S.; Hayek, G.; Sot, M.; Zaidi, M.; Lhuillier, L.; Perone, J.M. Coronavirus Disease 2019-Associated Ocular Neuropathy With Panuveitis: A Case Report. JAMA Ophthalmol. 2021139, 247–249. [Google Scholar] [CrossRef]
  86. Loon, S.C.; Teoh, S.C.; Oon, L.L.; Se-Thoe, S.Y.; Ling, A.E.; Leo, Y.S.; Leong, H.N. The severe acute respiratory syndrome coronavirus in tears. Br. J. Ophthalmol. 200488, 861–863. [Google Scholar] [CrossRef]
  87. Arora, R.; Goel, R.; Kumar, S.; Chhabra, M.; Saxena, S.; Manchanda, V.; Pumma, P. Evaluation of SARS-CoV-2 in Tears of Patients with Moderate to Severe COVID-19. Ophthalmology 2021128, 494–503. [Google Scholar] [CrossRef]
  88. Colavita, F.; Lapa, D.; Carletti, F.; Lalle, E.; Bordi, L.; Marsella, P.; Nicastri, E.; Bevilacqua, N.; Giancola, M.L.; Corpolongo, A.; et al. SARS-CoV-2 Isolation From Ocular Secretions of a Patient With COVID-19 in Italy With Prolonged Viral RNA Detection. Ann. Intern. Med. 2020173, 242–243. [Google Scholar] [CrossRef] [PubMed]
  89. Fischer, Y.; Wess, G.; Hartmann, K. Pericardial effusion in a cat with feline infectious peritonitis. Schweiz Arch. Tierheilkd. 2012154, 27–31. [Google Scholar] [CrossRef] [PubMed]
  90. Rush, J.E.; Keene, B.W.; Fox, P.R. Pericardial disease in the cat: A retrospective evaluation of 66 cases. J. Am. Anim. Hosp. Assoc. 199026, 39–46. [Google Scholar]
  91. Hall, D.J.; Shofer, F.; Meier, C.K.; Sleeper, M.M. Pericardial effusion in cats: A retrospective study of clinical findings and outcome in 146 cats. J. Vet. Intern. Med. 200721, 1002–1007. [Google Scholar] [CrossRef]
  92. Baek, S.; Jo, J.; Song, K.; Seo, K. Recurrent Pericardial Effusion with Feline Infectious Peritonitis in a Cat. J. Vet. Clin. 201734, 437–440. [Google Scholar] [CrossRef]
  93. Ernandes, M.A.; Cantoni, A.M.; Armando, F.; Corradi, A.; Ressel, L.; Tamborini, A. Feline coronavirus-associated myocarditis in a domestic longhair cat. JFMS Open Rep. 20195, 2055116919879256. [Google Scholar] [CrossRef]
  94. Carvallo, F.R.; Martins, M.; Joshi, L.R.; Caserta, L.C.; Mitchell, P.K.; Cecere, T.; Hancock, S.; Goodrich, E.L.; Murphy, J.; Diel, D.G. Severe SARS-CoV-2 Infection in a Cat with Hypertrophic Cardiomyopathy. Viruses 202113, 1510. [Google Scholar] [CrossRef]
  95. Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 20205, 811–818. [Google Scholar] [CrossRef]
  96. Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 202046, 846–848. [Google Scholar] [CrossRef]
  97. Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E.; et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 20205, 819–824. [Google Scholar] [CrossRef]
  98. Farina, A.; Uccello, G.; Spreafico, M.; Bassanelli, G.; Savonitto, S. SARS-CoV-2 detection in the pericardial fluid of a patient with cardiac tamponade. Eur. J. Intern. Med. 202076, 100. [Google Scholar] [CrossRef] [PubMed]
  99. Lindner, D.; Fitzek, A.; Brauninger, H.; Aleshcheva, G.; Edler, C.; Meissner, K.; Scherschel, K.; Kirchhof, P.; Escher, F.; Schultheiss, H.P.; et al. Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiol. 20205, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
  100. Gunn-Moore, D.A.; Gruffydd-Jones, T.J.; Harbour, D.A. Detection of feline coronaviruses by culture and reverse transcriptase-polymerase chain reaction of blood samples from healthy cats and cats with clinical feline infectious peritonitis. Vet. Microbiol. 199862, 193–205. [Google Scholar] [CrossRef]
  101. Addie, D.D.; Jarrett, O. Use of a reverse-transcriptase polymerase chain reaction for monitoring the shedding of feline coronavirus by healthy cats. Vet. Rec. 2001148, 649–653. [Google Scholar] [CrossRef] [PubMed]
  102. Stranieri, A.; Scavone, D.; Paltrinieri, S.; Giordano, A.; Bonsembiante, F.; Ferro, S.; Gelain, M.E.; Meazzi, S.; Lauzi, S. Concordance between Histology, Immunohistochemistry, and RT-PCR in the Diagnosis of Feline Infectious Peritonitis. Pathogens 20209, 852. [Google Scholar] [CrossRef]
  103. Harvey, C.J.; Lopez, J.W.; Hendrick, M.J. An uncommon intestinal manifestation of feline infectious peritonitis: 26 cases (1986–1993). J. Am. Vet. Med. Assoc. 1996209, 1117–1120. [Google Scholar]
  104. Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020158, 1831–1833. [Google Scholar] [CrossRef]
  105. Pan, L.; Mu, M.; Yang, P.; Sun, Y.; Wang, R.; Yan, J.; Li, P.; Hu, B.; Wang, J.; Hu, C.; et al. Clinical Characteristics of COVID-19 Patients With Digestive Symptoms in Hubei, China: A Descriptive, Cross-Sectional, Multicenter Study. Am. J. Gastroenterol. 2020115, 766–773. [Google Scholar] [CrossRef] [PubMed]
  106. Parasa, S.; Desai, M.; Thoguluva Chandrasekar, V.; Patel, H.K.; Kennedy, K.F.; Roesch, T.; Spadaccini, M.; Colombo, M.; Gabbiadini, R.; Artifon, E.L.A.; et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw. Open 20203, e2011335. [Google Scholar] [CrossRef] [PubMed]
  107. Rokkas, T. Gastrointestinal involvement in COVID-19: A systematic review and meta-analysis. Ann. Gastroenterol. 202033, 355–365. [Google Scholar] [CrossRef] [PubMed]
  108. Akin, H.; Kurt, R.; Tufan, F.; Swi, A.; Ozaras, R.; Tahan, V.; Hammoud, G. Newly Reported Studies on the Increase in Gastrointestinal Symptom Prevalence withCOVID-19 Infection: A Comprehensive Systematic Review and Meta-Analysis. Diseases 20208, 41. [Google Scholar] [CrossRef] [PubMed]
  109. Chen, L.; Lou, J.; Bai, Y.; Wang, M. COVID-19 Disease With Positive Fecal and Negative Pharyngeal and Sputum Viral Tests. Am. J. Gastroenterol. 2020115, 790. [Google Scholar] [CrossRef] [PubMed]
  110. Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020323, 1843–1844. [Google Scholar] [CrossRef]
  111. Arostegui, D.; Castro, K.; Schwarz, S.; Vaidy, K.; Rabinowitz, S.; Wallach, T. Persistent SARS-CoV-2 Nucleocapsid Protein Presence in the Intestinal Epithelium of a Pediatric Patient 3 Months After Acute Infection. J. Pediatr. Gastroenterol. Nutr. 20223, e152. [Google Scholar] [CrossRef]
  112. Declercq, J.; De Bosschere, H.; Schwarzkopf, I.; Declercq, L. Papular cutaneous lesions in a cat associated with feline infectious peritonitis. Vet. Dermatol. 200819, 255–258. [Google Scholar] [CrossRef]
  113. Bauer, B.S.; Kerr, M.E.; Sandmeyer, L.S.; Grahn, B.H. Positive immunostaining for feline infectious peritonitis (FIP) in a Sphinx cat with cutaneous lesions and bilateral panuveitis. Vet. Ophthalmol. 201316 (Suppl. 1), 160–163. [Google Scholar] [CrossRef]
  114. Redford, T.; Al-Dissi, A.N. Feline infectious peritonitis in a cat presented because of papular skin lesions. Can. Vet. J. 201960, 183–185. [Google Scholar]
  115. Trotman, T.K.; Mauldin, E.; Hoffmann, V.; Del Piero, F.; Hess, R.S. Skin fragility syndrome in a cat with feline infectious peritonitis and hepatic lipidosis. Vet. Dermatol. 200718, 365–369. [Google Scholar] [CrossRef] [PubMed]
  116. Recalcati, S. Cutaneous manifestations in COVID-19: A first perspective. J. Eur. Acad. Dermatol. Venereol. 2020, 34. [Google Scholar] [CrossRef] [PubMed]
  117. Galvan Casas, C.; Catala, A.; Carretero Hernandez, G.; Rodriguez-Jimenez, P.; Fernandez-Nieto, D.; Rodriguez-Villa Lario, A.; Navarro Fernandez, I.; Ruiz-Villaverde, R.; Falkenhain-Lopez, D.; Llamas Velasco, M.; et al. Classification of the cutaneous manifestations of COVID-19: A rapid prospective nationwide consensus study in Spain with 375 cases. Br. J. Dermatol. 2020183, 71–77. [Google Scholar] [CrossRef] [PubMed]
  118. Tomsitz, D.; Biedermann, T.; Brockow, K. Skin manifestations reported in association with COVID-19 infection. J. Dtsch. Dermatol. Ges. 202119, 530–534. [Google Scholar] [CrossRef]
  119. Welsh, E.C.; Alfaro Sanchez, A.B.; Ortega Gutierrez, G.L.; Cardenas-de la Garza, J.A.; Cuellar-Barboza, A.; Valdes-Espinosa, R.A.; Pasos Estrada, A.A.; Miranda Aguirre, A.I.; Ramos-Jimenez, J.; Moreno Gonzalez, J.; et al. COVID-19 dermatological manifestations: Results from the Mexican Academy of Dermatology COVID-19 registry. Int. J. Dermatol. 202160, 879. [Google Scholar] [CrossRef]
  120. Foster, R.A.; Caswell, J.L.; Rinkardt, N. Chronic fibrinous and necrotic orchitis in a cat. Can. Vet. J. 199637, 681–682. [Google Scholar]
  121. Stranieri, A.; Probo, M.; Pisu, M.C.; Fioletti, A.; Meazzi, S.; Gelain, M.E.; Bonsembiante, F.; Lauzi, S.; Paltrinieri, S. Preliminary investigation on feline coronavirus presence in the reproductive tract of the tom cat as a potential route of viral transmission. J. Feline Med. Surg. 202022, 178–185. [Google Scholar] [CrossRef]
  122. Evermann, J.F.; Baumgartener, L.; Ott, R.L.; Davis, E.V.; McKeirnan, A.J. Characterization of a feline infectious peritonitis virus isolate. Vet. Pathol. 198118, 256–265. [Google Scholar] [CrossRef]
  123. Yang, M.; Chen, S.; Huang, B.; Zhong, J.M.; Su, H.; Chen, Y.J.; Cao, Q.; Ma, L.; He, J.; Li, X.F.; et al. Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications. Eur. Urol. Focus 20206, 1124–1129. [Google Scholar] [CrossRef]
  124. Ma, X.; Guan, C.; Chen, R.; Wang, Y.; Feng, S.; Wang, R.; Qu, G.; Zhao, S.; Wang, F.; Wang, X.; et al. Pathological and molecular examinations of postmortem testis biopsies reveal SARS-CoV-2 infection in the testis and spermatogenesis damage in COVID-19 patients. Cell Mol. Immunol. 202118, 487–489. [Google Scholar] [CrossRef]
  125. Li, D.; Jin, M.; Bao, P.; Zhao, W.; Zhang, S. Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019. JAMA Netw. Open 20203, e208292. [Google Scholar] [CrossRef] [PubMed]
  126. Sharun, K.; Tiwari, R.; Dhama, K. SARS-CoV-2 in semen: Potential for sexual transmission in COVID-19. Int. J. Surg. 202084, 156–158. [Google Scholar] [CrossRef] [PubMed]
  127. Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod. 202026, 367–373. [Google Scholar] [CrossRef]
  128. Goad, J.; Rudolph, J.; Rajkovic, A. Female reproductive tract has low concentration of SARS-CoV2 receptors. PLoS ONE 202015, e0243959. [Google Scholar] [CrossRef] [PubMed]
  129. Cui, P.; Chen, Z.; Wang, T.; Dai, J.; Zhang, J.; Ding, T.; Jiang, J.; Liu, J.; Zhang, C.; Shan, W.; et al. Severe acute respiratory syndrome coronavirus 2 detection in the female lower genital tract. Am. J. Obstet. Gynecol. 2020223, 131–134. [Google Scholar] [CrossRef]
  130. Scorzolini, L.; Corpolongo, A.; Castilletti, C.; Lalle, E.; Mariano, A.; Nicastri, E. Comment on the Potential Risks of Sexual and Vertical Transmission of COVID-19. Clin. Infect. Dis. 202071, 2298. [Google Scholar] [CrossRef] [PubMed]
  131. Petersen, N.C.; Boyle, J.F. Immunologic phenomena in the effusive form of feline infectious peritonitis. Am. J. Vet. Res. 198041, 868–876. [Google Scholar]
  132. Kipar, A.; May, H.; Menger, S.; Weber, M.; Leukert, W.; Reinacher, M. Morphologic features and development of granulomatous vasculitis in feline infectious peritonitis. Vet. Pathol. 200542, 321–330. [Google Scholar] [CrossRef]
  133. McGonagle, D.; Bridgewood, C.; Ramanan, A.V.; Meaney, J.F.M.; Watad, A. COVID-19 vasculitis and novel vasculitis mimics. Lancet Rheumatol. 20213, e224–e233. [Google Scholar] [CrossRef]
  134. Roncati, L.; Ligabue, G.; Fabbiani, L.; Malagoli, C.; Gallo, G.; Lusenti, B.; Nasillo, V.; Manenti, A.; Maiorana, A. Type 3 hypersensitivity in COVID-19 vasculitis. Clin. Immunol. 2020217, 108487. [Google Scholar] [CrossRef]
  135. Chen, J.; Lau, Y.F.; Lamirande, E.W.; Paddock, C.D.; Bartlett, J.H.; Zaki, S.R.; Subbarao, K. Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. J. Virol. 201084, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
  136. Yasui, F.; Kohara, M.; Kitabatake, M.; Nishiwaki, T.; Fujii, H.; Tateno, C.; Yoneda, M.; Morita, K.; Matsushima, K.; Koyasu, S.; et al. Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus. Virology 2014454–455, 157–168. [Google Scholar] [CrossRef] [PubMed]
  137. Chen, G.; Wu, D.; Guo, W.; Cao, Y.; Huang, D.; Wang, H.; Wang, T.; Zhang, X.; Chen, H.; Yu, H.; et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Investig. 2020130, 2620–2629. [Google Scholar] [CrossRef] [PubMed]
  138. de Groot-Mijnes, J.D.; van Dun, J.M.; van der Most, R.G.; de Groot, R.J. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J. Virol. 200579, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
  139. Haagmans, B.L.; Egberink, H.F.; Horzinek, M.C. Apoptosis and T-cell depletion during feline infectious peritonitis. J. Virol. 199670, 8977–8983. [Google Scholar] [CrossRef]
  140. Vermeulen, B.L.; Devriendt, B.; Olyslaegers, D.A.; Dedeurwaerder, A.; Desmarets, L.M.; Favoreel, H.W.; Dewerchin, H.L.; Nauwynck, H.J. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus. Vet. Microbiol. 2013164, 46–59. [Google Scholar] [CrossRef]
  141. Aziz, M.; Fatima, R.; Assaly, R. Elevated interleukin-6 and severe COVID-19: A meta-analysis. J. Med. Virol. 202092, 2283–2285. [Google Scholar] [CrossRef]
  142. Merad, M.; Martin, J.C. Author Correction: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat. Rev. Immunol. 202020, 448. [Google Scholar] [CrossRef]
  143. Kai, K.; Yukimune, M.; Murata, T.; Uzuka, Y.; Kanoe, M.; Matsumoto, H. Humoral immune responses of cats to feline infectious peritonitis virus infection. J. Vet. Med. Sci. 199254, 501–507. [Google Scholar] [CrossRef]
  144. Ni, L.; Ye, F.; Cheng, M.L.; Feng, Y.; Deng, Y.Q.; Zhao, H.; Wei, P.; Ge, J.; Gou, M.; Li, X.; et al. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. Immunity 202052, 971–977. [Google Scholar] [CrossRef]
  145. Kong, Y.; Cai, C.; Ling, L.; Zeng, L.; Wu, M.; Wu, Y.; Zhang, W.; Liu, Z. Successful treatment of a centenarian with coronavirus disease 2019 (COVID-19) using convalescent plasma. Transfus. Apher. Sci. 202059, 102820. [Google Scholar] [CrossRef]
  146. Olsen, C.W.; Corapi, W.V.; Ngichabe, C.K.; Baines, J.D.; Scott, F.W. Monoclonal antibodies to the spike protein of feline infectious peritonitis virus mediate antibody-dependent enhancement of infection of feline macrophages. J. Virol. 199266, 956–965. [Google Scholar] [CrossRef]
  147. Takano, T.; Kawakami, C.; Yamada, S.; Satoh, R.; Hohdatsu, T. Antibody-dependent enhancement occurs upon re-infection with the identical serotype virus in feline infectious peritonitis virus infection. J. Vet. Med. Sci. 200870, 1315–1321. [Google Scholar] [CrossRef]
  148. Wang, S.F.; Tseng, S.P.; Yen, C.H.; Yang, J.Y.; Tsao, C.H.; Shen, C.W.; Chen, K.H.; Liu, F.T.; Liu, W.T.; Chen, Y.M.; et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem. Biophys. Res. Commun. 2014451, 208–214. [Google Scholar] [CrossRef] [PubMed]
  149. Maemura, T.; Kuroda, M.; Armbrust, T.; Yamayoshi, S.; Halfmann, P.J.; Kawaoka, Y. Antibody-Dependent Enhancement of SARS-CoV-2 Infection Is Mediated by the IgG Receptors FcgammaRIIA and FcgammaRIIIA but Does Not Contribute to Aberrant Cytokine Production by Macrophages. mBio 202112, e0198721. [Google Scholar] [CrossRef]
  150. Ricke, D.O. Two Different Antibody-Dependent Enhancement (ADE) Risks for SARS-CoV-2 Antibodies. Front. Immunol. 202112, 640093. [Google Scholar] [CrossRef] [PubMed]
  151. Hui, K.P.Y.; Cheung, M.C.; Perera, R.; Ng, K.C.; Bui, C.H.T.; Ho, J.C.W.; Ng, M.M.T.; Kuok, D.I.T.; Shih, K.C.; Tsao, S.W.; et al. Tropism, replication competence, and innate immune responses of the coronavirus SARS-CoV-2 in human respiratory tract and conjunctiva: An analysis in ex-vivo and in-vitro cultures. Lancet Respir. Med. 20208, 687–695. [Google Scholar] [CrossRef]
  152. Lee, W.S.; Wheatley, A.K.; Kent, S.J.; DeKosky, B.J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 20205, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
  153. Li, F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 20163, 237–261. [Google Scholar] [CrossRef] [PubMed]
  154. Clausen, T.M.; Sandoval, D.R.; Spliid, C.B.; Pihl, J.; Perrett, H.R.; Painter, C.D.; Narayanan, A.; Majowicz, S.A.; Kwong, E.M.; McVicar, R.N.; et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020183, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
  155. Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020370, 856–860. [Google Scholar] [CrossRef] [PubMed]
  156. Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020581, 215–220. [Google Scholar] [CrossRef] [PubMed]
  157. Hoffmann, M.; Kleine-Weber, H.; Pohlmann, S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol. Cell 202078, 779–784. [Google Scholar] [CrossRef] [PubMed]
  158. Whittaker, G.R. SARS-CoV-2 spike and its adaptable furin cleavage site. Lancet Microbe 20212, e488–e489. [Google Scholar] [CrossRef]
  159. Wrobel, A.G.; Benton, D.J.; Xu, P.; Roustan, C.; Martin, S.R.; Rosenthal, P.B.; Skehel, J.J.; Gamblin, S.J. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat. Struct. Mol. Biol. 202027, 763–767. [Google Scholar] [CrossRef] [PubMed]
  160. Licitra, B.N.; Millet, J.K.; Regan, A.D.; Hamilton, B.S.; Rinaldi, V.D.; Duhamel, G.E.; Whittaker, G.R. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerg. Infect. Dis. 201319, 1066–1073. [Google Scholar] [CrossRef]
  161. Andre, N.M.; Miller, A.D.; Whittaker, G.R. Feline infectious peritonitis virus-associated rhinitis in a cat. JFMS Open Rep. 20206, 2055116920930582. [Google Scholar] [CrossRef]
  162. Jaimes, J.A.; Millet, J.K.; Whittaker, G.R. Proteolytic Cleavage of the SARS-CoV-2 Spike Protein and the Role of the Novel S1/S2 Site. iScience 202023, 101212. [Google Scholar] [CrossRef]
  163. Tang, T.; Jaimes, J.A.; Bidon, M.K.; Straus, M.R.; Daniel, S.; Whittaker, G.R. Proteolytic Activation of SARS-CoV-2 Spike at the S1/S2 Boundary: Potential Role of Proteases beyond Furin. ACS Infect. Dis. 20217, 264–272. [Google Scholar] [CrossRef]
  164. Peacock, T.P.; Goldhill, D.H.; Zhou, J.; Baillon, L.; Frise, R.; Swann, O.C.; Kugathasan, R.; Penn, R.; Brown, J.C.; Sanchez-David, R.Y.; et al. The furin cleavage site of SARS-CoV-2 spike protein is a key determinant for transmission due to enhanced replication in airway cells. bioRxiv 2020. [Google Scholar] [CrossRef]
  165. Matrajt, L.; Leung, T. Evaluating the Effectiveness of Social Distancing Interventions to Delay or Flatten the Epidemic Curve of Coronavirus Disease. Emerg Infect. Dis. 202026, 1740–1748. [Google Scholar] [CrossRef]
  166. Fazio, R.H.; Ruisch, B.C.; Moore, C.A.; Granados Samayoa, J.A.; Boggs, S.T.; Ladanyi, J.T. Social distancing decreases an individual’s likelihood of contracting COVID-19. Proc. Natl. Acad. Sci. USA 2021118, e2023131118. [Google Scholar] [CrossRef] [PubMed]
  167. Gostin, L.O.; Wiley, L.F. Governmental Public Health Powers During the COVID-19 Pandemic: Stay-at-home Orders, Business Closures, and Travel Restrictions. JAMA 2020323, 2137–2138. [Google Scholar] [CrossRef]
  168. Drechsler, Y.; Alcaraz, A.; Bossong, F.J.; Collisson, E.W.; Diniz, P.P. Feline coronavirus in multicat environments. Vet. Clin. N. Am. Small Anim. Pract. 201141, 1133–1169. [Google Scholar] [CrossRef]
  169. Ryan, J.; Mazingisa, A.V.; Wiysonge, C.S. Cochrane corner: Effectiveness of quarantine in reducing the spread of COVID-19. Pan Afr. Med. J. 202035, 18. [Google Scholar] [CrossRef] [PubMed]
  170. Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: Rapid review of the evidence. Lancet 2020395, 912–920. [Google Scholar] [CrossRef]
  171. Scott, F.W. Evaluation of risks and benefits associated with vaccination against coronavirus infections in cats. Adv. Vet. Med. 199941, 347–358. [Google Scholar] [CrossRef] [PubMed]
  172. Fehr, D.; Holznagel, E.; Bolla, S.; Hauser, B.; Herrewegh, A.A.; Horzinek, M.C.; Lutz, H. Placebo-controlled evaluation of a modified life virus vaccine against feline infectious peritonitis: Safety and efficacy under field conditions. Vaccine 199715, 1101–1109. [Google Scholar] [CrossRef]
  173. Stone, A.E.; Brummet, G.O.; Carozza, E.M.; Kass, P.H.; Petersen, E.P.; Sykes, J.; Westman, M.E. 2020 AAHA/AAFP Feline Vaccination Guidelines. J. Feline Med. Surg. 202022, 813–830. [Google Scholar] [CrossRef]
  174. Balint, A.; Farsang, A.; Szeredi, L.; Zadori, Z.; Belak, S. Recombinant feline coronaviruses as vaccine candidates confer protection in SPF but not in conventional cats. Vet. Microbiol. 2014169, 154–162. [Google Scholar] [CrossRef]
  175. Vennema, H.; de Groot, R.J.; Harbour, D.A.; Dalderup, M.; Gruffydd-Jones, T.; Horzinek, M.C.; Spaan, W.J. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J. Virol. 199064, 1407–1409. [Google Scholar] [CrossRef] [PubMed]
  176. Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Perez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N. Engl. J. Med. 2020383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
  177. Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021384, 403–416. [Google Scholar] [CrossRef] [PubMed]
  178. Sadoff, J.; Gray, G.; Vandebosch, A.; Cardenas, V.; Shukarev, G.; Grinsztejn, B.; Goepfert, P.A.; Truyers, C.; Fennema, H.; Spiessens, B.; et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N. Engl. J. Med. 2021384, 2187–2201. [Google Scholar] [CrossRef] [PubMed]
  179. Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021397, 99–111. [Google Scholar] [CrossRef]
  180. Tanriover, M.D.; Doganay, H.L.; Akova, M.; Guner, H.R.; Azap, A.; Akhan, S.; Kose, S.; Erdinc, F.S.; Akalin, E.H.; Tabak, O.F.; et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): Interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021398, 213–222. [Google Scholar] [CrossRef]
  181. Ella, R.; Vadrevu, K.M.; Jogdand, H.; Prasad, S.; Reddy, S.; Sarangi, V.; Ganneru, B.; Sapkal, G.; Yadav, P.; Abraham, P.; et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: A double-blind, randomised, phase 1 trial. Lancet Infect. Dis. 202121, 637–646. [Google Scholar] [CrossRef]
  182. Ali Waggiallah, H. Thrombosis Formation after COVID-19 Vaccination Immunological Aspects: Review Article. Saudi J. Biol. Sci. 202129, 1073–1078. [Google Scholar] [CrossRef]
  183. Schultz, N.H.; Sorvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.H.; Skattor, T.H.; Tjonnfjord, G.E.; et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N. Engl. J. Med. 2021384, 2124–2130. [Google Scholar] [CrossRef]
  184. See, I.; Lale, A.; Marquez, P.; Streiff, M.B.; Wheeler, A.P.; Tepper, N.K.; Woo, E.J.; Broder, K.R.; Edwards, K.M.; Gallego, R.; et al. Case Series of Thrombosis with Thrombocytopenia Syndrome after COVID-19 Vaccination-United States, December 2020 to August 2021. Ann. Intern. Med. 2022. [Google Scholar] [CrossRef]
  185. Dagan, N.; Barda, N.; Kepten, E.; Miron, O.; Perchik, S.; Katz, M.A.; Hernan, M.A.; Lipsitch, M.; Reis, B.; Balicer, R.D. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N. Engl. J. Med. 2021384, 1412–1423. [Google Scholar] [CrossRef] [PubMed]
  186. Hall, V.J.; Foulkes, S.; Saei, A.; Andrews, N.; Oguti, B.; Charlett, A.; Wellington, E.; Stowe, J.; Gillson, N.; Atti, A.; et al. COVID-19 vaccine coverage in health-care workers in England and effectiveness of BNT162b2 mRNA vaccine against infection (SIREN): A prospective, multicentre, cohort study. Lancet 2021397, 1725–1735. [Google Scholar] [CrossRef]
  187. Pawlowski, C.; Lenehan, P.; Puranik, A.; Agarwal, V.; Venkatakrishnan, A.J.; Niesen, M.J.M.; O’Horo, J.C.; Virk, A.; Swift, M.D.; Badley, A.D.; et al. FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med 20212, 979–992. [Google Scholar] [CrossRef] [PubMed]
  188. Levine-Tiefenbrun, M.; Yelin, I.; Katz, R.; Herzel, E.; Golan, Z.; Schreiber, L.; Wolf, T.; Nadler, V.; Ben-Tov, A.; Kuint, J.; et al. Initial report of decreased SARS-CoV-2 viral load after inoculation with the BNT162b2 vaccine. Nat. Med. 202127, 790–792. [Google Scholar] [CrossRef] [PubMed]
  189. Holzworth, J. Infectious diseases of cats. Cornell Vet. 196353, 131–143. [Google Scholar]
  190. Weiss, R.C.; Oostrom-Ram, T. Inhibitory effects of ribavirin alone or combined with human alpha interferon on feline infectious peritonitis virus replication in vitro. Vet. Microbiol. 198920, 255–265. [Google Scholar] [CrossRef]
  191. Weiss, R.C.; Cox, N.R.; Martinez, M.L. Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Res. Vet. Sci. 199355, 162–172. [Google Scholar] [CrossRef]
  192. Khalili, J.S.; Zhu, H.; Mak, N.S.A.; Yan, Y.; Zhu, Y. Novel coronavirus treatment with ribavirin: Groundwork for an evaluation concerning COVID-19. J. Med. Virol. 202092, 740–746. [Google Scholar] [CrossRef]
  193. Zeng, Y.M.; Xu, X.L.; He, X.Q.; Tang, S.Q.; Li, Y.; Huang, Y.Q.; Harypursat, V.; Chen, Y.K. Comparative effectiveness and safety of ribavirin plus interferon-alpha, lopinavir/ritonavir plus interferon-alpha, and ribavirin plus lopinavir/ritonavir plus interferon-alpha in patients with mild to moderate novel coronavirus disease 2019: Study protocol. Chin. Med. J. 2020133, 1132–1134. [Google Scholar] [CrossRef]
  194. Dickinson, P.J.; Bannasch, M.; Thomasy, S.M.; Murthy, V.D.; Vernau, K.M.; Liepnieks, M.; Montgomery, E.; Knickelbein, K.E.; Murphy, B.; Pedersen, N.C. Antiviral treatment using the adenosine nucleoside analogue GS-441524 in cats with clinically diagnosed neurological feline infectious peritonitis. J. Vet. Intern. Med. 202034, 1587–1593. [Google Scholar] [CrossRef]
  195. Pedersen, N.C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami, E.; Liepnieks, M.; Liu, H. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J. Feline Med. Surg. 201921, 271–281. [Google Scholar] [CrossRef]
  196. Pedersen, N.C.; Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Eckstrand, C.; Groutas, W.C.; Bannasch, M.; Meadows, J.M.; Chang, K.O. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J. Feline Med. Surg. 201820, 378–392. [Google Scholar] [CrossRef]
  197. Krentz, D.; Zenger, K.; Alberer, M.; Felten, S.; Bergmann, M.; Dorsch, R.; Matiasek, K.; Kolberg, L.; Hofmann-Lehmann, R.; Meli, M.L.; et al. Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524. Viruses 202113, 2228. [Google Scholar] [CrossRef] [PubMed]
  198. Hartmann, K.; Ritz, S. Treatment of cats with feline infectious peritonitis. Vet. Immunol. Immunopathol. 2008123, 172–175. [Google Scholar] [CrossRef]
  199. Veronese, N.; Demurtas, J.; Yang, L.; Tonelli, R.; Barbagallo, M.; Lopalco, P.; Lagolio, E.; Celotto, S.; Pizzol, D.; Zou, L.; et al. Use of Corticosteroids in Coronavirus Disease 2019 Pneumonia: A Systematic Review of the Literature. Front. Med. 20207, 170. [Google Scholar] [CrossRef] [PubMed]
  200. The WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020324, 1330–1341. [Google Scholar] [CrossRef]
  201. Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021384, 693–704. [Google Scholar] [CrossRef]
  202. Tanaka, Y.; Sato, Y.; Osawa, S.; Inoue, M.; Tanaka, S.; Sasaki, T. Suppression of feline coronavirus replication in vitro by cyclosporin A. Vet. Res. 201243, 41. [Google Scholar] [CrossRef]
  203. Tanaka, Y.; Sato, Y.; Takahashi, D.; Matsumoto, H.; Sasaki, T. Treatment of a case of feline infectious peritonitis with cyclosporin A. Vet. Re. Case Rep. 20153, e000134. [Google Scholar] [CrossRef]
  204. Cour, M.; Ovize, M.; Argaud, L. Cyclosporine A: A valid candidate to treat COVID-19 patients with acute respiratory failure? Crit. Care 202024, 276. [Google Scholar] [CrossRef]
  205. Rudnicka, L.; Glowacka, P.; Goldust, M.; Sikora, M.; Sar-Pomian, M.; Rakowska, A.; Samochocki, Z.; Olszewska, M. Cyclosporine therapy during the COVID-19 pandemic. J. Am. Acad. Dermatol. 202083, e151–e152. [Google Scholar] [CrossRef]
  206. Sanchez-Pernaute, O.; Romero-Bueno, F.I.; Selva-O’Callaghan, A. Why choose cyclosporin A as first-line therapy in COVID-19 pneumonia. Reumatol. Clin. 202117, 555–557. [Google Scholar] [CrossRef] [PubMed]
  207. Softic, L.; Brillet, R.; Berry, F.; Ahnou, N.; Nevers, Q.; Morin-Dewaele, M.; Hamadat, S.; Bruscella, P.; Fourati, S.; Pawlotsky, J.M.; et al. Inhibition of SARS-CoV-2 Infection by the Cyclophilin Inhibitor Alisporivir (Debio 025). Antimicrob. Agents Chemother. 202064, e00876-20. [Google Scholar] [CrossRef] [PubMed]
  208. Carbajo-Lozoya, J.; Ma-Lauer, Y.; Malesevic, M.; Theuerkorn, M.; Kahlert, V.; Prell, E.; von Brunn, B.; Muth, D.; Baumert, T.F.; Drosten, C.; et al. Human coronavirus NL63 replication is cyclophilin A-dependent and inhibited by non-immunosuppressive cyclosporine A-derivatives including Alisporivir. Virus Res. 2014184, 44–53. [Google Scholar] [CrossRef]
  209. Hugo, T.B.; Heading, K.L. Prolonged survival of a cat diagnosed with feline infectious peritonitis by immunohistochemistry. Can. Vet. J. 201556, 53–58. [Google Scholar] [PubMed]
  210. Conforti, C.; Giuffrida, R.; Zalaudek, I.; Di Meo, N. Doxycycline, a widely used antibiotic in dermatology with a possible anti-inflammatory action against IL-6 in COVID-19 outbreak. Dermatol. Ther. 202033, e13437. [Google Scholar] [CrossRef] [PubMed]
  211. Izes, A.M.; Yu, J.; Norris, J.M.; Govendir, M. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Vet. Q. 202040, 322–330. [Google Scholar] [CrossRef] [PubMed]
  212. Hung, I.F.; Lung, K.C.; Tso, E.Y.; Liu, R.; Chung, T.W.; Chu, M.Y.; Ng, Y.Y.; Lo, J.; Chan, J.; Tam, A.R.; et al. Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: An open-label, randomised, phase 2 trial. Lancet 2020395, 1695–1704. [Google Scholar] [CrossRef]
  213. Doki, T.; Takano, T.; Kawagoe, K.; Kito, A.; Hohdatsu, T. Therapeutic effect of anti-feline TNF-alpha monoclonal antibody for feline infectious peritonitis. Res. Vet. Sci. 2016104, 17–23. [Google Scholar] [CrossRef] [PubMed]
  214. Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol. 202092, 814–818. [Google Scholar] [CrossRef]
  215. Capra, R.; De Rossi, N.; Mattioli, F.; Romanelli, G.; Scarpazza, C.; Sormani, M.P.; Cossi, S. Impact of low dose tocilizumab on mortality rate in patients with COVID-19 related pneumonia. Eur. J. Intern. Med. 202076, 31–35. [Google Scholar] [CrossRef]
  216. Radbel, J.; Narayanan, N.; Bhatt, P.J. Use of Tocilizumab for COVID-19-Induced Cytokine Release Syndrome: A Cautionary Case Report. Chest 2020158, e15–e19. [Google Scholar] [CrossRef] [PubMed]
  217. Paediatric Intensive Care Society Statement: Increased Number of Reported Cases of Novel Presentation of Multisystem Inflammatory Disease; Paediatric Intensive Care Society: London, UK, 2020.
  218. Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020383, 347–358. [Google Scholar] [CrossRef] [PubMed]
  219. Feldstein, L.R.; Tenforde, M.W.; Friedman, K.G.; Newhams, M.; Rose, E.B.; Dapul, H.; Soma, V.L.; Maddux, A.B.; Mourani, P.M.; Bowens, C.; et al. Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19. JAMA 2021325, 1074–1087. [Google Scholar] [CrossRef]
  220. Tullie, L.; Ford, K.; Bisharat, M.; Watson, T.; Thakkar, H.; Mullassery, D.; Giuliani, S.; Blackburn, S.; Cross, K.; De Coppi, P.; et al. Gastrointestinal features in children with COVID-19: An observation of varied presentation in eight children. Lancet Child Adolesc. Health 20204, e19–e20. [Google Scholar] [CrossRef]
  221. LaRovere, K.L.; Riggs, B.J.; Poussaint, T.Y.; Young, C.C.; Newhams, M.M.; Maamari, M.; Walker, T.C.; Singh, A.R.; Dapul, H.; Hobbs, C.V.; et al. Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome. JAMA Neurol. 202178, 536–547. [Google Scholar] [CrossRef] [PubMed]
  222. Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020383, 334–346. [Google Scholar] [CrossRef]
  223. Blumfield, E.; Levin, T.L.; Kurian, J.; Lee, E.Y.; Liszewski, M.C. Imaging Findings in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated With Coronavirus Disease (COVID-19). AJR Am. J. Roentgenol. 2021216, 507–517. [Google Scholar] [CrossRef] [PubMed]
  224. Alberer, M.; von Both, U. Cats and kids: How a feline disease may help us unravel COVID-19 associated paediatric hyperinflammatory syndrome. Infection 202149, 191–193. [Google Scholar] [CrossRef]
  225. Sharma, C.; Ganigara, M.; Galeotti, C.; Burns, J.; Berganza, F.M.; Hayes, D.A.; Singh-Grewal, D.; Bharath, S.; Sajjan, S.; Bayry, J. Multisystem inflammatory syndrome in children and Kawasaki disease: A critical comparison. Nat. Rev. Rheumatol. 202117, 731–748. [Google Scholar] [CrossRef]
  226. Groff, D.; Sun, A.; Ssentongo, A.E.; Ba, D.M.; Parsons, N.; Poudel, G.R.; Lekoubou, A.; Oh, J.S.; Ericson, J.E.; Ssentongo, P.; et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw. Open 20214, e2128568. [Google Scholar] [CrossRef] [PubMed]
  227. McAloose, D.; Laverack, M.; Wang, L.; Killian, M.L.; Caserta, L.C.; Yuan, F.; Mitchell, P.K.; Queen, K.; Mauldin, M.R.; Cronk, B.D.; et al. From People to Panthera: Natural SARS-CoV-2 Infection in Tigers and Lions at the Bronx Zoo. mBio 202011, e02220-20. [Google Scholar] [CrossRef] [PubMed]
  228. Gaudreault, N.N.; Trujillo, J.D.; Carossino, M.; Meekins, D.A.; Morozov, I.; Madden, D.W.; Indran, S.V.; Bold, D.; Balaraman, V.; Kwon, T.; et al. SARS-CoV-2 infection, disease and transmission in domestic cats. Emerg Microbes Infect 20209, 2322–2332. [Google Scholar] [CrossRef] [PubMed]
  229. Miro, G.; Regidor-Cerrillo, J.; Checa, R.; Diezma-Diaz, C.; Montoya, A.; Garcia-Cantalejo, J.; Botias, P.; Arroyo, J.; Ortega-Mora, L.M. SARS-CoV-2 Infection in One Cat and Three Dogs Living in COVID-19-Positive Households in Madrid, Spain. Front. Vet. Sci. 20218, 779341. [Google Scholar] [CrossRef] [PubMed]
  230. Giraldo-Ramirez, S.; Rendon-Marin, S.; Jaimes, J.A.; Martinez-Gutierrez, M.; Ruiz-Saenz, J. SARS-CoV-2 Clinical Outcome in Domestic and Wild Cats: A Systematic Review. Animals 202111, 2056. [Google Scholar] [CrossRef] [PubMed]
  231. Ferasin, L.; Fritz, M.; Ferasin, H.; Becquart, P.; Corbet, S.; Ar Gouilh, M.; Legros, V.; Leroy, E.M. Infection with SARS-CoV-2 variant B.1.1.7 detected in a group of dogs and cats with suspected myocarditis. Vet. Rec. 2021189, e944. [Google Scholar] [CrossRef] [PubMed]
  232. Chiba, S.; Halfmann, P.J.; Hatta, M.; Maemura, T.; Fan, S.; Armbrust, T.; Swartley, O.M.; Crawford, L.K.; Kawaoka, Y. Protective Immunity and Persistent Lung Sequelae in Domestic Cats after SARS-CoV-2 Infection. Emerg. Infect. Dis. 202127, 660–663. [Google Scholar] [CrossRef]

História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu

Niels C. Pedersen
Center for Companion Animal Health, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA, 95616, USA
Pôvodný článok: History of Feline infectious Peritonitis 1963-2022 – First description to Successful Treatment
17.4.2022

Abstrakt

Tento článok pojednáva o vývoji poznatkov o mačacej infekčnej peritonitíde (FIP) od jej rozpoznania v roku 1963 až po súčasnosť a bol pripravený s cieľom informovať veterinárnych lekárov, záchrancov a opatrovateľov mačiek, zamestnancov útulkov a milovníkov mačiek. Stručne sa spomína pôvodca mačacieho koronavírusu a jeho vzťah k všadeprítomnému a minimálne patogénnemu črevnému koronavírusu mačkovitých šeliem, epizootológia, patogenéza, patológia, klinické príznaky a diagnostika. Hlavný dôraz sa kladie na rizikové faktory ovplyvňujúce výskyt FIP a úlohu moderných antivirotík pri úspešnej liečbe.

Úvod

Obrázok 1. Fotografia autora a Dr. Jean Holzworthovej (1915-2007) z roku 1991. Dr. Holzworthová bola najlepším mačacím veterinárnym lekárom, akého autor poznal, a bola zodpovedná za prvú správu o FIP ako špecifickom ochorení. Celú svoju kariéru strávila v Angell Memorial Animal Hospital v Bostone.

Mačacia infekčná peritonitída (FIP) bola opísaná ako špecifické ochorenie v roku 1963 veterinármi v Angell Memorial Animal Hospital v Bostone (Holzworth 1963) (obr. 1). Patologické záznamy z tejto inštitúcie a Štátnej univerzity v Ohiu nedokázali identifikovať skoršie prípady (Wolfe a Griesemer 1966), hoci čoskoro boli identické prípady rozpoznané na celom svete. Prvotné patologické opisy sa týkali difúzneho zápalu tkanív vystielajúcich brušnú dutinu a brušné orgány s rozsiahlym výtokom zápalovej tekutiny, podľa ktorého bolo ochorenie nakoniec pomenované (Wolfe a Griesemer 1966, 1971) (obr. 2,3). Druhá a menej častá klinická forma FIP, ktorá sa prejavuje menej difúznymi a viac rozšírenými granulomatóznymi léziami, ktoré zahŕňajú orgánový parenchým, bola prvýkrát opísaná v roku 1972 (Montali a Strandberg 1972) (obr. 3,4). Prítomnosť zápalových výpotkov v telesnej dutine pri bežnej forme a absencia výpotkov pri menej bežnej forme viedla k pomenovaniu vlhká (výpotková, neparenchymatózna) a suchá (nevýpotková, parenchymatózna) FIP.

Zdá sa, že prevalencia FIP sa zvýšila počas panzootického ochorenia spôsobeného vírusom mačacej leukémie (FeLV) v 60. – 80. rokoch 20. storočia, keď sa zistilo, že mnohé prípady FIP boli spojené s FeLV (Cotter et al., 1973; Pedersen 1976a). Následné zvládnutie infekcie FeLV u domácich mačiek pomocou rýchleho testovania a vakcinácie prinieslo nárast počtu prípadov FIP. Nedávny záujem o chov/ záchranu spolu s účinnou liečbou však viedol k zvýšenému povedomiu o ochorení a jeho diagnostike.

Obrázok 2. Hrubý nekroptický vzhľad brušnej dutiny mačky s akútnym nástupom vlhkej FIP. Brucho je vyplnené niekoľkými stovkami ml žltej viskóznej tekutiny, omentum je začervenané, edematózne a stiahnuté a na povrchu sleziny a okrajoch pečene sú viditeľné fibrínové nánosy (šípky). Na slezine je vidieť vlákno fibrínu
Obrázok 3. Vzhľad otvoreného brucha pri pitve mačky, ktorá uhynula na chronickú formu efuzívnej FIP. Brucho je vyplnené viskóznym, žlto sfarbeným exsudátom a omentum je zhrubnuté a stiahnuté. Hlavné lézie sú v pečeni s početnými štruktúrami podobnými plakom (pyogranulómy) na obale. Viac ohraničené lézie (granulómy), tiež orientované na serózny povrch, vyzerajú mäsitejšie a sú vyvýšené nad povrch. Tieto lézie zasahujú aj do spodného pečeňového parenchýmu a sú typickejšie pre suché FIP. Toto je príklad prípadu FIP, ktorý prechádza medzi vlhkou a suchou formou (šípka).
Obrázok 4A – Hrubý prierez obličkami dvoch mačiek so suchou formou FIP. Lézie sú povrchovo orientované a zasahujú do základného parenchýmu.
Obrázok 4B – lézie suchej formy FIP v orgánoch, ako sú obličky, slepé črevo, hrubé črevo a črevné lymfatické uzliny (obr. 5), boli hrubo zamenené s lymfómom obličiek.
Obrázok 5. Hrubé zväčšenie ileo-cekálno-kolických lymfatických uzlín u mačky so suchou FIP.

Etiologický faktor

Prvé pokusy neumožnili identifikovať pôvodcu FIP, ale potvrdili jej infekčnú povahu (Wolfe a Griesemer 1966). Vírusová etiológia bola stanovená v roku 1968 pomocou ultrafiltrátov infekčného materiálu (Zook a kol., 1968). Príčinný vírus bol následne identifikovaný ako koronavírus (Ward 1970), ktorý je úzko príbuzný s črevnými koronavírusmi psov a ošípaných (Pedersen et al., 1978).

Zmätok nastal, keď bol z výkalov zdravých mačiek izolovaný mačací enterický koronavírus (FECV), ktorý sa ukázal ako nerozoznateľný od vírusu mačacej infekčnej peritonitídy (FIPV) (Pedersen a kol., 1981). Na rozdiel od vírusu FIPV, ktorý ľahko vyvolal FIP u laboratórnych mačiek, experimentálne infekcie vírusom FECV boli zväčša asymptomatické. Vzťah týchto dvoch vírusov sa objasnil, keď sa zistilo, že FIPV sú mutantmi FECV, ktoré vznikajú v tele každej mačky s FIP (Vennema et al., 1995; Poland et al., 1996).

FECV je všadeprítomný v populáciách mačiek na celom svete a prvýkrát sa vylučuje vo výkaloch približne od 9. – 10. týždňa života, čo sa zhoduje so stratou materskej imunity (Pedersen a kol., 2008;). Infekcia prebieha fekálno-orálnou cestou a je zameraná na črevný epitel a primárne príznaky enteritídy sú mierne alebo nevýrazné (Pedersen et al., 2008; Vogel et al., 2010). K následnému vylučovaniu do stolice dochádza z hrubého čreva a zvyčajne prestane po niekoľkých týždňoch alebo mesiacoch (Herrewegh et al.,1997; Pedersen et al., 2008; Vogel et al., 2010). Imunita je krátkodobá a opakované infekcie sú bežné (Pedersen et al., 2008; Pearson et al., 2016). Časom sa nakoniec vyvinie silnejšia imunita a u mačiek starších ako 3 roky je menej pravdepodobné, že budú vylučovať infekciu výkalmi (Addie et al., 2003). FECV neustále podlieha genetickému driftu do lokálne a regionálne identifikovateľných kladov (Herrewegh et al.,1997; Pedersen et al., 2009).

FECV a FIPV sú klasifikované ako biotypy poddruhu koronavírusu mačiek (FCoV). Genómy biotypov FECV a FIPV sú na > 98 % príbuzné, avšak s jedinečným tropizmom hostiteľských buniek a patogenitou (Chang et al., 2012; Pedersen et al., 2009). FECV infikujú zrelý črevný epitel, zatiaľ čo FIPV strácajú črevný tropizmus a získavajú schopnosť replikovať sa v monocytoch/makrofágoch. Publikované názvy FECV alebo FIPV sa tu budú používať, keď sa bude hovoriť o aspektoch ochorenia špecifických pre každý biotyp, zatiaľ čo termín FCoV sa bude používať, keď sa bude hovoriť o znakoch spoločných pre oba biotypy.

Na zmene biotypu FECV na FIPV sa podieľajú tri typy mutácií. Prvý typ, ktorý je jedinečný pre každú mačku s FIP (Poland et al., 1996), pozostáva z nahromadenia missense a nonsense mutácií v c-konci pomocného 3c génu, ktoré často vedú k skráteným produktom 3c génu (Pedersen et al., 2012; Vennema et al., 1995). Druhý typ mutácií pozostáva z dvoch špecifických jednonukleotidových polymorfizmov vo fúznom peptide génu S, pričom jedna alebo druhá forma je spoločná pre > 95 % FIPV a chýba u FECV (Chang et al., 2012). Tretí typ mutácií, ktorý je jedinečný pre každý izolát FIPV a nenachádza sa u FECV, sa vyskytuje v motíve štiepenia furínu medzi doménou viažucou receptor (S1) a fúznou doménou (S2) hrotového génu (S) a v jeho okolí (Licitra et al., 2013). Tieto mutácie majú rôzny vplyv na štiepnu aktivitu furínu. Spoločne a zatiaľ neurčeným spôsobom sú zodpovedné za posun tropizmu hostiteľskej bunky z enterocytu na makrofág a za hlbokú zmenu formy ochorenia.

FCoV, a teda aj FECV a FIPV, existujú v dvoch sérotypoch identifikovaných podľa protilátok proti vírusovému neutralizačnému epitopu na géne S (Herrewegh et al., 1998; Terada et al., 2014). FCoV sérotypu I sú identifikované v sérach mačiek a prevládajú vo väčšine krajín. FCoV sérotypu II sú výsledkom rekombinácie s časťou S génu koronavírusu psov (Herrewegh a kol., 1998; Terada a kol., 2014) a identifikujú sa pomocou protilátok proti koronavírusu psov. FIPV sérotypu II sa ľahko kultivujú v tkanivových kultúrach, zatiaľ čo FIPV sérotypu I sa ťažko prispôsobujú rastu in vitro. FECV sérotypu I a II neboli pestované v bežných bunkových kultúrach (Tekes et al., 2020).

FIPV sa nachádzajú výlučne v aktivovaných monocytoch a makrofágoch v postihnutých tkanivách a výpotkoch a nevylučujú sa do vonkajšieho prostredia. Preto prenos FIPV z mačky na mačku (horizontálny) nie je hlavným spôsobom šírenia. FIP sa skôr riadi vzorom základnej enzootickej infekcie FECV, so sporadickými prípadmi a príležitostnými malými výskytmi ochorenia (Foley et al., 1997). Tieto zhluky prípadov sa môžu mylne považovať za epizootie. Jediná správa o epizootickom výskyte FIP bola spojená s jediným vírusom sérotypu II, ktorý sa zrejme vyvinul v útulku, v ktorom boli umiestnené psy aj mačky (Wang a kol., 2013). Horizontálny prenos sa v tomto prípade riadil skôr epizootickým ako enzootickým modelom ochorenia, pričom infekcia sa rýchlo rozšírila na mačky všetkých vekových kategórií a v úzkom kontakte s indexovým prípadom (Wang et al., 2013).

Nízky výskyt prípadov FIP v populácii naznačuje, že mutácie FIPV vznikajú zriedkavo. Štúdie zahŕňajúce infekciu FECV u imunokompromitovaných mačiek infikovaných FIV a FeLV však naznačujú, že mutanty FIP môžu byť bežné, ale spôsobujú ochorenie len za určitých okolností. Devätnásť mačiek infikovaných vírusom imunitnej nedostatočnosti mačiek (FIV) počas 6 rokov a kontrolná skupina 20 súrodencov, ktorí neboli infikovaní vírusom FIV, boli orálne infikované vírusom FECV (Poland et al., 1996). Mačky v oboch skupinách zostali asymptomatické počas dvoch mesiacov, keď sa u dvoch mačiek v skupine infikovanej FIV vyvinula FIP. V druhej štúdii bolo 26 mladých mačiek s enzootickou infekciou FECV a z chovateľskej kolónie bez anamnézy FIP kontaktne vystavených nosičom FeLV (Pedersen a kol., 1977). U dvoch mačiatok v skupine sa následne vyvinula FIP 2 – 10 týždňov po tom, ako sa stali viremickými FeLV. Zostáva otázka, ako dlho môžu vírusy FIPV prežívať v tele, kým sa vylúčia? Podľa jednej z teórií pretrvávajú v tele určitý čas a patologickými sa stanú len vtedy, ak je voči nim narušená imunita (Healey a kol., 2022). Túto teóriu podporuje spôsob, akým sa vyvíja imunita voči FeLV. Väčšina mačiek po dosiahnutí veku mačiatka odolá vírusu FeLV a vyvinie si pevnú a trvalú imunitu, k čomu však dochádza v priebehu niekoľkých týždňov, počas ktorých vírus pretrváva v subklinickom alebo latentnom stave (Pedersen a kol., 1982; Rojko a kol., 1982). Metylprednizolón podávaný počas tohto obdobia, ale nie po ňom, zruší vyvíjajúcu sa imunitu a vedie k stavu pretrvávajúcej virémie.

Epizootológia

Epizootiológia je štúdium výskytu, rozšírenia a možnej kontroly chorôb zvierat a vplyvu faktorov prostredia, hostiteľa a pôvodcu. FIP je označovaná za jednu z najdôležitejších infekčných príčin úmrtí mačiek, hoci neexistujú presné údaje o prevalencii. Odhaduje sa, že 0,3 – 1,4 % úmrtí mačiek prezentovaných veterinárnym inštitúciám súvisí s FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Riemer et al., 2016) a v niektorých útulkoch a chovných staniciach až 3,6 – 7,8 % (Cave et al., 2002). FIP sa opisuje aj ako ochorenie prostredia s hustejším výskytom viacerých mačiek. Tri štvrtiny prípadov FIP v aktuálne prebiehajúcej liečebnej štúdii pochádzali z terénu prostredníctvom dočasných opatrovateľov/záchranných organizácií a útulkov pre mačky, 14 % z chovných staníc a len 11 % z domácností.1

Štúdie založené na prípadoch pozorovaných v akademických inštitúciách preukázali vplyv veku a pohlavia na výskyt FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Pedersen 1976a; Worthing et al., 2012; Riemer et al., 2016). Tri štvrtiny prípadov v týchto kohortách sa vyskytli u mačiek mladších ako 3 roky a len málo prípadov po 7. roku života. Potvrdila to aj aktuálna a prebiehajúca terénna štúdia z Českej republiky a Slovenska, v ktorej sa zistilo, že viac ako 80 % prípadov FIP sa vyskytlo u mačiek vo veku do 3 rokov a len 5 % u mačiek starších ako 7 rokov (obr. 6).1 Skoršie inštitucionálne štúdie sa líšili, pokiaľ ide o vplyv pohlavia, ale náznaky naznačovali, že kocúri sú o niečo náchylnejší na FIP ako mačky. Potvrdili to aj súčasné údaje z terénu, ktoré ukazujú pomer samcov a samíc 1,3:1,1. Nie je jasné, či kastrácia ovplyvňuje výskyt FIP, pričom niektoré správy naznačujú, že môže zvyšovať náchylnosť (Riemer a kol., 2016), zatiaľ čo iné neuvádzajú taký jasný vplyv.1

Obrázok 6. Vek viac ako 607 mačiek z Českej republiky a Slovenska v čase diagnostikovania a liečby FIP.1 Tridsať percent infekcií bolo zaznamenaných u mačiek vo veku šesť mesiacov alebo mladších, 50 % vo veku jedného roka a 85 % vo veku troch rokov alebo mladších.

Na zvýšenom výskyte FIP sa podieľajú ďalšie environmentálne a vírusové rizikové faktory, ale ich význam si vyžaduje znalosť výskytu ochorenia v prípade ich absencie. Možnú východiskovú úroveň mohla poskytnúť štúdia enzootickej infekcie FECV, ktorá bola nepoznane prítomná mnoho rokov v dobre spravovanej špecifickej chovateľskej kolónii bez patogénov (Hickman a kol., 1995). Táto kolónia bola udržiavaná v prísnej karanténe bez iných infekcií a úroveň výživy a chovu bola vysoká. Táto kolónia vyprodukovala stovky mačiatok každý rok, kým bol diagnostikovaný prvý prípad FIP. Takéto pozorovania naznačujú, že FIP môže byť zriedkavým javom pri absencii rizikových faktorov.

Význam premiestnenia do nového domova ako rizikového faktora FIP sa doceňuje až v súčasnosti. Chovatelia plemenných mačiek, z ktorých mnohí nezaznamenali žiadne prípady FIP vo svojich chovoch, majú najväčšie obavy z oznámenia, že u jedného z ich mačiatok sa krátko po odchode do nového domova vyskytla FIP. Nedávna štúdia zistila, že viac ako polovica mačiek s FIP zažila v priebehu týždňov pred ochorením zmenu prostredia, pobyt v útulku alebo odchyt .1 Mačky sú známe tým, že skrývajú vonkajšie príznaky stresu, aj keď trpia vážnymi vnútornými chorobnými následkami. Aj také jednoduché postupy ako zmena klietky potlačia imunitu a reaktivujú latentné vylučovanie herpes vírusu a príznaky ochorenia u mačiek (Gaskell a Povey, 1977). Stresové situácie, dokonca aj tie, ktoré sa zdajú byť menej závažné, môžu spôsobiť zníženie hladiny lymfocytov a “chorobné správanie” (Stella a kol., 2013).

Na prevalencii FIP v populácii sa môžu podieľať aj rozdiely v genetickej výbave enzootických kmeňov FCoV. Predpokladá sa, že FIPV sérotypu II sú virulentnejšie ako sérotyp I a je pravdepodobnejšie, že sa prenášajú z mačky na mačku (Lin et al., 2009; Wang et al., 2013). Je tiež možné, že určité klady FECV sú náchylnejšie na mutáciu na FIPV, čo by sa malo preštudovať. Autor tiež pozoroval neprimerane vysoký podiel mačiek s neurologickou FIP v niektorých regiónoch, čo naznačuje, že genetické determinanty v určitých kmeňoch FCoV môžu byť neurotropnejšie.

S náchylnosťou na FIP sa spájajú imunodeficiencie spojené s retrovírusmi. Až polovica prípadov FIP počas vrcholu panzootického ochorenia FeLV bola perzistentne infikovaná FeLV (Cotter et al., 1973; Pedersen 1976a; Hardy 1981). FeLV infekcia spôsobuje potlačenie T-bunkovej imunity, čo môže inhibovať ochrannú imunitnú odpoveď na FIP. Význam infekcie FeLV pre výskyt FIP sa výrazne znížil od 80. rokov 20. storočia, keď odstránenie nosičov a vakcinácia vytlačili FeLV späť do prírody, kde sú expozície menej závažné a imunita je obvyklým výsledkom. Chronická infekcia vírusom mačacej imunodeficiencie (FIV) sa tiež ukázala ako rizikový faktor pre FIP u mačiek infikovaných FECV v experimentálnych podmienkach (Poland et al., 1996). V jednej nedávnej terénnej štúdii bola infekcia FeLV rozpoznaná u 2 % a FIV u 1 % mačiek liečených na FIP.1

Výskyt FIP u čistokrvných mačiek je údajne vyšší ako u mačiek z náhodných chovov, pričom niektoré plemená sa zdajú byť náchylnejšie ako iné (Pesteanu-Somogyi et al., 2006; Worthing et al., Genetická predispozícia na FIP sa skúmala v niekoľkých chovoch perzských mačiek a odhaduje sa, že predstavuje polovicu rizika ochorenia (Foley et al., 1997). niektoré plemená, ako napríklad birman, sú náchylnejšie na vznik suchej ako mokrej FIP (Golovko et al., 2013). Pokusy o identifikáciu špecifických génov spojených s náchylnosťou na FIP u birmských mačiek zahŕňali niekoľko génov súvisiacich s imunitou, ale žiadny z nich nedosiahol požadovanú významnosť (Golovko a kol., 2013). Najväčšia štúdia genetickej náchylnosti na FIP ukázala, že je extrémne polymorfná a ako hlavný rizikový faktor sa v nej uvádza príbuzenská plemenitba (Pedersen et al., 2016). Špecifické polymorfizmy v niekoľkých génoch boli tiež spojené s vysokou úrovňou vylučovania FECV medzi niekoľkými plemennými plemenami mačiek (Bubenikova et al., 2020).

U samíc sa môže FIP, zvyčajne vlhká forma, vyvinúť počas gravidity alebo v perinatálnom období. Tento jav pripomína potlačenie imunity u gravidných žien a predispozíciu na určité infekcie (Mor a Cardenas 2010). Nie je jasné, či sa subklinická FIP aktivuje v dôsledku gravidity alebo zvýšenou vnímavosťou na novú infekciu. Infekcia matky na začiatku gravidity vedie k úmrtiu plodu a resorpcii, zatiaľ čo neskoršie infekcie často vedú k potratu (obr. 7). Mačiatka sa môžu narodiť aj zdravé, ale v perinatálnom období sa u nich vyvinie choroba a uhynú. Niektoré mláďatá sa rodia nenakazené vďaka účinnosti placentárnej bariéry medzi matkou a plodom alebo vďaka pomoci antivírusovej liečby (obr. 8).

Obrázok 7. Potratené mačiatka od matky, u ktorej sa v neskoršom štádiu gravidity vyvinula vlhká FIP. Potrat bol prvým príznakom FIP, po ktorom rýchlo nasledovali klasické príznaky abdominálnej mokrej FIP. Matka bola úspešne vyliečená z FIP pomocou antivirotika GS-441524.
Obrázok 8. U tejto matky sa 3 týždne po začiatku gravidity objavili príznaky vlhkej brušnej FIP a bola úspešne vyliečená pomocou GS-441524. Následne priviedla na svet vrh štyroch mačiatok cisárskym rezom, z ktorých jedno uhynulo a tri prežili a vyrastali zdravé. Liečba sa podávala počas zvyšných 6 týždňov gravidity a pokračovala 6 týždňov, počas ktorých boli mačiatka úspešne dojčené. GS-441524 nemal žiadne zjavné vedľajšie účinky na matku alebo mačiatka.

Možný nárast počtu prípadov FIP bol pozorovaný u mačiek starších ako 10 rokov v štúdiách, ktoré sa uskutočnili pred 50 rokmi (Pedersen 1976a). O niečo viac ako 3 % prípadov FIP v nedávnej štúdii sa vyskytlo u mačiek vo veku 10 rokov a viac a 1,5 % u mačiek vo veku 12 rokov a viac (obr. 6).1 Výskyt FIP u starších jedincov často zahŕňa dva rôzne scenáre. Prvý scenár zahŕňa aj vystavenie sa vylučovaniu výkalov FECV, ale jedinečným spôsobom. Je bežné, že staré mačky sa párujú ešte ako mačiatka a žijú spolu v relatívnej izolácii nevystavené FECV po mnoho rokov. Jedna mačka z páru uhynie, zostane sama a do domácnosti sa privedie oveľa mladšia spoločníčka získaná zo záchrannej organizácie, útulku alebo chovateľskej stanice, u ktorej je vysoká pravdepodobnosť, že vylučuje FECV. Staršie mačky sú tiež náchylné na tie isté rizikové faktory FIP ako mladšie mačky, ale aj na ďalšie faktory spojené so starnutím. Prvým z nich je vplyv starnutia na imunitný systém, pričom najdôslednejším je zhoršenie bunkovej imunitnej funkcie (Day 2010). Medzi ďalšie rizikové faktory spojené so starými mačkami patria oslabujúce a potenciálne imunosupresívne účinky ochorení, ako je rakovina, a chronické ochorenia obličiek, pečene, ústnej dutiny a čriev. Niektoré ochorenia starých mačiek môžu byť zamenené za FIP alebo komplikovať liečbu FIP, ak sú prítomné súčasne.

Medzi ďalšie rizikové faktory, ktoré je potrebné ďalej skúmať, patrí strata materskej systémovej imunity oddelením pri narodení, skoré odstavenie a strata laktogénnej imunity, podvýživa, bežné infekčné ochorenia mačiatka, skorá kastrácia, očkovanie, vrodené srdcové chyby a dokonca aj požiar v útulku (Drechsler a kol.), 2011; Healey et al., 2022; Pedersen 2009, Pedersen et al. 2019).1 Najdôležitejším pozitívnym rizikovým faktorom však zostáva prítomnosť FECV v populácii (Addie et al., 1995). Prevalencia FIP v niekoľkých chovoch perzských mačiek súvisela v jednej štúdii aj s podielom mačiek, ktoré v danom čase vylučujú FECV, a s podielom týchto mačiek, ktoré sú chronickými vylučovateľmi (Foley a kol., 1997). Význam vystavenia FECV podporuje potrebu nájsť spôsoby, ako buď zabrániť infekcii, alebo znížiť jej závažnosť. Jedným z prvých krokov je lepšie pochopenie imunity FECV (Pearson et al., 2019).

Patogenéza

Prvým rozhraním medzi FECV a imunitným systémom sú lymfatické tkanivá čreva (Malbon et al., 2019, 2020). Hoci následné udalosti vedúce k FIP nie sú úplne objasnené, je možné špekulovať na základe toho, čo je už známe o infekciách FECV a FIPV, iných makrofágovo-tropických infekciách a vírusovej imunite vo všeobecnosti. Častice a proteíny FECV sa počas črevnej infekcie dostanú do miestnych lymfatických tkanív a spracujú sa fagocytujúcimi bunkami najprv na peptidy a nakoniec na aminokyseliny. Niektoré z týchto peptidov budú po usporiadaní na povrchu buniek rozpoznané ako cudzie, čo vyvolá vrodenú (prirodzenú alebo nešpecifickú) a adaptívnu (získanú alebo špecifickú) imunitnú odpoveď (Pearson et al., 2016). FECV tiež prechádzajú mutáciou na FIPV v rovnakom čase a u rovnakého typu buniek. Niektoré z týchto mutácií umožnia vírusu replikovať sa v týchto alebo blízko príbuzných bunkách špecifickej monocytovej/makrofágovej línie.

Zdá sa, že hostiteľskou bunkou pre FIPV je špecifická trieda aktivovaných monocytov, ktoré sa nachádzajú okolo venúl na povrchu črevných a hrudných orgánov, mezentéria, omenta, uveálneho traktu, mening, cievovky a ependymu mozgu a miechy a voľne vo výpotkoch. Tieto bunky patria do triedy aktivovaných (M1) (Watanabe a kol., 2018) a podobajú sa subpopulácii malých peritoneálnych makrofágov opísanej u myší (Cassado a kol., 2015). Tento typ buniek vzniká z cirkulujúcich monocytov pochádzajúcich z kostnej drene, ktoré sa rýchlo mobilizujú z krvi v reakcii na infekčné alebo zápalové podnety. V okolí krvných ciev v sietnici postihnutej FIP bola opísaná rovnako vyzerajúca populácia aktivovaných monocytov (Ziolkowska et al., 2017). Tieto bunky sa farbili na kalprotektín, čo poukazuje na ich krvný pôvod. Hoci infekcia FIPV prebieha spočiatku v menších aktivovaných monocytoch, replikácia vírusu je najintenzívnejšia vo veľkých, vakuolizovaných, terminálne diferencovaných makrofágoch (Watanabe a kol., 2018). Vírus uvoľnený z týchto buniek rýchlo infikuje aktivované monocyty produkované v kostnej dreni a stiahnuté do daného miesta z krvného obehu.

Bunkový receptor, ktorý FECV využívajú na infikovanie črevných epitelových buniek, ešte nebol určený. Bunkový receptor, ktorý FIPV používajú na infikovanie aktivovaných monocytov, tiež nie je známy. RNA pre konvenčné receptory koronavírusov, ako je aminopeptidáza N (APN), angiotenzín konvertujúci enzým 2 (ACE2) a CD209L (L-SIGN), neboli v infikovaných peritoneálnych bunkách mačiek s experimentálnou FIP upregulované a CD209 (DC-SIGN) bol výrazne nedostatočne exprimovaný (Watanabe et al., 2018). Alternatívna cesta infekcie aktivovaných monocytov môže zahŕňať imunitnú komplexáciu vírusu a vstup do buniek fagocytózou (Dewerchin et al., 2008, 2014; Van Hamme et al., 2008). Aktivované monocyty v léziách sa silne pozitívne farbia na antigén FIPV, IgG a komplement (Pedersen, 2009) a mRNA pre FcγRIIIA (receptor CD16A/ADCC) je v infikovaných bunkách výrazne zvýšená (Watanabe et al., 2018), čo podporuje infekciu prostredníctvom imunitného komplexovania a alternatívnych receptorov súvisiacich s fagocytózou.

Makrofágové patogény sú intracelulárne a eliminácia infikovaných buniek prebieha prostredníctvom usmrcovania sprostredkovaného lymfocytmi. Prvou obrannou líniou sú nešpecifické lymfocyty, a ak zlyhajú, nasleduje adaptívna imunitná odpoveď na FIPV prostredníctvom špecifických T-lymfocytov. Ak sa nepodarí zadržať a eliminovať infikované aktivované monocyty a makrofágy, môžu sa lokálne šíriť v brušnej dutine, pravdepodobne z lymfatických uzlín v oblasti dolného čreva a miesta replikácie FECV. Šírenie lokálne a do vzdialených miest prostredníctvom krvného obehu sa uskutočňuje infikovanými monocytovými bunkami (Kipar a kol., 2005).

FIP sa vyskytuje v dvoch základných formách, vlhkej (efuzívna, neparenchymatózna) (obrázky 2 a 3 )alebo suchej (neefuzívna, parenchymatózna) (obrázky 4 a 5), pričom vlhká FIP predstavuje 80 % prípadov.1 Termín “vlhká” sa vzťahuje na charakteristický výpotok tekutiny v bruchu alebo hrudníku (Wolfe a Griesemer 1966, 1971). V léziách vlhkej FIP dominuje zápal pripomínajúci hypersenzitivitu okamžitého alebo Arthusovho typu (Pedersen a Boyle, 1980), zatiaľ čo lézie suchej FIP pripomínajú hypersenzitívne reakcie oneskoreného typu (Montali a Strandberg 1972; Pedersen 2009). Vlhké a suché formy FIP preto odrážajú konkurenčné vplyvy protilátkami a bunkami sprostredkovanej imunity a súvisiacich cytokínových dráh (Malbon a kol., 2020, Pedersen 2009). Predpokladá sa, že imunita voči bunkám infikovaným FIPV, ktorá je normou, zahŕňa silné reakcie sprostredkované bunkami (Kamal et al. 2019). Predpokladá sa, že k suchej FIP dochádza vtedy, keď je bunkami sprostredkovaná imunita čiastočne účinná pri potláčaní infekcie, a k vlhkej FIP vtedy, keď je bunková imunita neúčinná a prevládajú humorálne imunitné reakcie.

FIP sa považuje za jedinečnú medzi makrofágnymi infekciami, pretože je vírusová, ale suchá forma má mnoho spoločných klinických a patogénnych znakov s ochoreniami mačiek spôsobenými systémovými mykobakteriálnymi (Gunn-Moore et al., 2012) a plesňovými infekciami (Lloret et al., 2013). Podobnosti v patogenéze existujú aj medzi vlhkou FIP a vírusovými infekciami zosilnenými protilátkami, ako sú horúčka Dengue a syndróm hemoragického šoku Dengue (Pedersen a Boyle 1980; Rothman a kol., 1999, Weiss a Scott 1981).

Predpokladá sa, že reakcie hostiteľa výlučne určujú výsledok infekcie FIPV a výsledné formy ochorenia. Avšak makrofágovo-tropné patogény si vyvinuli vlastné jedinečné obranné mechanizmy proti hostiteľovi (Leseigneur et al., 2020). Jedným z mechanizmov je oddialenie programovanej bunkovej smrti (apoptózy). Oneskorená apoptóza umožňuje trvalú mikrobiálnu replikáciu a prípadné uvoľnenie väčšieho množstva infekčných agensov, ako bolo opísané aj v prípade makrofágov infikovaných FIPV (Watanabe et al., 2018). FIPV môže tiež kontrolovať rozpoznávanie a ničenie infikovaných aktivovaných monocytov špecifickými alebo nešpecifickými T-bunkami. Cieľom bunkového povrchu pre T-bunky, ktoré zabíjajú infikované bunky, sú pravdepodobne proteíny (antigény) FIPV exprimované na hlavných histokompatibilných receptoroch I. triedy (MHC-I). Na FIPV-pozitívnych bunkách odobratých z tkanív FIP alebo výpotkov sa však nezistila povrchová expresia vírusových antigénov receptormi MHC-I (Cornelissen a kol., 2007). DC-Sign bol navrhnutý ako receptor pre FIPV (Regan a Whitaker, 2008), ale RNA pre DC-Sign je výrazne nedostatočne exprimovaná infikovanými peritoneálnymi bunkami, zatiaľ čo RNA pre Fc (MHC-II) receptory je výrazne nadmerne exprimovaná a RNA pre MHC-I je znížená (Watanabe a kol., 2018). To naznačuje, že normálny spôsob infekcie hostiteľských buniek môže byť zmenený FIPV tak, aby uprednostňoval infekciu fagocytózou namiesto väzby na špecifické vírusové receptory na povrchu buniek, fúzie s bunkovou membránou a internalizácie.

Patológia

Podrobné opisy hrubých a mikroskopických lézií pri vlhkej forme FIP po prvýkrát popísali Wolfe a Griesemer (1966, 1971). Ochorenie je charakterizované vaskulitídou, ktorá zahŕňa venuly v tkanivách vystielajúcich brušnú alebo hrudnú dutinu, povrch orgánov a podporných tkanív, ako sú mezentérium, omentum a mediastinum. Zápalový proces vedie k výpotkom v brušnej alebo hrudnej dutine až do objemu jedného litra alebo viac (obr. 2, 3). Základnou léziou je pyogranulóm, ktorý pozostáva z fokálneho nahromadenia aktivovaných monocytárnych buniek v rôznych štádiách diferenciácie, popretkávaných nedegenerovanými neutrofilmi a riedkym množstvom lymfocytov. Pyogranulómy sú povrchovo orientované a hrubo a mikroskopicky sa javia ako jednotlivé a koalescenčné plaky (obr. 2).

Antigén FIPV sa imunohistochemicky (IHC) pozoruje len v aktivovaných monocytoch v léziách a vo výpotkoch (Litster et al., 2013). Veľké vakuolizované terminálne diferencované makrofágy sú obzvlášť bohaté na vírus (Watanabe et al., 2018), čo pripomína lepromatóznu formu malomocenstva (deSousa et al., 2017). Lymfatické uzliny lokalizované v blízkosti miest zápalu sú hyperplastické a zväčšené.

Vzťah suchej a vlhkej FIP bol prvýkrát opísaný v roku 1972 v správe o prípadoch neznámej etiológie s podobnou patológiou (Montali a Strandberg 1972). Ako uvádzajú autori, “tento patologický syndróm bol charakterizovaný granulomatóznym zápalom v rôznych orgánoch, ale hlavne postihoval obličky, viscerálne lymfatické uzliny, pľúca, pečeň, oči a leptomeningy”. Tkanivové extrakty týchto lézií vyvolali vlhkú FIP u laboratórnych mačiek, čím sa potvrdilo, že vlhkú a suchú FIP spôsobuje ten istý pôvodca.

Hrubá a mikroskopická patológia suchej FIP sa podobá patológii iných makrofágovo-tropických infekcií, ako je systémová blastomykóza mačiek, histoplazmóza, kokcidioidomykóza (Lloret et al., 2013), tuberkulóza a lepra (Gunn-Moore et al., 2012). Lézie suchej FIP zahŕňajú najmä brušné orgány (obr. 5, 6) a v hrudnej dutine sú zriedkavé (Montali a Strandberg 1972; Pedersen 2009). Lézie sú menej rozšírené a fokálne ako pri vlhkej FIP, s tendenciou rozširovať sa zo seróznych povrchov do parenchýmu základných orgánov (obr. 5, 6). Cieľom imunitnej odpovede hostiteľa sú malé agregáty infikovaných monocytárnych buniek spojené s venulami, podobne ako pyogranulómy pri vlhkej FIP, ale obklopené hustými akumuláciami lymfocytov a plazmatických buniek a variabilnou fibrózou. Floridná hyperémia, edém a mikrohemorágia spojené s vlhkou FIP väčšinou chýbajú, preto chýbajú významné výpotky v telesných dutinách. Reakcia hostiteľa na ložiská infekcie dáva léziám hrubý vzhľad podobný nádoru (obr. 5, 6). Infikované aktivované monocyty v centrálnom ohnisku infekcie sú menej husté a obsahujú nižšie hladiny vírusu ako pri vlhkej forme (Pedersen 2009;), čo je vlastnosť tuberkuloidnej formy lepry (de Sousa et al., 2017). Lézie na niektorých miestach, napríklad na stene hrubého čreva, môžu vyvolávať hustú okolitú zónu fibrózy, ktorá pripomína klasické granulómy tuberkulózy. Prechodné formy existujú aj medzi vlhkými a suchými formami v malej časti prípadov a väčšinou sú rozpoznateľné pri pitve (obr. 3).

Okulárna a neurologická FIP sa klasifikujú ako formy suchej FIP (Montali a Strandberg 1972). Avšak patológia v uveálnom trakte a sietnici oka a v ependýme a meningách mozgu a miechy predstavuje medzistupeň medzi vlhkou a suchou FIP (Fankhauser a Fatzer 1977; Peiffer a Wilcock 1991). Možno to vysvetliť účinkom hematookulárnej a hematoencefalickej bariéry pri ochrane týchto oblastí pred systémovými imunitnými reakciami.

Klinické charakteristiky FIP

Päť najčastejších príznakov u mačiek s FIP, bez ohľadu na klinickú formu a frekvenciu výskytu, sú letargia, nechutenstvo, zväčšené brušné lymfatické uzliny, úbytok hmotnosti, horúčka a zhoršujúca sa srsť.1 Tieto príznaky sa môžu objaviť rýchlo, v priebehu týždňa, alebo môžu existovať mnoho týždňov a dokonca mesiacov pred stanovením diagnózy. Priebeh ochorenia býva rýchlejší u mačiek s vlhkou FIP ako so suchou FIP a spomalenie rastu je bežné u mladých mačiek, najmä u tých s chronickejším ochorením. U 20 % mačiek s horúčkou ako hlavným príznakom sa nakoniec diagnostikuje FIP (Spencer et al., 2017).

Vlhká forma FIP sa vyskytuje približne v 80 % prípadov, častejšie u mladších mačiek a býva závažnejšia a rýchlejšie progredujúca ako suchá forma. Abdominálny výpotok (ascites) je štyrikrát častejší ako pleurálny výpotok, pričom častými príznakmi sú abdominálna distenzia (obr. 9) a dyspnoe. Pyrexia a žltačka sú častejšími príznakmi u mačiek s vlhkou ako so suchou formou FIP (Tasker, 2018).

Obrázok 9.  Dospelá dlhosrstá mačka s chronickou brušnou vlhkou FIP. Mačka bola v prijateľnom zdravotnom stave okrem mierneho úbytku hmotnosti, letargie, zhoršenia kvality srsti a občasnej nízkej horúčky. Abdominálna distenzia nebola po určitú dobu zaznamenaná a brušná tekutina obsahovala relatívne nízky počet bielkovín a bielych krviniek.
Obrázok 9. Mladá mačka, ktorá sa prezentovala rýchlym nástupom vysokej horúčky, nechutenstvom, distenziou brucha a brušnou tekutinou s vysokým obsahom bielkovín a bielych krviniek.

Väčšina mačiek so suchou FIP má pri prezentácii príznaky ochorenia obmedzené na brucho a/alebo hrudník. Najčastejšími klinickými príznakmi suchej FIP sú hmatné alebo ultrazvukom identifikovateľné masy v obličkách (obr. 4), slepom čreve, hrubom čreve, pečeni a pridružených lymfatických uzlinách (obr. 5). Lézie suchej FIP zvyčajne šetria hrudnú dutinu a zriedkavo sa vyskytujú v koži, nosových priechodoch, osrdcovníku a semenníkoch ako súčasť širšieho systémového ochorenia.

Neurologické a očné ochorenia sú jedinými alebo sekundárnymi znakmi 10 % všetkých prípadov FIP a 10-krát častejšie sa spájajú so suchou ako s vlhkou FIP (Pedersen 2009). Neurologické a očné formy FIP boli klasifikované ako formy suchej FIP, ale možno by bolo vhodnejšie klasifikovať ich ako odlišné formy FIP vyplývajúce z modifikujúcich účinkov hematookulárnej a hematoencefalickej bariéry, za ktorou sa vyskytujú. Tieto bariéry majú silný vplyv na povahu ochorenia očí a centrálneho nervového systému (CNS) a na odpoveď na antivírusovú liečbu.

Klinické príznaky neurologickej FIP sa týkajú mozgu aj miechy a zahŕňajú zadnú slabosť a ataxiu, generalizovanú nekoordinovanosť, záchvaty, mentálnu otupenosť, anizokóriu a rôzne stupne fekálnej a/alebo močovej inkontinencie (Foley et al., 1998; Dickinson et al., 2020) (obr. 10). Extrémny intrakraniálny tlak môže viesť k náhlej herniácii mozočku a mozgového kmeňa do miechového kanála a syndrómu spinálneho šoku. Medzi prodromálne príznaky patrí nutkavé olizovanie stien alebo podlahy, konzumácia steliva, mimovoľné svalové zášklby a neochota alebo neschopnosť vyskočiť na vysoké miesta. Postihnutie očí môže predchádzať alebo sprevádzať neurologické ochorenie. Neurologická FIP je častým javom pri liečbe antivirotikami, buď sa objavuje počas liečby non-CNS foriem FIP, alebo ako prejav relapsu ochorenia po ukončení liečby (Pedersen et al., 2018, 2019; Dickinson et al., 2020).

Obrázok 10. Mladá mačka so suchou FIP a neurologickým postihnutím. Mačka je letargická, vychudnutá a s biednou srsťou. Srsť v perineálnej oblasti je mokrá a zafarbená od močovej inkontinencie.
Obrázok 11. Zafarbenie dúhovky pravého oka tejto mačky bolo prvým príznakom uveitídy spojenej s FIP. V prednej komore je mierne zahmlenie a na vnútornej strane rohovky sú usadeniny fibrínu bohaté na červené krvinky. Zreničky sú tiež nerovnaké (anizokória).
Obrázok 12. Mladá mačka s okulárnou FIP, ktorá sa na pravom oku prejavila ako predná uveitída so sekundárnym glaukómom spôsobujúcim zväčšenie gule. Dúhovka zmenila farbu v dôsledku zápalu, cievy na báze dúhovky sú prekrvené a na zadnej strane rohovky je zákal vodného moku a zápalové produkty. Vnútroočný tlak je zvyčajne nízky pri nekomplikovanej uveitíde, ale zvýšený u mačiek s glaukómom.
Obrázok 13. Táto mladá mačka mala prednú uveitídu, ale jej terapia FIP pomocou GS-441524 bola oneskorená, čo umožnilo vznik glaukómu na oboch očiach. Liečba odstránila základnú uveitídu a výrazne zlepšila vonkajší zdravotný stav, ale sekundárny glaukóm a slepota pretrvali.

Postihnutie očí je zvyčajne zjavné a potvrdí sa pri oftalmoskopickom vyšetrení prednej a zadnej komory. Okulárna FIP v rôznej miere postihuje dúhovku, ciliárne telieska, sietnicu a disk zrakového nervu (Peiffer a Wilcock, 1991; Ziółkowska a kol., 2017; Andrew, 2000). Najčasnejším príznakom je často jednostranná zmena farby dúhovky (obr. 11). Predná komora sa môže javiť zakalená a môže vykazovať vysoké hladiny bielkovín a vodný zákal pri lome svetla. Do prednej komory sa vyplavujú zápalové produkty vo forme aktivovaných makrofágov, červených krviniek, fibrínových značiek a malých krvných zrazenín. Tento materiál často priľne na zadnú stranu rohovky ako keratické precipitáty (obr. 12). Ochorenie môže zasiahnuť aj sietnicu v tapetálnych a netapetálnych oblastiach a viesť k odlúpeniu sietnice. Vnútroočný tlak je zvyčajne nízky, okrem prípadov komplikovaných postihnutím ciliárneho telesa a glaukómom (obr. 12, 13).

Diagnostika FIP

Signalizácia, environmentálna anamnéza, klinické príznaky a nálezy pri fyzikálnom vyšetrení často poukazujú na FIP (Tasker, 2018). Dôkladné fyzikálne vyšetrenie by malo zahŕňať telesnú hmotnosť a teplotu, stav srsti a tela, manuálnu palpáciu brucha a brušných orgánov, hrubé zhodnotenie srdcovej a pľúcnej funkcie a zbežné vyšetrenie očí a neurologického systému. Silné podozrenie na výpotok v brušnej alebo hrudnej dutine môže byť dôvodom na konfirmačnú aspiráciu a dokonca aj na in-house analýzu kvapaliny ako súčasti úvodnéeho vyšetrenia.

Abnormality v kompletnom krvnom obraze (CBC) a základnom biochemickom paneli séra sú dôležitými faktormi pri diagnostike FIP (Tasker, 2018; Felten a Hartmann, 2019) a monitorovaní liečby antivirotikami (Pedersen a kol., 2018, 2019; Jones a kol., 2021; Krentz a kol., 2021) (obr. 14). Celkový počet leukocytov je u mačiek s vlhkou FIP s najväčšou pravdepodobnosťou vysoký, ale pri ťažkom zápale sa môže vyskytnúť i nízky počet. Vysoký počet leukocytov sa často spája s neutrofíliou, lymfopéniou a eozinopéniou. Mierna až stredne ťažká neregeneratívna anémia sa tiež často pozoruje pri vlhkej aj suchej FIP. Celkové bielkoviny sú zvyčajne zvýšené v dôsledku zvýšených hladín globulínu, zatiaľ čo hodnoty albumínu bývajú nízke (obr. 14). Výsledkom je pomer A:G, ktorý je často nižší ako 0,5 – 0,6 a považuje sa za jeden z najkonzistentnejších ukazovateľov FIP. Nízky pomer A:G sa však môže vyskytnúť v situáciách, keď sú albumín aj globulín v referenčnom intervale alebo pri iných ochoreniach. Preto by pomer A:G nemal byť jediným ukazovateľom FIP a mal by sa vždy hodnotiť v kontexte s inými ukazovateľmi FIP (Tasker, 2018; Felten a Hartmann, 2019). Hodnoty sérových bielkovín získané z väčšiny sérových chemických panelov sú zvyčajne dostatočné. Elektroforéza sérových bielkovín môže poskytnúť ďalšie informácie, najmä ak sú hodnoty bielkovín z chemického vyšetrenia séra sporné (Stranieri a kol., 2017).

Obrázok 14. Kompletný krvný obraz (CBC) (a) mladej mačky s akútnou vlhkou abdominálnou FIP. Hoci počet leukocytov nebol zvýšený, bola zistená relatívna, ale nie absolútna neutrofília, relatívna a absolútna lymfopénia, relatívna a absolútna eozinopénia a neresponzívna anémia, na ktorú poukazujú nízke červené krvinky, hematokrit a hemoglobín s normálnym počtom retikulocytov.
Obrázok 14. Biochemické vyšetrenie séra (b) mladej mačky s akútnou vlhkou abdominálnou FIP. Relevantné hodnoty v chemickom paneli séra boli zvýšený celkový proteín, nízky albumín, vysoký globulín, nízky pomer albumín/globulín (A:G) a zvýšený celkový a priamy bilirubín. Pečeňové enzýmy boli normálne s výnimkou mierne zvýšenej hodnoty AST a BUN a kreatinín sú normálne, čo poukazuje na neprítomnosť významného ochorenia pečene alebo obličiek. Hodnoty globulínu nie sú vždy uvedené, ale primeraný odhad sa dá vypočítať odpočítaním hladiny albumínu od celkovej bielkoviny.

Prílišné spoliehanie sa na abnormality v CBC a sérovej biochémii môže viesť k diagnostickej neistote, ak chýbajú, a to aj napriek tomu, že žiadna hodnota testu nie je konzistentne abnormálna vo všetkých prípadoch FIP (Tasker, 2018)1. Najväčšie rozdiely sú medzi klinickou formou ochorenia, pričom leukocytóza a lymfopénia sú častejšie u mačiek s vlhkou ako so suchou FIP (Riemer et al., 2016). Hyperbilirubinémia je častá u mačiek s FIP, ale hlavne u mačiek s vlhkou FIP (Tasker, 2018). Autor tiež zistil, že mnohé mačky s primárnou neurologickou FIP vykazujú menšie alebo žiadne krvné abnormality. Hodnoty krvných testov pri FIP sa tiež v jednotlivých štúdiách líšia (Tasker, 2018).

Kompletná analýza výpotku je dôležitá na diagnostikovanie vlhkej FIP a na vylúčenie iných potenciálnych príčin hromadenia tekutiny (Dempsey a Ewing, 2011). Zahŕňa farbu (číra alebo žltá), viskozitu (riedka alebo viskózna), prítomnosť precipitátov, schopnosť vytvoriť čiastočnú zrazeninu pri odstátí, obsah bielkovín, počet leukocytov a diferenciál. Charakter tekutiny sa môže líšiť v závislosti od trvania ochorenia a jeho závažnosti. Výpotky u mačiek so závažnejšími príznakmi ochorenia mávajú zvyčajne hodnoty bielkovín blízke sérovým hodnotám, sú viskóznejšie, obsahujú väčší počet leukocytov, sú viac žlto sfarbené a majú väčšiu schopnosť vytvárať čiastočné zrazeniny pri odstátí. Chronické výpotky majú tendenciu byť menej zápalového charakteru, s nižšími hodnotami bielkovín a leukocytov, menej viskózne a čírejšie. Tieto hodnoty sa dajú na väčšine kliník stanoviť priamo na mieste. Faktor zrážanlivosti sa určuje porovnaním tekutiny odobratej v sére a v antikoagulačných skúmavkách po státí. Farbu a viskozitu možno odhadnúť približne a hladinu bielkovín odhadnúť pomocou ručného refraktometra na stanovenie celkového obsahu pevných látok. Bunky sa z tekutiny peletujú a analyzujú na preparáte s rýchle farbeným sklíčkom pomocou svetelnej mikroskopie a odhaduje sa počet a diferenciál leukocytov. Bunky zahŕňajú neseptické neutrofily, malé a stredne veľké mononukleárne bunky a veľké vakuolizované makrofágy (obr. 15).  Je dôležité poznamenať, že výpotky sa môžu vyskytnúť pri rôznych ochoreniach, ako je srdcové zlyhanie, rakovina, hypoproteinémia a bakteriálne infekcie. Výpotky pri týchto iných ochoreniach majú zvyčajne odlišné identifikačné znaky.

Obrázok 15. Farbený náter peritoneálnych buniek centrifugovaných z brušnej tekutiny mačky s vlhkou FIP a vyšetrených na rýchlo zafarbenom sklíčku svetelnou mikroskopiou. Prevládajúce bunky sú veľké silne vakuolizované makrofágy, menšie diferencujúce sa aktivované monocyty a neutrofily. Najväčšia koncentrácia vírusových častíc je v intracytoplazmatických vakuolách makrofágov (šípky).
Obrázok 16. Pozitívny výsledok Rivaltovej skúšky. Malá vzorka brušnej alebo hrudnej tekutiny sa opatrne nakvapká do malého pohára naplneného zriedenou kyselinou octovou (8 ml destilovanej vody a 1 kvapka koncentrovanej kyseliny octovej). Zápalové bielkoviny sa takmer okamžite zrazia a klesnú na dno (pozitívne). Menej zápalové tekutiny vytvoria difúzne zrazeniny (otázne) alebo voľne difundujú v roztoku (negatívne).

Na diagnostikovanie FIP ako príčiny výpotku sa často používa pozitívna Rivaltova skúška na brušnej alebo hrudnej tekutine a negatívna skúška ju skôr vylučuje (Fischer et al., 2010) ( obr. 16). Test však môže byť pozitívny pri zápalových výpotkoch inej príčiny a negatívny u niektorých mačiek s FIP. Preto je Rivaltova skúška najviac nápomocná v kombinácii s inými klinickými nálezmi FIP a nemala by nahrádzať dôkladnú analýzu tekutiny (Felten a Hartmann, 2019).

Hladiny celkového a priameho bilirubínu v sére sú často zvýšené, najmä u mačiek s vlhkou FIP (obr. 14), a môžu byť spojené so žltačkou a bilirubinúriou. Hyperbilirubinémia pri FIP nie je spôsobená ochorením pečene (Tasker, 2018), ale skôr vaskulitídou, mikrohemorágiou, hemolýzou a deštrukciou poškodených červených krviniek makrofágmi lokálne a v pečeni. Uvoľnený hemoglobín sa nakoniec metabolizuje na bilirubín, ktorý sa potom konjuguje v hepatocytoch a vylučuje sa močom. Pre vylučovanie bilirubínu je nevyhnutná glukuronidácia a genetické poruchy ovplyvňujúce glukuronidáciu u ľudí bránia jeho vylučovaniu (Kalakonda a kol., 2021). Mačky ako druh majú nedostatok enzýmov potrebných na glukuronidáciu, čo sťažuje vylučovanie látok, ako je bilirubín (Court a Greenblatt 2000).

Hoci FIP môže postihnúť obličky a pečeň, nie je natoľko závažná, aby spôsobila významnú stratu funkcie obličiek alebo pečene. Avšak sérové testy na dusík močoviny v krvi (BUN) a kreatinín ako indikátory ochorenia obličiek a alanínaminotransferázy (ALT), alkalickej fosfatázy (ALP) a gama glutamyltransferázy (GGT) ako indikátory ochorenia pečene sú u mačiek s FIP často mierne zvýšené, najmä u mačiek s akútnejším a závažnejším ochorením (obr. 14). Mierne abnormálne hodnoty testov by sa preto nemali interpretovať prehnane, ak nie sú prítomné iné klinické príznaky ochorenia pečene alebo obličiek, zatiaľ čo ich výrazné zvýšenie by malo poukazovať na možnosť súbežných a prípadne predisponujúcich ochorení týchto orgánov.

Sérum sa môže testovať aj na ďalšie markery systémového zápalu, ako sú zvýšené hladiny alfa-1-kyslého glykoproteínu (AGP) (Paltrinieri et al., 2007) a mačacieho sérového amyloidu A (fSAA) (Yuki et al., 2020). Môžu sa tiež ukázať ako užitočné pri monitorovaní odpovede na liečbu antivirotikami (Krentz et al., 2021).

Rádiografia môže byť užitočná pri identifikácii hrudných a brušných výpotkov. Ultrazvuk brucha môže odhaliť menšie množstvo výpotku, identifikovať zväčšené mezenterické a ileo-cekálno-kolické lymfatické uzliny, zhrubnutie steny hrubého čreva a lézie v orgánoch, ako sú obličky, pečeň a slezina (Lewis a O’Brien 2010). Môže byť užitočná aj pri vyšetrovaní hrudníka na prítomnosť lézií a pomôcť pri aspiračnom vyšetrení ihlou alebo biopsii.

Hodnota titrov protilátok proti FCoV sa od prvej správy spred takmer 50 rokov znížila (Pedersen 1976b). Referenčný test protilátok využíva nepriame fluorescenčné farbenie protilátok (IFA) Titre IFA ≥ 1:3200 u mačiek s FIP sú vyššie ako u väčšiny mačiek vystavených FECV (1:25 – 1:400). Novšie testy často využívajú postupy ELISA na rýchle interné alebo laboratórne testovanie, ale sú skôr kvalitatívne ako kvantitatívne. Titre protilátok IFA sa počas úspešnej liečby antivirotikami u mnohých mačiek znižujú, ale u iných zostávajú vysoké (Dickinson et al., 2020; Krentz et al., 2021). Sekvenčné titre môžu ukázať postupný nárast titrov v priebehu vývoja FIP (Pedersen et al., 1977), ale predchádzajúce vzorky séra sú k dispozícii na porovnanie iba zriedka. Podobne ako väčšina testov, ani hladiny protilátok FCoV by sa nemali používať ako jediné kritérium na diagnostikovanie alebo vylúčenie FIP (Felten a Hartmann, 2019) alebo na hodnotenie úspešnosti liečby (Krentz a kol., 2021).

Reverzná transkriptázová polymerázová reťazová reakcia (RT-PCR) je základným prostriedkom na identifikáciu FCoV RNA v zápalových výpotkoch, tekutinách alebo postihnutých tkanivách (Felten a Hartmann, 2019). RNA akcesorického génu 7b je prítomná v najvyššej miere v tkanivách, tekutinách alebo výpotkoch infikovaných FECV alebo FIPV, čo z nej robí najcitlivejší cieľ na detekciu nízkych hladín vírusu (Gut a kol., 1999). RT-PCR pre mutácie FIPV S génu sa často používa vo vzorkách, ktoré sú pozitívne na 7b RNA, aby bola špecifická pre FIPV (Felten a kol., 2017). Iné štúdie naznačujú, že testy RT-PCR na mutácie génu S špecifické pre FIPV majú podobnú špecifickosť pre FIP, ale za cenu výraznej straty citlivosti (Barker a kol., 2017). Zníženie citlivosti súvisí so zvýšením počtu falošne negatívnych výsledkov. Falošne negatívne testy RT-PCR sa vyskytujú aj vo vzorkách, ktoré neobsahujú dostatočné množstvo infikovaných makrofágov alebo u mačiek s veľmi nízkymi hladinami vírusu. Falošne negatívne výsledky sú obzvlášť časté pri testovaní plnej krvi.

Imunohistochémia (IHC) detekuje nukleokapsidový proteín koronavírusu mačiek vo formalínom fixovaných tkanivách s vysokou citlivosťou a špecifickosťou, ale nie je taká populárna ako RT-PCR (Litster et al., 2013; Ziółkowska et al., 2019). Vzorky na IHC musia obsahovať intaktné infikované makrofágy (obr. 17), čo si vyžaduje starostlivé oddelenie buniek z výpotkov a ich umiestnenie na podložné sklíčka, alebo choré tkanivá fixované vo formalíne a zaliate do parafínu, ktoré vykazujú lézie kompatibilné s FIP. Antigén koronavírusu v makrofágoch v rámci typickej lézie alebo tekutiny FIP sa pozoruje len pri FIP, čo dáva IHC vysokú úroveň špecifickosti.

Obrázok 17. Histologický rez zo zhrubnutého hrubého čreva mačky s črevnou formou FIP. Zhrubnutá stena obsahovala ložiská makrofágov (štvorcová plocha), ktoré sa imunoperoxidázou sfarbili pozitívne (hnedočerveno) na nukleokapsidový proteín FIPV.

Pre diagnostiku charakteristických zmien FIP je nevyhnutné dôkladné oftalmologické vyšetrenie (Pfeiffer a Wilcock 1991; Andrew, 2000). Vzorka vodného moku z prednej komory zapáleného oka môže byť užitočná aj pre cytologické vyšetrenie, PCR a IHC.

Neurologická FIP sa často diagnostikuje pomocou magnetickej rezonancie (MRI) so zvýraznením kontrastu a často je spojená s analýzou mozgovomiechového moku (CSF) (Crawford et al., 2017; Tasker, 2018; Dickinson et al., 2020). Ide však o nákladné postupy, ktoré nie sú vždy dostupné a nesú určité riziko pre mačku. MRI lézie zahŕňajú obštrukčný hydrocefalus, syringomyéliu a herniáciu foramen magnum s kontrastným zvýraznením meningov mozgu a miechy a ependymu tretej komory, mezencefalického akvaduktu a mozgového kmeňa. CSF vykazuje zvýšený počet bielkovín a buniek (neutrofily, lymfocyty, monocyty/makrofágy), a ak sú prítomné, môže byť spoľahlivým materiálom pre PCR alebo IHC vyšetrenie.

Neurologické a/alebo okulárne formy FIP sa často zamieňajú so systémovou toxoplazmózou mačiek a mnohé mačky s FIP sa empiricky liečia na toxoplazmózu ešte pred stanovením diagnózy FIP. Našťastie, dostupnosť účinnej liečby FIP túto prax obmedzila. Systémová toxoplazmóza je oveľa menej rozšírená ako FIP a sérologicky pozitívne bolo menej ako 1 % mačiek s FIP v jednej terénnej štúdii.1 Preto by sa testovanie alebo liečba na toxoplazmózu mali zvážiť až po adekvátnom diagnostikovaní FIP.

Antivírusová liečba ako diagnostický nástroj

Obrázok 18. Mačka s FIP na začiatku liečby liekom GS-441524 (a) a po 1 týždni (b). Odpoveď je rýchla, horúčka vymizne do 24-48 hodín a do 1-2 týždňov sa výrazne zlepší celkový zdravotný stav. Tento typ odpovede sa často používa na potvrdenie diagnózy FIP.

Bežne sa vyskytujú situácie, keď klinické nálezy poukazujú na FIP, ale pochybnosti pretrvávajú. Vtedy je na výber vykonanie viacerých diagnostických testov, ktoré ale nemusia viesť k definitívnejšej diagnóze. Alternatívnym diagnostickým prístupom je liečba vhodným antivirotikom počas 1 – 2 týždňov v správnej dávke pre suspektnú formu FIP.2 Liečba často prinesie klinické zlepšenie už za 24 – 48 hodín a to sa rýchlo stupňuje počas nasledujúcich 2 týždňov a celkovej podanej liečbe (obr. 18). Žiadna reakcia na testovaciu liečbu a/alebo zhoršenie zdravotného stavu by naznačovali potrebu ďalšieho vyšetrenia príčiny (príčin) zlého zdravotného stavu.

Liečba FIP

Pred rokom 2017 neexistoval liek na FIP a liečba bola zameraná najmä na zmiernenie príznakov ochorenia (Izes et al., 2020). Takáto podporná liečba bola zameraná na udržiavanie dobrej výživy, kontrolu zápalu (kortikosteroidy), zmenu imunitných reakcií (interferóny, cyklofosfamid, chlorambucil) a inhibíciu kľúčových cytokínových reakcií (pentoxifylín a iné inhibítory TNF-alfa). Bežne sa používali aj výživové doplnky, ktoré mali pomáhať špecifickým funkciám orgánov, ako napríklad jeden (Polyprenyl Imunostimulant), ktorý mal zlepšiť imunitu a predĺžiť prežívanie u mačiek so suchou, ale nie vlhkou FIP (Legendre et al., 2017). Vplyv dobrej podpornej starostlivosti na prežívanie nebolo možné určiť, pretože väčšina mačiek bola eutanizovaná po stanovení diagnózy alebo v priebehu niekoľkých dní či týždňov. Miera prežitia aj pri najľahších formách suchej FIP a najtrvalejšej liečbe v jednej štúdii bola len 13 % po 200 dňoch a 6 % po 300 dňoch (Legendre et al., 2017).

Mnohé komerčne dostupné lieky a zlúčeniny inhibujú infekciu alebo replikáciu FIPV in vitro, pričom niektoré z nich sú lieky, o ktorých je známe, že inhibujú špecifické proteíny vírusu HIV alebo hepatitídy C, zatiaľ čo iné fungujú tak, že inhibujú normálne bunkové procesy, ktoré si vírus uzurpuje pre svoj vlastný životný cyklus (Hsieh et al., 2010; Izes et al., 2020; Delaplace et al., 2021). Medzi tieto rôzne lieky a látky patria cyklosporín a príbuzné imunofilíny, niekoľko nukleozidov a inhibítorov proteáz, inhibítory vioporínu, pyridínové N-oxidové deriváty, chlorochín a príbuzné zlúčeniny, ivermektín, niekoľko rastlinných lektínov, inhibítory ubikvitínu, itrakonazol a niekoľko antibiotík. Koncentrácie potrebné na inhibíciu replikácie vírusu in vitro sa však často blížia k toxickým hodnotám pre bunky. Bolo tiež ťažké preniesť priaznivé závery in vitro na zvieratá a štúdie na chorých mačkách nasledovali len zriedka. Ribavarín inhibuje replikáciu FIPV in vitro, ale nebol účinný ako liečba experimentálnej FIP (Weiss et al., 1993). Účinnosť chlorochínu sa testovala u laboratórnych mačiek infikovaných FIPV, ale klinické výsledky u liečených mačiek boli len o niečo lepšie ako u neliečených a preukázala sa hepatotoxicita (Takano et al., 2013). U 3-mesačného mačiatka s hrudnou vlhkou FIP liečeného itrakonazolom a prednizolónom sa vyvinula neurologická FIP a po 38 dňoch liečby bolo eutanazinované (Kameshima et al., 2020). Meflochín tiež inhiboval replikáciu FIPV v nízkych koncentráciách v kultivovaných mačacích bunkách bez cytotoxických účinkov a predbežné farmakokinetické štúdie u mačiek sa zdali byť priaznivé (Yu et al., 2020), ale dôkazy o jeho bezpečnosti a účinnosti v klinických štúdiách na mačkách s FIP ešte neboli publikované.

Prelom v liečbe FIP nastal v rokoch 2016-2019, keď sa objavili správy o antivirotických liekoch, ktoré sa zameriavajú na špecifické proteíny FIPV nevyhnutné pre replikáciu. Prvým z týchto liekov bol GC376, inhibítor hlavnej proteázy (Mpro ) FIPV (Kim et al., 2016; Pedersen et al., 2018). Inhibítory proteáz zabraňujú tvorbe jednotlivých vírusových proteínov tým, že inhibujú ich štiepenie z polyproteínových prekurzorov. GC376 dokázal vyliečiť všetky experimentálne infikované mačky a 7 z 21 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP, ale bol menej účinný pre mačky s okulárnymi alebo neurologickými príznakmi (Pedersen et al., 2018). Druhým z týchto liekov bol GS-441514, aktívna časť proliečiva remdesivir (Gilead Sciences; Murphy et al., 2018; Pedersen et al., 2019). GS-441524 je adenozínový nukleozidový analóg, ktorý blokuje replikáciu FIPV vložením bezvýznamného adenozínu do vyvíjajúcej sa vírusovej RNA. GS-441524 dokázal vyliečiť aj všetky experimentálne infikované mačky (Murphy et al., 2018) a 25/31 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP (Pedersen et al., 2019). Ukázalo sa, že pri vyššom dávkovaní bol účinný aj u niekoľkých mačiek s okulárnou a neurologickou FIP (Pedersen et al., 2019) a v súčasnosti je liekom prvej voľby pre mačky s neurologickou FIP (Dickinson et al., 2020). GS-441524 za posledné tri roky vyliečil tisíce mačiek s FIP z celého sveta s celkovou mierou vyliečenia tesne nad 90 % (Jones et al., 2021).1

Hoci schopnosť liekov GC376 a GS-441524 liečiť mačky je známa už niekoľko rokov, ani jeden z nich nie je v súčasnosti legálne dostupný vo väčšine krajín. Práva na liek GC376 zakúpila spoločnosť Anivive, ale zatiaľ nebol uvedený na trh.3 Potenciálne konflikty s vývojom remdesiviru pre liečbu COVID-19 u ľudí viedli spoločnosť Gilead Sciences k zadržaniu práv na GS-441524 pre použitie u zvierat, čo podnietilo vytvorenie neschváleného zdroja pre GS-441524 z Číny (Jones a kol, 2021).1,2,4 Remdesivir sa v tele rýchlo metabolizuje na GS-441524 a v niektorých krajinách bol povolený na liečbu FIP.2 GS-441524 sa môže podávať aj perorálne vo vyšších dávkach a v súčasnosti sa v praxi bežne používa (Krentz et al., 2021).1

Účinnosť liekov ako GC376 a GS-441524 na FIP mačiek, ktorých používanie predchádzalo pandémii COVID-19, uznali výskumníci skúmajúci príbuzné inhibítory SARS-CoV 2 (Yan et al., 2020; Vuong et al., 2021). Remdesivir, injekčný liek uvádzaný na trh pod názvom veklury (Gilead), sa celosvetovo používal na zníženie úmrtnosti na COVID-19 (Beigel et al., 2020). GC373, aktívna forma proliečiva GC376, prešla jednoduchými úpravami na zvýšenie účinnosti a perorálnej biologickej dostupnosti (Vuong et al., 2021). Liek príbuzný lieku GC373, nirmatrelvir, bol úspešne testovaný proti raným infekciám COVID-19 a bol schválený pre liečbu raného COVID-19 a predávaný pod názvom paxlovid (Pfizer). Paxlovid pozostáva z dvoch liekov, nirmatreviru a inhibítora HIV proteázy ritonaviru. Ritonavir nie je významným inhibítorom SARS-CoV 2,ale údajne predlžuje polčas rozpau inhibítorov Mpro, keď sa používa v kombinácii (Vuong a kol., 2020). Nirmatrelvir a paxlovid neboli v súčasnosti testované u mačiek s FIP, ale na základe skúseností s úzko súvisiacim liekom GC376 môžu byť v budúcnosti dôležitou perorálnou liečbou niektorých foriem FIP.

Na liečbu viacerých infekcií spôsobených RNA vírusmi u ľudí a zvierat sa sk&uacut