História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu

Niels C. Pedersen
Center for Companion Animal Health, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA, 95616, USA
Pôvodný článok: History of Feline infectious Peritonitis 1963-2022 – First description to Successful Treatment
17.4.2022

Abstrakt

Tento článok pojednáva o vývoji poznatkov o mačacej infekčnej peritonitíde (FIP) od jej rozpoznania v roku 1963 až po súčasnosť a bol pripravený s cieľom informovať veterinárnych lekárov, záchrancov a opatrovateľov mačiek, zamestnancov útulkov a milovníkov mačiek. Stručne sa spomína pôvodca mačacieho koronavírusu a jeho vzťah k všadeprítomnému a minimálne patogénnemu črevnému koronavírusu mačkovitých šeliem, epizootológia, patogenéza, patológia, klinické príznaky a diagnostika. Hlavný dôraz sa kladie na rizikové faktory ovplyvňujúce výskyt FIP a úlohu moderných antivirotík pri úspešnej liečbe.

Úvod

Obrázok 1. Fotografia autora a Dr. Jean Holzworthovej (1915-2007) z roku 1991. Dr. Holzworthová bola najlepším mačacím veterinárnym lekárom, akého autor poznal, a bola zodpovedná za prvú správu o FIP ako špecifickom ochorení. Celú svoju kariéru strávila v Angell Memorial Animal Hospital v Bostone.

Mačacia infekčná peritonitída (FIP) bola opísaná ako špecifické ochorenie v roku 1963 veterinármi v Angell Memorial Animal Hospital v Bostone (Holzworth 1963) (obr. 1). Patologické záznamy z tejto inštitúcie a Štátnej univerzity v Ohiu nedokázali identifikovať skoršie prípady (Wolfe a Griesemer 1966), hoci čoskoro boli identické prípady rozpoznané na celom svete. Prvotné patologické opisy sa týkali difúzneho zápalu tkanív vystielajúcich brušnú dutinu a brušné orgány s rozsiahlym výtokom zápalovej tekutiny, podľa ktorého bolo ochorenie nakoniec pomenované (Wolfe a Griesemer 1966, 1971) (obr. 2,3). Druhá a menej častá klinická forma FIP, ktorá sa prejavuje menej difúznymi a viac rozšírenými granulomatóznymi léziami, ktoré zahŕňajú orgánový parenchým, bola prvýkrát opísaná v roku 1972 (Montali a Strandberg 1972) (obr. 3,4). Prítomnosť zápalových výpotkov v telesnej dutine pri bežnej forme a absencia výpotkov pri menej bežnej forme viedla k pomenovaniu vlhká (výpotková, neparenchymatózna) a suchá (nevýpotková, parenchymatózna) FIP.

Zdá sa, že prevalencia FIP sa zvýšila počas panzootického ochorenia spôsobeného vírusom mačacej leukémie (FeLV) v 60. – 80. rokoch 20. storočia, keď sa zistilo, že mnohé prípady FIP boli spojené s FeLV (Cotter et al., 1973; Pedersen 1976a). Následné zvládnutie infekcie FeLV u vlastnených mačiek pomocou rýchleho testovania a vakcinácie prinieslo nárast počtu prípadov FIP. Nedávny záujem o chov/ záchranu spolu s účinnou liečbou však viedol k zvýšenému povedomiu o ochorení a jeho diagnostike.

Obrázok 2. Hrubý nekroptický vzhľad brušnej dutiny mačky s akútnym nástupom vlhkej FIP. Brucho je vyplnené niekoľkými stovkami ml žltej viskóznej tekutiny, omentum je začervenané, edematózne a stiahnuté a na povrchu sleziny a okrajoch pečene sú viditeľné fibrínové nánosy (šípky). Na slezine je vidieť vlákno fibrínu
Obrázok 3. Vzhľad otvoreného brucha pri pitve mačky, ktorá uhynula na chronickú formu efuzívnej FIP. Brucho je vyplnené viskóznym, žlto sfarbeným exsudátom a omentum je zhrubnuté a stiahnuté. Hlavné lézie sú v pečeni s početnými štruktúrami podobnými plakom (pyogranulómy) na obale. Viac ohraničené lézie (granulómy), tiež orientované na serózny povrch, vyzerajú mäsitejšie a sú vyvýšené nad povrch. Tieto lézie zasahujú aj do spodného pečeňového parenchýmu a sú typickejšie pre suché FIP. Toto je príklad prípadu FIP, ktorý prechádza medzi vlhkou a suchou formou (šípka).
Obrázok 4A – Hrubý prierez obličkami dvoch mačiek so suchou formou FIP. Lézie sú povrchovo orientované a zasahujú do základného parenchýmu.
Obrázok 4B – lézie suchej formy FIP v orgánoch, ako sú obličky, slepé črevo, hrubé črevo a črevné lymfatické uzliny (obr. 5), boli hrubo zamenené s lymfómom obličiek.
Obrázok 5. Hrubé zväčšenie ileo-cekálno-kolických lymfatických uzlín u mačky so suchou FIP.

Etiologický faktor

Prvé pokusy neumožnili identifikovať pôvodcu FIP, ale potvrdili jej infekčnú povahu (Wolfe a Griesemer 1966). Vírusová etiológia bola stanovená v roku 1968 pomocou ultrafiltrátov infekčného materiálu (Zook a kol., 1968). Príčinný vírus bol následne identifikovaný ako koronavírus (Ward 1970), ktorý je úzko príbuzný s črevnými koronavírusmi psov a ošípaných (Pedersen et al., 1978).

Zmätok nastal, keď bol z výkalov zdravých mačiek izolovaný mačací enterický koronavírus (FECV), ktorý sa ukázal ako nerozoznateľný od vírusu mačacej infekčnej peritonitídy (FIPV) (Pedersen a kol., 1981). Na rozdiel od vírusu FIPV, ktorý ľahko vyvolal FIP u laboratórnych mačiek, experimentálne infekcie vírusom FECV boli zväčša asymptomatické. Vzťah týchto dvoch vírusov sa objasnil, keď sa zistilo, že FIPV sú mutantmi FECV, ktoré vznikajú v tele každej mačky s FIP (Vennema et al., 1995; Poland et al., 1996).

FECV je všadeprítomný v populáciách mačiek na celom svete a prvýkrát sa vylučuje vo výkaloch približne od 9. – 10. týždňa života, čo sa zhoduje so stratou materskej imunity (Pedersen a kol., 2008;). Infekcia prebieha fekálno-orálnou cestou a je zameraná na črevný epitel a primárne príznaky enteritídy sú mierne alebo nevýrazné (Pedersen et al., 2008; Vogel et al., 2010). K následnému vylučovaniu do stolice dochádza z hrubého čreva a zvyčajne prestane po niekoľkých týždňoch alebo mesiacoch (Herrewegh et al.,1997; Pedersen et al., 2008; Vogel et al., 2010). Imunita je krátkodobá a opakované infekcie sú bežné (Pedersen et al., 2008; Pearson et al., 2016). Časom sa nakoniec vyvinie silnejšia imunita a u mačiek starších ako 3 roky je menej pravdepodobné, že budú vylučovať infekciu výkalmi (Addie et al., 2003). FECV neustále podlieha genetickému driftu do lokálne a regionálne identifikovateľných kladov (Herrewegh et al.,1997; Pedersen et al., 2009).

FECV a FIPV sú klasifikované ako biotypy poddruhu koronavírusu mačiek (FCoV). Genómy biotypov FECV a FIPV sú na > 98 % príbuzné, avšak s jedinečným tropizmom hostiteľských buniek a patogenitou (Chang et al., 2012; Pedersen et al., 2009). FECV infikujú zrelý črevný epitel, zatiaľ čo FIPV strácajú črevný tropizmus a získavajú schopnosť replikovať sa v monocytoch/makrofágoch. Publikované názvy FECV alebo FIPV sa tu budú používať, keď sa bude hovoriť o aspektoch ochorenia špecifických pre každý biotyp, zatiaľ čo termín FCoV sa bude používať, keď sa bude hovoriť o znakoch spoločných pre oba biotypy.

Na zmene biotypu FECV na FIPV sa podieľajú tri typy mutácií. Prvý typ, ktorý je jedinečný pre každú mačku s FIP (Poland et al., 1996), pozostáva z nahromadenia missense a nonsense mutácií v c-konci pomocného 3c génu, ktoré často vedú k skráteným produktom 3c génu (Pedersen et al., 2012; Vennema et al., 1995). Druhý typ mutácií pozostáva z dvoch špecifických jednonukleotidových polymorfizmov vo fúznom peptide génu S, pričom jedna alebo druhá forma je spoločná pre > 95 % FIPV a chýba u FECV (Chang et al., 2012). Tretí typ mutácií, ktorý je jedinečný pre každý izolát FIPV a nenachádza sa u FECV, sa vyskytuje v motíve štiepenia furínu medzi doménou viažucou receptor (S1) a fúznou doménou (S2) hrotového génu (S) a v jeho okolí (Licitra et al., 2013). Tieto mutácie majú rôzny vplyv na štiepnu aktivitu furínu. Spoločne a zatiaľ neurčeným spôsobom sú zodpovedné za posun tropizmu hostiteľskej bunky z enterocytu na makrofág a za hlbokú zmenu formy ochorenia.

FCoV, a teda aj FECV a FIPV, existujú v dvoch sérotypoch identifikovaných podľa protilátok proti vírusovému neutralizačnému epitopu na géne S (Herrewegh et al., 1998; Terada et al., 2014). FCoV sérotypu I sú identifikované v sérach mačiek a prevládajú vo väčšine krajín. FCoV sérotypu II sú výsledkom rekombinácie s časťou S génu koronavírusu psov (Herrewegh a kol., 1998; Terada a kol., 2014) a identifikujú sa pomocou protilátok proti koronavírusu psov. FIPV sérotypu II sa ľahko kultivujú v tkanivových kultúrach, zatiaľ čo FIPV sérotypu I sa ťažko prispôsobujú rastu in vitro. FECV sérotypu I a II neboli pestované v bežných bunkových kultúrach (Tekes et al., 2020).

FIPV sa nachádzajú výlučne v aktivovaných monocytoch a makrofágoch v postihnutých tkanivách a výpotkoch a nevylučujú sa do vonkajšieho prostredia. Preto prenos FIPV z mačky na mačku (horizontálny) nie je hlavným spôsobom šírenia. FIP sa skôr riadi vzorom základnej enzootickej infekcie FECV, so sporadickými prípadmi a príležitostnými malými výskytmi ochorenia (Foley et al., 1997). Tieto zhluky prípadov sa môžu mylne považovať za epizootie. Jediná správa o epizootickom výskyte FIP bola spojená s jediným vírusom sérotypu II, ktorý sa zrejme vyvinul v útulku, v ktorom boli umiestnené psy aj mačky (Wang a kol., 2013). Horizontálny prenos sa v tomto prípade riadil skôr epizootickým ako enzootickým modelom ochorenia, pričom infekcia sa rýchlo rozšírila na mačky všetkých vekových kategórií a v úzkom kontakte s indexovým prípadom (Wang et al., 2013).

Nízky výskyt prípadov FIP v populácii naznačuje, že mutácie FIPV vznikajú zriedkavo. Štúdie zahŕňajúce infekciu FECV u imunokompromitovaných mačiek infikovaných FIV a FeLV však naznačujú, že mutanty FIP môžu byť bežné, ale spôsobujú ochorenie len za určitých okolností. Devätnásť mačiek infikovaných vírusom imunitnej nedostatočnosti mačiek (FIV) počas 6 rokov a kontrolná skupina 20 súrodencov, ktorí neboli infikovaní vírusom FIV, boli orálne infikované vírusom FECV (Poland et al., 1996). Mačky v oboch skupinách zostali asymptomatické počas dvoch mesiacov, keď sa u dvoch mačiek v skupine infikovanej FIV vyvinula FIP. V druhej štúdii bolo 26 mladých mačiek s enzootickou infekciou FECV a z chovateľskej kolónie bez anamnézy FIP kontaktne vystavených nosičom FeLV (Pedersen a kol., 1977). U dvoch mačiatok v skupine sa následne vyvinula FIP 2 – 10 týždňov po tom, ako sa stali viremickými FeLV. Zostáva otázka, ako dlho môžu vírusy FIPV prežívať v tele, kým sa vylúčia? Podľa jednej z teórií pretrvávajú v tele určitý čas a patologickými sa stanú len vtedy, ak je voči nim narušená imunita (Healey a kol., 2022). Túto teóriu podporuje spôsob, akým sa vyvíja imunita voči FeLV. Väčšina mačiek po dosiahnutí veku mačiatka odolá vírusu FeLV a vyvinie si pevnú a trvalú imunitu, k čomu však dochádza v priebehu niekoľkých týždňov, počas ktorých vírus pretrváva v subklinickom alebo latentnom stave (Pedersen a kol., 1982; Rojko a kol., 1982). Metylprednizolón podávaný počas tohto obdobia, ale nie po ňom, zruší vyvíjajúcu sa imunitu a vedie k stavu pretrvávajúcej virémie.

Epizootológia

Epizootiológia je štúdium výskytu, rozšírenia a možnej kontroly chorôb zvierat a vplyvu faktorov prostredia, hostiteľa a pôvodcu. FIP je označovaná za jednu z najdôležitejších infekčných príčin úmrtí mačiek, hoci neexistujú presné údaje o prevalencii. Odhaduje sa, že 0,3 – 1,4 % úmrtí mačiek prezentovaných veterinárnym inštitúciám súvisí s FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Riemer et al., 2016) a v niektorých útulkoch a chovných staniciach až 3,6 – 7,8 % (Cave et al., 2002). FIP sa opisuje aj ako ochorenie prostredia s hustejším výskytom viacerých mačiek. Tri štvrtiny prípadov FIP v aktuálne prebiehajúcej liečebnej štúdii pochádzali z terénu prostredníctvom dočasných opatrovateľov/záchranných organizácií a útulkov pre mačky, 14 % z chovných staníc a len 11 % z domácností.1

Štúdie založené na prípadoch pozorovaných v akademických inštitúciách preukázali vplyv veku a pohlavia na výskyt FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Pedersen 1976a; Worthing et al., 2012; Riemer et al., 2016). Tri štvrtiny prípadov v týchto kohortách sa vyskytli u mačiek mladších ako 3 roky a len málo prípadov po 7. roku života. Potvrdila to aj aktuálna a prebiehajúca terénna štúdia z Českej republiky a Slovenska, v ktorej sa zistilo, že viac ako 80 % prípadov FIP sa vyskytlo u mačiek vo veku do 3 rokov a len 5 % u mačiek starších ako 7 rokov (obr. 6).1 Skoršie inštitucionálne štúdie sa líšili, pokiaľ ide o vplyv pohlavia, ale náznaky naznačovali, že kocúri sú o niečo náchylnejší na FIP ako mačky. Potvrdili to aj súčasné údaje z terénu, ktoré ukazujú pomer samcov a samíc 1,3:1,1. Nie je jasné, či kastrácia ovplyvňuje výskyt FIP, pričom niektoré správy naznačujú, že môže zvyšovať náchylnosť (Riemer a kol., 2016), zatiaľ čo iné neuvádzajú taký jasný vplyv.1

Obrázok 6. Vek viac ako 607 mačiek z Českej republiky a Slovenska v čase diagnostikovania a liečby FIP.1 Tridsať percent infekcií bolo zaznamenaných u mačiek vo veku šesť mesiacov alebo mladších, 50 % vo veku jedného roka a 85 % vo veku troch rokov alebo mladších.

Na zvýšenom výskyte FIP sa podieľajú ďalšie environmentálne a vírusové rizikové faktory, ale ich význam si vyžaduje znalosť výskytu ochorenia v prípade ich absencie. Možnú východiskovú úroveň mohla poskytnúť štúdia enzootickej infekcie FECV, ktorá bola nepoznane prítomná mnoho rokov v dobre spravovanej špecifickej chovateľskej kolónii bez patogénov (Hickman a kol., 1995). Táto kolónia bola udržiavaná v prísnej karanténe bez iných infekcií a úroveň výživy a chovu bola vysoká. Táto kolónia vyprodukovala stovky mačiatok každý rok, kým bol diagnostikovaný prvý prípad FIP. Takéto pozorovania naznačujú, že FIP môže byť zriedkavým javom pri absencii rizikových faktorov.

Význam premiestnenia do nového domova ako rizikového faktora FIP sa doceňuje až v súčasnosti. Chovatelia plemenných mačiek, z ktorých mnohí nezaznamenali žiadne prípady FIP vo svojich chovoch, majú najväčšie obavy z oznámenia, že u jedného z ich mačiatok sa krátko po odchode do nového domova vyskytla FIP. Nedávna štúdia zistila, že viac ako polovica mačiek s FIP zažila v priebehu týždňov pred ochorením zmenu prostredia, pobyt v útulku alebo odchyt .1 Mačky sú známe tým, že skrývajú vonkajšie príznaky stresu, aj keď trpia vážnymi vnútornými chorobnými následkami. Aj také jednoduché postupy ako zmena klietky potlačia imunitu a reaktivujú latentné vylučovanie herpes vírusu a príznaky ochorenia u mačiek (Gaskell a Povey, 1977). Stresové situácie, dokonca aj tie, ktoré sa zdajú byť menej závažné, môžu spôsobiť zníženie hladiny lymfocytov a “chorobné správanie” (Stella a kol., 2013).

Na prevalencii FIP v populácii sa môžu podieľať aj rozdiely v genetickej výbave enzootických kmeňov FCoV. Predpokladá sa, že FIPV sérotypu II sú virulentnejšie ako sérotyp I a je pravdepodobnejšie, že sa prenášajú z mačky na mačku (Lin et al., 2009; Wang et al., 2013). Je tiež možné, že určité klady FECV sú náchylnejšie na mutáciu na FIPV, čo by sa malo preštudovať. Autor tiež pozoroval neprimerane vysoký podiel mačiek s neurologickou FIP v niektorých regiónoch, čo naznačuje, že genetické determinanty v určitých kmeňoch FCoV môžu byť neurotropnejšie.

S náchylnosťou na FIP sa spájajú imunodeficiencie spojené s retrovírusmi. Až polovica prípadov FIP počas vrcholu panzootického ochorenia FeLV bola perzistentne infikovaná FeLV (Cotter et al., 1973; Pedersen 1976a; Hardy 1981). FeLV infekcia spôsobuje potlačenie T-bunkovej imunity, čo môže inhibovať ochrannú imunitnú odpoveď na FIP. Význam infekcie FeLV pre výskyt FIP sa výrazne znížil od 80. rokov 20. storočia, keď odstránenie nosičov a vakcinácia vytlačili FeLV späť do prírody, kde sú expozície menej závažné a imunita je obvyklým výsledkom. Chronická infekcia vírusom mačacej imunodeficiencie (FIV) sa tiež ukázala ako rizikový faktor pre FIP u mačiek infikovaných FECV v experimentálnych podmienkach (Poland et al., 1996). V jednej nedávnej terénnej štúdii bola infekcia FeLV rozpoznaná u 2 % a FIV u 1 % mačiek liečených na FIP.1

Výskyt FIP u čistokrvných mačiek je údajne vyšší ako u mačiek z náhodných chovov, pričom niektoré plemená sa zdajú byť náchylnejšie ako iné (Pesteanu-Somogyi et al., 2006; Worthing et al., Genetická predispozícia na FIP sa skúmala v niekoľkých chovoch perzských mačiek a odhaduje sa, že predstavuje polovicu rizika ochorenia (Foley et al., 1997). niektoré plemená, ako napríklad birman, sú náchylnejšie na vznik suchej ako mokrej FIP (Golovko et al., 2013). Pokusy o identifikáciu špecifických génov spojených s náchylnosťou na FIP u birmských mačiek zahŕňali niekoľko génov súvisiacich s imunitou, ale žiadny z nich nedosiahol požadovanú významnosť (Golovko a kol., 2013). Najväčšia štúdia genetickej náchylnosti na FIP ukázala, že je extrémne polymorfná a ako hlavný rizikový faktor sa v nej uvádza príbuzenská plemenitba (Pedersen et al., 2016). Špecifické polymorfizmy v niekoľkých génoch boli tiež spojené s vysokou úrovňou vylučovania FECV medzi niekoľkými plemennými plemenami mačiek (Bubenikova et al., 2020).

U samíc sa môže FIP, zvyčajne vlhká forma, vyvinúť počas gravidity alebo v perinatálnom období. Tento jav pripomína potlačenie imunity u gravidných žien a predispozíciu na určité infekcie (Mor a Cardenas 2010). Nie je jasné, či sa subklinická FIP aktivuje v dôsledku gravidity alebo zvýšenou vnímavosťou na novú infekciu. Infekcia matky na začiatku gravidity vedie k úmrtiu plodu a resorpcii, zatiaľ čo neskoršie infekcie často vedú k potratu (obr. 7). Mačiatka sa môžu narodiť aj zdravé, ale v perinatálnom období sa u nich vyvinie choroba a uhynú. Niektoré mláďatá sa rodia nenakazené vďaka účinnosti placentárnej bariéry medzi matkou a plodom alebo vďaka pomoci antivírusovej liečby (obr. 8).

Obrázok 7. Potratené mačiatka od matky, u ktorej sa v neskoršom štádiu gravidity vyvinula vlhká FIP. Potrat bol prvým príznakom FIP, po ktorom rýchlo nasledovali klasické príznaky abdominálnej mokrej FIP. Matka bola úspešne vyliečená z FIP pomocou antivirotika GS-441524.
Obrázok 8. U tejto matky sa 3 týždne po začiatku gravidity objavili príznaky vlhkej brušnej FIP a bola úspešne vyliečená pomocou GS-441524. Následne priviedla na svet vrh štyroch mačiatok cisárskym rezom, z ktorých jedno uhynulo a tri prežili a vyrastali zdravé. Liečba sa podávala počas zvyšných 6 týždňov gravidity a pokračovala 6 týždňov, počas ktorých boli mačiatka úspešne dojčené. GS-441524 nemal žiadne zjavné vedľajšie účinky na matku alebo mačiatka.

Možný nárast počtu prípadov FIP bol pozorovaný u mačiek starších ako 10 rokov v štúdiách, ktoré sa uskutočnili pred 50 rokmi (Pedersen 1976a). O niečo viac ako 3 % prípadov FIP v nedávnej štúdii sa vyskytlo u mačiek vo veku 10 rokov a viac a 1,5 % u mačiek vo veku 12 rokov a viac (obr. 6).1 Výskyt FIP u starších jedincov často zahŕňa dva rôzne scenáre. Prvý scenár zahŕňa aj vystavenie sa vylučovaniu výkalov FECV, ale jedinečným spôsobom. Je bežné, že staré mačky sa párujú ešte ako mačiatka a žijú spolu v relatívnej izolácii nevystavené FECV po mnoho rokov. Jedna mačka z páru uhynie, zostane sama a do domácnosti sa privedie oveľa mladšia spoločníčka získaná zo záchrannej organizácie, útulku alebo chovateľskej stanice, u ktorej je vysoká pravdepodobnosť, že vylučuje FECV. Staršie mačky sú tiež náchylné na tie isté rizikové faktory FIP ako mladšie mačky, ale aj na ďalšie faktory spojené so starnutím. Prvým z nich je vplyv starnutia na imunitný systém, pričom najdôslednejším je zhoršenie bunkovej imunitnej funkcie (Day 2010). Medzi ďalšie rizikové faktory spojené so starými mačkami patria oslabujúce a potenciálne imunosupresívne účinky ochorení, ako je rakovina, a chronické ochorenia obličiek, pečene, ústnej dutiny a čriev. Niektoré ochorenia starých mačiek môžu byť zamenené za FIP alebo komplikovať liečbu FIP, ak sú prítomné súčasne.

Medzi ďalšie rizikové faktory, ktoré je potrebné ďalej skúmať, patrí strata materskej systémovej imunity oddelením pri narodení, skoré odstavenie a strata laktogénnej imunity, podvýživa, bežné infekčné ochorenia mačiatka, skorá kastrácia, očkovanie, vrodené srdcové chyby a dokonca aj požiar v útulku (Drechsler a kol.), 2011; Healey et al., 2022; Pedersen 2009, Pedersen et al. 2019).1 Najdôležitejším pozitívnym rizikovým faktorom však zostáva prítomnosť FECV v populácii (Addie et al., 1995). Prevalencia FIP v niekoľkých chovoch perzských mačiek súvisela v jednej štúdii aj s podielom mačiek, ktoré v danom čase vylučujú FECV, a s podielom týchto mačiek, ktoré sú chronickými vylučovateľmi (Foley a kol., 1997). Význam vystavenia FECV podporuje potrebu nájsť spôsoby, ako buď zabrániť infekcii, alebo znížiť jej závažnosť. Jedným z prvých krokov je lepšie pochopenie imunity FECV (Pearson et al., 2019).

Patogenéza

Prvým rozhraním medzi FECV a imunitným systémom sú lymfatické tkanivá čreva (Malbon et al., 2019, 2020). Hoci následné udalosti vedúce k FIP nie sú úplne objasnené, je možné špekulovať na základe toho, čo je už známe o infekciách FECV a FIPV, iných makrofágovo-tropických infekciách a vírusovej imunite vo všeobecnosti. Častice a proteíny FECV sa počas črevnej infekcie dostanú do miestnych lymfatických tkanív a spracujú sa fagocytujúcimi bunkami najprv na peptidy a nakoniec na aminokyseliny. Niektoré z týchto peptidov budú po usporiadaní na povrchu buniek rozpoznané ako cudzie, čo vyvolá vrodenú (prirodzenú alebo nešpecifickú) a adaptívnu (získanú alebo špecifickú) imunitnú odpoveď (Pearson et al., 2016). FECV tiež prechádzajú mutáciou na FIPV v rovnakom čase a u rovnakého typu buniek. Niektoré z týchto mutácií umožnia vírusu replikovať sa v týchto alebo blízko príbuzných bunkách špecifickej monocytovej/makrofágovej línie.

Zdá sa, že hostiteľskou bunkou pre FIPV je špecifická trieda aktivovaných monocytov, ktoré sa nachádzajú okolo venúl na povrchu črevných a hrudných orgánov, mezentéria, omenta, uveálneho traktu, mening, cievovky a ependymu mozgu a miechy a voľne vo výpotkoch. Tieto bunky patria do triedy aktivovaných (M1) (Watanabe a kol., 2018) a podobajú sa subpopulácii malých peritoneálnych makrofágov opísanej u myší (Cassado a kol., 2015). Tento typ buniek vzniká z cirkulujúcich monocytov pochádzajúcich z kostnej drene, ktoré sa rýchlo mobilizujú z krvi v reakcii na infekčné alebo zápalové podnety. V okolí krvných ciev v sietnici postihnutej FIP bola opísaná rovnako vyzerajúca populácia aktivovaných monocytov (Ziolkowska et al., 2017). Tieto bunky sa farbili na kalprotektín, čo poukazuje na ich krvný pôvod. Hoci infekcia FIPV prebieha spočiatku v menších aktivovaných monocytoch, replikácia vírusu je najintenzívnejšia vo veľkých, vakuolizovaných, terminálne diferencovaných makrofágoch (Watanabe a kol., 2018). Vírus uvoľnený z týchto buniek rýchlo infikuje aktivované monocyty produkované v kostnej dreni a stiahnuté do daného miesta z krvného obehu.

Bunkový receptor, ktorý FECV využívajú na infikovanie črevných epitelových buniek, ešte nebol určený. Bunkový receptor, ktorý FIPV používajú na infikovanie aktivovaných monocytov, tiež nie je známy. RNA pre konvenčné receptory koronavírusov, ako je aminopeptidáza N (APN), angiotenzín konvertujúci enzým 2 (ACE2) a CD209L (L-SIGN), neboli v infikovaných peritoneálnych bunkách mačiek s experimentálnou FIP upregulované a CD209 (DC-SIGN) bol výrazne nedostatočne exprimovaný (Watanabe et al., 2018). Alternatívna cesta infekcie aktivovaných monocytov môže zahŕňať imunitnú komplexáciu vírusu a vstup do buniek fagocytózou (Dewerchin et al., 2008, 2014; Van Hamme et al., 2008). Aktivované monocyty v léziách sa silne pozitívne farbia na antigén FIPV, IgG a komplement (Pedersen, 2009) a mRNA pre FcγRIIIA (receptor CD16A/ADCC) je v infikovaných bunkách výrazne zvýšená (Watanabe et al., 2018), čo podporuje infekciu prostredníctvom imunitného komplexovania a alternatívnych receptorov súvisiacich s fagocytózou.

Makrofágové patogény sú intracelulárne a eliminácia infikovaných buniek prebieha prostredníctvom usmrcovania sprostredkovaného lymfocytmi. Prvou obrannou líniou sú nešpecifické lymfocyty, a ak zlyhajú, nasleduje adaptívna imunitná odpoveď na FIPV prostredníctvom špecifických T-lymfocytov. Ak sa nepodarí zadržať a eliminovať infikované aktivované monocyty a makrofágy, môžu sa lokálne šíriť v brušnej dutine, pravdepodobne z lymfatických uzlín v oblasti dolného čreva a miesta replikácie FECV. Šírenie lokálne a do vzdialených miest prostredníctvom krvného obehu sa uskutočňuje infikovanými monocytovými bunkami (Kipar a kol., 2005).

FIP sa vyskytuje v dvoch základných formách, vlhkej (efuzívna, neparenchymatózna) (obrázky 2 a 3 )alebo suchej (neefuzívna, parenchymatózna) (obrázky 4 a 5), pričom vlhká FIP predstavuje 80 % prípadov.1 Termín “vlhká” sa vzťahuje na charakteristický výpotok tekutiny v bruchu alebo hrudníku (Wolfe a Griesemer 1966, 1971). V léziách vlhkej FIP dominuje zápal pripomínajúci hypersenzitivitu okamžitého alebo Arthusovho typu (Pedersen a Boyle, 1980), zatiaľ čo lézie suchej FIP pripomínajú hypersenzitívne reakcie oneskoreného typu (Montali a Strandberg 1972; Pedersen 2009). Vlhké a suché formy FIP preto odrážajú konkurenčné vplyvy protilátkami a bunkami sprostredkovanej imunity a súvisiacich cytokínových dráh (Malbon a kol., 2020, Pedersen 2009). Predpokladá sa, že imunita voči bunkám infikovaným FIPV, ktorá je normou, zahŕňa silné reakcie sprostredkované bunkami (Kamal et al. 2019). Predpokladá sa, že k suchej FIP dochádza vtedy, keď je bunkami sprostredkovaná imunita čiastočne účinná pri potláčaní infekcie, a k vlhkej FIP vtedy, keď je bunková imunita neúčinná a prevládajú humorálne imunitné reakcie.

FIP sa považuje za jedinečnú medzi makrofágnymi infekciami, pretože je vírusová, ale suchá forma má mnoho spoločných klinických a patogénnych znakov s ochoreniami mačiek spôsobenými systémovými mykobakteriálnymi (Gunn-Moore et al., 2012) a plesňovými infekciami (Lloret et al., 2013). Podobnosti v patogenéze existujú aj medzi vlhkou FIP a vírusovými infekciami zosilnenými protilátkami, ako sú horúčka Dengue a syndróm hemoragického šoku Dengue (Pedersen a Boyle 1980; Rothman a kol., 1999, Weiss a Scott 1981).

Predpokladá sa, že reakcie hostiteľa výlučne určujú výsledok infekcie FIPV a výsledné formy ochorenia. Avšak makrofágovo-tropné patogény si vyvinuli vlastné jedinečné obranné mechanizmy proti hostiteľovi (Leseigneur et al., 2020). Jedným z mechanizmov je oddialenie programovanej bunkovej smrti (apoptózy). Oneskorená apoptóza umožňuje trvalú mikrobiálnu replikáciu a prípadné uvoľnenie väčšieho množstva infekčných agensov, ako bolo opísané aj v prípade makrofágov infikovaných FIPV (Watanabe et al., 2018). FIPV môže tiež kontrolovať rozpoznávanie a ničenie infikovaných aktivovaných monocytov špecifickými alebo nešpecifickými T-bunkami. Cieľom bunkového povrchu pre T-bunky, ktoré zabíjajú infikované bunky, sú pravdepodobne proteíny (antigény) FIPV exprimované na hlavných histokompatibilných receptoroch I. triedy (MHC-I). Na FIPV-pozitívnych bunkách odobratých z tkanív FIP alebo výpotkov sa však nezistila povrchová expresia vírusových antigénov receptormi MHC-I (Cornelissen a kol., 2007). DC-Sign bol navrhnutý ako receptor pre FIPV (Regan a Whitaker, 2008), ale RNA pre DC-Sign je výrazne nedostatočne exprimovaná infikovanými peritoneálnymi bunkami, zatiaľ čo RNA pre Fc (MHC-II) receptory je výrazne nadmerne exprimovaná a RNA pre MHC-I je znížená (Watanabe a kol., 2018). To naznačuje, že normálny spôsob infekcie hostiteľských buniek môže byť zmenený FIPV tak, aby uprednostňoval infekciu fagocytózou namiesto väzby na špecifické vírusové receptory na povrchu buniek, fúzie s bunkovou membránou a internalizácie.

Patológia

Podrobné opisy hrubých a mikroskopických lézií pri vlhkej forme FIP po prvýkrát popísali Wolfe a Griesemer (1966, 1971). Ochorenie je charakterizované vaskulitídou, ktorá zahŕňa venuly v tkanivách vystielajúcich brušnú alebo hrudnú dutinu, povrch orgánov a podporných tkanív, ako sú mezentérium, omentum a mediastinum. Zápalový proces vedie k výpotkom v brušnej alebo hrudnej dutine až do objemu jedného litra alebo viac (obr. 2, 3). Základnou léziou je pyogranulóm, ktorý pozostáva z fokálneho nahromadenia aktivovaných monocytárnych buniek v rôznych štádiách diferenciácie, popretkávaných nedegenerovanými neutrofilmi a riedkym množstvom lymfocytov. Pyogranulómy sú povrchovo orientované a hrubo a mikroskopicky sa javia ako jednotlivé a koalescenčné plaky (obr. 2).

Antigén FIPV sa imunohistochemicky (IHC) pozoruje len v aktivovaných monocytoch v léziách a vo výpotkoch (Litster et al., 2013). Veľké vakuolizované terminálne diferencované makrofágy sú obzvlášť bohaté na vírus (Watanabe et al., 2018), čo pripomína lepromatóznu formu malomocenstva (deSousa et al., 2017). Lymfatické uzliny lokalizované v blízkosti miest zápalu sú hyperplastické a zväčšené.

Vzťah suchej a vlhkej FIP bol prvýkrát opísaný v roku 1972 v správe o prípadoch neznámej etiológie s podobnou patológiou (Montali a Strandberg 1972). Ako uvádzajú autori, “tento patologický syndróm bol charakterizovaný granulomatóznym zápalom v rôznych orgánoch, ale hlavne postihoval obličky, viscerálne lymfatické uzliny, pľúca, pečeň, oči a leptomeningy”. Tkanivové extrakty týchto lézií vyvolali vlhkú FIP u laboratórnych mačiek, čím sa potvrdilo, že vlhkú a suchú FIP spôsobuje ten istý pôvodca.

Hrubá a mikroskopická patológia suchej FIP sa podobá patológii iných makrofágovo-tropických infekcií, ako je systémová blastomykóza mačiek, histoplazmóza, kokcidioidomykóza (Lloret et al., 2013), tuberkulóza a lepra (Gunn-Moore et al., 2012). Lézie suchej FIP zahŕňajú najmä brušné orgány (obr. 5, 6) a v hrudnej dutine sú zriedkavé (Montali a Strandberg 1972; Pedersen 2009). Lézie sú menej rozšírené a fokálne ako pri vlhkej FIP, s tendenciou rozširovať sa zo seróznych povrchov do parenchýmu základných orgánov (obr. 5, 6). Cieľom imunitnej odpovede hostiteľa sú malé agregáty infikovaných monocytárnych buniek spojené s venulami, podobne ako pyogranulómy pri vlhkej FIP, ale obklopené hustými akumuláciami lymfocytov a plazmatických buniek a variabilnou fibrózou. Floridná hyperémia, edém a mikrohemorágia spojené s vlhkou FIP väčšinou chýbajú, preto chýbajú významné výpotky v telesných dutinách. Reakcia hostiteľa na ložiská infekcie dáva léziám hrubý vzhľad podobný nádoru (obr. 5, 6). Infikované aktivované monocyty v centrálnom ohnisku infekcie sú menej husté a obsahujú nižšie hladiny vírusu ako pri vlhkej forme (Pedersen 2009;), čo je vlastnosť tuberkuloidnej formy lepry (de Sousa et al., 2017). Lézie na niektorých miestach, napríklad na stene hrubého čreva, môžu vyvolávať hustú okolitú zónu fibrózy, ktorá pripomína klasické granulómy tuberkulózy. Prechodné formy existujú aj medzi vlhkými a suchými formami v malej časti prípadov a väčšinou sú rozpoznateľné pri pitve (obr. 3).

Okulárna a neurologická FIP sa klasifikujú ako formy suchej FIP (Montali a Strandberg 1972). Avšak patológia v uveálnom trakte a sietnici oka a v ependýme a meningách mozgu a miechy predstavuje medzistupeň medzi vlhkou a suchou FIP (Fankhauser a Fatzer 1977; Peiffer a Wilcock 1991). Možno to vysvetliť účinkom hematookulárnej a hematoencefalickej bariéry pri ochrane týchto oblastí pred systémovými imunitnými reakciami.

Klinické charakteristiky FIP

Päť najčastejších príznakov u mačiek s FIP, bez ohľadu na klinickú formu a frekvenciu výskytu, sú letargia, nechutenstvo, zväčšené brušné lymfatické uzliny, úbytok hmotnosti, horúčka a zhoršujúca sa srsť.1 Tieto príznaky sa môžu objaviť rýchlo, v priebehu týždňa, alebo môžu existovať mnoho týždňov a dokonca mesiacov pred stanovením diagnózy. Priebeh ochorenia býva rýchlejší u mačiek s vlhkou FIP ako so suchou FIP a spomalenie rastu je bežné u mladých mačiek, najmä u tých s chronickejším ochorením. U 20 % mačiek s horúčkou ako hlavným príznakom sa nakoniec diagnostikuje FIP (Spencer et al., 2017).

Vlhká forma FIP sa vyskytuje približne v 80 % prípadov, častejšie u mladších mačiek a býva závažnejšia a rýchlejšie progredujúca ako suchá forma. Abdominálny výpotok (ascites) je štyrikrát častejší ako pleurálny výpotok, pričom častými príznakmi sú abdominálna distenzia (obr. 9) a dyspnoe. Pyrexia a žltačka sú častejšími príznakmi u mačiek s vlhkou ako so suchou formou FIP (Tasker, 2018).

Obrázok 9.  Dospelá dlhosrstá mačka s chronickou brušnou vlhkou FIP. Mačka bola v prijateľnom zdravotnom stave okrem mierneho úbytku hmotnosti, letargie, zhoršenia kvality srsti a občasnej nízkej horúčky. Abdominálna distenzia nebola po určitú dobu zaznamenaná a brušná tekutina obsahovala relatívne nízky počet bielkovín a bielych krviniek.
Obrázok 9. Mladá mačka, ktorá sa prezentovala rýchlym nástupom vysokej horúčky, nechutenstvom, distenziou brucha a brušnou tekutinou s vysokým obsahom bielkovín a bielych krviniek.

Väčšina mačiek so suchou FIP má pri prezentácii príznaky ochorenia obmedzené na brucho a/alebo hrudník. Najčastejšími klinickými príznakmi suchej FIP sú hmatné alebo ultrazvukom identifikovateľné masy v obličkách (obr. 4), slepom čreve, hrubom čreve, pečeni a pridružených lymfatických uzlinách (obr. 5). Lézie suchej FIP zvyčajne šetria hrudnú dutinu a zriedkavo sa vyskytujú v koži, nosových priechodoch, osrdcovníku a semenníkoch ako súčasť širšieho systémového ochorenia.

Neurologické a očné ochorenia sú jedinými alebo sekundárnymi znakmi 10 % všetkých prípadov FIP a 10-krát častejšie sa spájajú so suchou ako s vlhkou FIP (Pedersen 2009). Neurologické a očné formy FIP boli klasifikované ako formy suchej FIP, ale možno by bolo vhodnejšie klasifikovať ich ako odlišné formy FIP vyplývajúce z modifikujúcich účinkov hematookulárnej a hematoencefalickej bariéry, za ktorou sa vyskytujú. Tieto bariéry majú silný vplyv na povahu ochorenia očí a centrálneho nervového systému (CNS) a na odpoveď na antivírusovú liečbu.

Klinické príznaky neurologickej FIP sa týkajú mozgu aj miechy a zahŕňajú zadnú slabosť a ataxiu, generalizovanú nekoordinovanosť, záchvaty, mentálnu otupenosť, anizokóriu a rôzne stupne fekálnej a/alebo močovej inkontinencie (Foley et al., 1998; Dickinson et al., 2020) (obr. 10). Extrémny intrakraniálny tlak môže viesť k náhlej herniácii mozočku a mozgového kmeňa do miechového kanála a syndrómu spinálneho šoku. Medzi prodromálne príznaky patrí nutkavé olizovanie stien alebo podlahy, konzumácia steliva, mimovoľné svalové zášklby a neochota alebo neschopnosť vyskočiť na vysoké miesta. Postihnutie očí môže predchádzať alebo sprevádzať neurologické ochorenie. Neurologická FIP je častým javom pri liečbe antivirotikami, buď sa objavuje počas liečby non-CNS foriem FIP, alebo ako prejav relapsu ochorenia po ukončení liečby (Pedersen et al., 2018, 2019; Dickinson et al., 2020).

Obrázok 10. Mladá mačka so suchou FIP a neurologickým postihnutím. Mačka je letargická, vychudnutá a s biednou srsťou. Srsť v perineálnej oblasti je mokrá a zafarbená od močovej inkontinencie.
Obrázok 11. Zafarbenie dúhovky pravého oka tejto mačky bolo prvým príznakom uveitídy spojenej s FIP. V prednej komore je mierne zahmlenie a na vnútornej strane rohovky sú usadeniny fibrínu bohaté na červené krvinky. Zreničky sú tiež nerovnaké (anizokória).
Obrázok 12. Mladá mačka s okulárnou FIP, ktorá sa na pravom oku prejavila ako predná uveitída so sekundárnym glaukómom spôsobujúcim zväčšenie gule. Dúhovka zmenila farbu v dôsledku zápalu, cievy na báze dúhovky sú prekrvené a na zadnej strane rohovky je zákal vodného moku a zápalové produkty. Vnútroočný tlak je zvyčajne nízky pri nekomplikovanej uveitíde, ale zvýšený u mačiek s glaukómom.
Obrázok 13. Táto mladá mačka mala prednú uveitídu, ale jej terapia FIP pomocou GS-441524 bola oneskorená, čo umožnilo vznik glaukómu na oboch očiach. Liečba odstránila základnú uveitídu a výrazne zlepšila vonkajší zdravotný stav, ale sekundárny glaukóm a slepota pretrvali.

Postihnutie očí je zvyčajne zjavné a potvrdí sa pri oftalmoskopickom vyšetrení prednej a zadnej komory. Okulárna FIP v rôznej miere postihuje dúhovku, ciliárne telieska, sietnicu a disk zrakového nervu (Peiffer a Wilcock, 1991; Ziółkowska a kol., 2017; Andrew, 2000). Najčasnejším príznakom je často jednostranná zmena farby dúhovky (obr. 11). Predná komora sa môže javiť zakalená a môže vykazovať vysoké hladiny bielkovín a vodný zákal pri lome svetla. Do prednej komory sa vyplavujú zápalové produkty vo forme aktivovaných makrofágov, červených krviniek, fibrínových značiek a malých krvných zrazenín. Tento materiál často priľne na zadnú stranu rohovky ako keratické precipitáty (obr. 12). Ochorenie môže zasiahnuť aj sietnicu v tapetálnych a netapetálnych oblastiach a viesť k odlúpeniu sietnice. Vnútroočný tlak je zvyčajne nízky, okrem prípadov komplikovaných postihnutím ciliárneho telesa a glaukómom (obr. 12, 13).

Diagnostika FIP

Signalizácia, environmentálna anamnéza, klinické príznaky a nálezy pri fyzikálnom vyšetrení často poukazujú na FIP (Tasker, 2018). Dôkladné fyzikálne vyšetrenie by malo zahŕňať telesnú hmotnosť a teplotu, stav srsti a tela, manuálnu palpáciu brucha a brušných orgánov, hrubé zhodnotenie srdcovej a pľúcnej funkcie a zbežné vyšetrenie očí a neurologického systému. Silné podozrenie na výpotok v brušnej alebo hrudnej dutine môže byť dôvodom na konfirmačnú aspiráciu a dokonca aj na in-house analýzu kvapaliny ako súčasti úvodnéeho vyšetrenia.

Abnormality v kompletnom krvnom obraze (CBC) a základnom biochemickom paneli séra sú dôležitými faktormi pri diagnostike FIP (Tasker, 2018; Felten a Hartmann, 2019) a monitorovaní liečby antivirotikami (Pedersen a kol., 2018, 2019; Jones a kol., 2021; Krentz a kol., 2021) (obr. 14). Celkový počet leukocytov je u mačiek s vlhkou FIP s najväčšou pravdepodobnosťou vysoký, ale pri ťažkom zápale sa môže vyskytnúť i nízky počet. Vysoký počet leukocytov sa často spája s neutrofíliou, lymfopéniou a eozinopéniou. Mierna až stredne ťažká neregeneratívna anémia sa tiež často pozoruje pri vlhkej aj suchej FIP. Celkové bielkoviny sú zvyčajne zvýšené v dôsledku zvýšených hladín globulínu, zatiaľ čo hodnoty albumínu bývajú nízke (obr. 14). Výsledkom je pomer A:G, ktorý je často nižší ako 0,5 – 0,6 a považuje sa za jeden z najkonzistentnejších ukazovateľov FIP. Nízky pomer A:G sa však môže vyskytnúť v situáciách, keď sú albumín aj globulín v referenčnom intervale alebo pri iných ochoreniach. Preto by pomer A:G nemal byť jediným ukazovateľom FIP a mal by sa vždy hodnotiť v kontexte s inými ukazovateľmi FIP (Tasker, 2018; Felten a Hartmann, 2019). Hodnoty sérových bielkovín získané z väčšiny sérových chemických panelov sú zvyčajne dostatočné. Elektroforéza sérových bielkovín môže poskytnúť ďalšie informácie, najmä ak sú hodnoty bielkovín z chemického vyšetrenia séra sporné (Stranieri a kol., 2017).

Obrázok 14. Kompletný krvný obraz (CBC) (a) mladej mačky s akútnou vlhkou abdominálnou FIP. Hoci počet leukocytov nebol zvýšený, bola zistená relatívna, ale nie absolútna neutrofília, relatívna a absolútna lymfopénia, relatívna a absolútna eozinopénia a neresponzívna anémia, na ktorú poukazujú nízke červené krvinky, hematokrit a hemoglobín s normálnym počtom retikulocytov.
Obrázok 14. Biochemické vyšetrenie séra (b) mladej mačky s akútnou vlhkou abdominálnou FIP. Relevantné hodnoty v chemickom paneli séra boli zvýšený celkový proteín, nízky albumín, vysoký globulín, nízky pomer albumín/globulín (A:G) a zvýšený celkový a priamy bilirubín. Pečeňové enzýmy boli normálne s výnimkou mierne zvýšenej hodnoty AST a BUN a kreatinín sú normálne, čo poukazuje na neprítomnosť významného ochorenia pečene alebo obličiek. Hodnoty globulínu nie sú vždy uvedené, ale primeraný odhad sa dá vypočítať odpočítaním hladiny albumínu od celkovej bielkoviny.

Prílišné spoliehanie sa na abnormality v CBC a sérovej biochémii môže viesť k diagnostickej neistote, ak chýbajú, a to aj napriek tomu, že žiadna hodnota testu nie je konzistentne abnormálna vo všetkých prípadoch FIP (Tasker, 2018)1. Najväčšie rozdiely sú medzi klinickou formou ochorenia, pričom leukocytóza a lymfopénia sú častejšie u mačiek s vlhkou ako so suchou FIP (Riemer et al., 2016). Hyperbilirubinémia je častá u mačiek s FIP, ale hlavne u mačiek s vlhkou FIP (Tasker, 2018). Autor tiež zistil, že mnohé mačky s primárnou neurologickou FIP vykazujú menšie alebo žiadne krvné abnormality. Hodnoty krvných testov pri FIP sa tiež v jednotlivých štúdiách líšia (Tasker, 2018).

Kompletná analýza výpotku je dôležitá na diagnostikovanie vlhkej FIP a na vylúčenie iných potenciálnych príčin hromadenia tekutiny (Dempsey a Ewing, 2011). Zahŕňa farbu (číra alebo žltá), viskozitu (riedka alebo viskózna), prítomnosť precipitátov, schopnosť vytvoriť čiastočnú zrazeninu pri odstátí, obsah bielkovín, počet leukocytov a diferenciál. Charakter tekutiny sa môže líšiť v závislosti od trvania ochorenia a jeho závažnosti. Výpotky u mačiek so závažnejšími príznakmi ochorenia mávajú zvyčajne hodnoty bielkovín blízke sérovým hodnotám, sú viskóznejšie, obsahujú väčší počet leukocytov, sú viac žlto sfarbené a majú väčšiu schopnosť vytvárať čiastočné zrazeniny pri odstátí. Chronické výpotky majú tendenciu byť menej zápalového charakteru, s nižšími hodnotami bielkovín a leukocytov, menej viskózne a čírejšie. Tieto hodnoty sa dajú na väčšine kliník stanoviť priamo na mieste. Faktor zrážanlivosti sa určuje porovnaním tekutiny odobratej v sére a v antikoagulačných skúmavkách po státí. Farbu a viskozitu možno odhadnúť približne a hladinu bielkovín odhadnúť pomocou ručného refraktometra na stanovenie celkového obsahu pevných látok. Bunky sa z tekutiny peletujú a analyzujú na preparáte s rýchle farbeným sklíčkom pomocou svetelnej mikroskopie a odhaduje sa počet a diferenciál leukocytov. Bunky zahŕňajú neseptické neutrofily, malé a stredne veľké mononukleárne bunky a veľké vakuolizované makrofágy (obr. 15).  Je dôležité poznamenať, že výpotky sa môžu vyskytnúť pri rôznych ochoreniach, ako je srdcové zlyhanie, rakovina, hypoproteinémia a bakteriálne infekcie. Výpotky pri týchto iných ochoreniach majú zvyčajne odlišné identifikačné znaky.

Obrázok 15. Farbený náter peritoneálnych buniek centrifugovaných z brušnej tekutiny mačky s vlhkou FIP a vyšetrených na rýchlo zafarbenom sklíčku svetelnou mikroskopiou. Prevládajúce bunky sú veľké silne vakuolizované makrofágy, menšie diferencujúce sa aktivované monocyty a neutrofily. Najväčšia koncentrácia vírusových častíc je v intracytoplazmatických vakuolách makrofágov (šípky).
Obrázok 16. Pozitívny výsledok Rivaltovej skúšky. Malá vzorka brušnej alebo hrudnej tekutiny sa opatrne nakvapká do malého pohára naplneného zriedenou kyselinou octovou (8 ml destilovanej vody a 1 kvapka koncentrovanej kyseliny octovej). Zápalové bielkoviny sa takmer okamžite zrazia a klesnú na dno (pozitívne). Menej zápalové tekutiny vytvoria difúzne zrazeniny (otázne) alebo voľne difundujú v roztoku (negatívne).

Na diagnostikovanie FIP ako príčiny výpotku sa často používa pozitívna Rivaltova skúška na brušnej alebo hrudnej tekutine a negatívna skúška ju skôr vylučuje (Fischer et al., 2010) ( obr. 16). Test však môže byť pozitívny pri zápalových výpotkoch inej príčiny a negatívny u niektorých mačiek s FIP. Preto je Rivaltova skúška najviac nápomocná v kombinácii s inými klinickými nálezmi FIP a nemala by nahrádzať dôkladnú analýzu tekutiny (Felten a Hartmann, 2019).

Hladiny celkového a priameho bilirubínu v sére sú často zvýšené, najmä u mačiek s vlhkou FIP (obr. 14), a môžu byť spojené so žltačkou a bilirubinúriou. Hyperbilirubinémia pri FIP nie je spôsobená ochorením pečene (Tasker, 2018), ale skôr vaskulitídou, mikrohemorágiou, hemolýzou a deštrukciou poškodených červených krviniek makrofágmi lokálne a v pečeni. Uvoľnený hemoglobín sa nakoniec metabolizuje na bilirubín, ktorý sa potom konjuguje v hepatocytoch a vylučuje sa močom. Pre vylučovanie bilirubínu je nevyhnutná glukuronidácia a genetické poruchy ovplyvňujúce glukuronidáciu u ľudí bránia jeho vylučovaniu (Kalakonda a kol., 2021). Mačky ako druh majú nedostatok enzýmov potrebných na glukuronidáciu, čo sťažuje vylučovanie látok, ako je bilirubín (Court a Greenblatt 2000).

Hoci FIP môže postihnúť obličky a pečeň, nie je natoľko závažná, aby spôsobila významnú stratu funkcie obličiek alebo pečene. Avšak sérové testy na dusík močoviny v krvi (BUN) a kreatinín ako indikátory ochorenia obličiek a alanínaminotransferázy (ALT), alkalickej fosfatázy (ALP) a gama glutamyltransferázy (GGT) ako indikátory ochorenia pečene sú u mačiek s FIP často mierne zvýšené, najmä u mačiek s akútnejším a závažnejším ochorením (obr. 14). Mierne abnormálne hodnoty testov by sa preto nemali interpretovať prehnane, ak nie sú prítomné iné klinické príznaky ochorenia pečene alebo obličiek, zatiaľ čo ich výrazné zvýšenie by malo poukazovať na možnosť súbežných a prípadne predisponujúcich ochorení týchto orgánov.

Sérum sa môže testovať aj na ďalšie markery systémového zápalu, ako sú zvýšené hladiny alfa-1-kyslého glykoproteínu (AGP) (Paltrinieri et al., 2007) a mačacieho sérového amyloidu A (fSAA) (Yuki et al., 2020). Môžu sa tiež ukázať ako užitočné pri monitorovaní odpovede na liečbu antivirotikami (Krentz et al., 2021).

Rádiografia môže byť užitočná pri identifikácii hrudných a brušných výpotkov. Ultrazvuk brucha môže odhaliť menšie množstvo výpotku, identifikovať zväčšené mezenterické a ileo-cekálno-kolické lymfatické uzliny, zhrubnutie steny hrubého čreva a lézie v orgánoch, ako sú obličky, pečeň a slezina (Lewis a O’Brien 2010). Môže byť užitočná aj pri vyšetrovaní hrudníka na prítomnosť lézií a pomôcť pri aspiračnom vyšetrení ihlou alebo biopsii.

Hodnota titrov protilátok proti FCoV sa od prvej správy spred takmer 50 rokov znížila (Pedersen 1976b). Referenčný test protilátok využíva nepriame fluorescenčné farbenie protilátok (IFA) Titre IFA ≥ 1:3200 u mačiek s FIP sú vyššie ako u väčšiny mačiek vystavených FECV (1:25 – 1:400). Novšie testy často využívajú postupy ELISA na rýchle interné alebo laboratórne testovanie, ale sú skôr kvalitatívne ako kvantitatívne. Titre protilátok IFA sa počas úspešnej liečby antivirotikami u mnohých mačiek znižujú, ale u iných zostávajú vysoké (Dickinson et al., 2020; Krentz et al., 2021). Sekvenčné titre môžu ukázať postupný nárast titrov v priebehu vývoja FIP (Pedersen et al., 1977), ale predchádzajúce vzorky séra sú k dispozícii na porovnanie iba zriedka. Podobne ako väčšina testov, ani hladiny protilátok FCoV by sa nemali používať ako jediné kritérium na diagnostikovanie alebo vylúčenie FIP (Felten a Hartmann, 2019) alebo na hodnotenie úspešnosti liečby (Krentz a kol., 2021).

Reverzná transkriptázová polymerázová reťazová reakcia (RT-PCR) je základným prostriedkom na identifikáciu FCoV RNA v zápalových výpotkoch, tekutinách alebo postihnutých tkanivách (Felten a Hartmann, 2019). RNA akcesorického génu 7b je prítomná v najvyššej miere v tkanivách, tekutinách alebo výpotkoch infikovaných FECV alebo FIPV, čo z nej robí najcitlivejší cieľ na detekciu nízkych hladín vírusu (Gut a kol., 1999). RT-PCR pre mutácie FIPV S génu sa často používa vo vzorkách, ktoré sú pozitívne na 7b RNA, aby bola špecifická pre FIPV (Felten a kol., 2017). Iné štúdie naznačujú, že testy RT-PCR na mutácie génu S špecifické pre FIPV majú podobnú špecifickosť pre FIP, ale za cenu výraznej straty citlivosti (Barker a kol., 2017). Zníženie citlivosti súvisí so zvýšením počtu falošne negatívnych výsledkov. Falošne negatívne testy RT-PCR sa vyskytujú aj vo vzorkách, ktoré neobsahujú dostatočné množstvo infikovaných makrofágov alebo u mačiek s veľmi nízkymi hladinami vírusu. Falošne negatívne výsledky sú obzvlášť časté pri testovaní plnej krvi.

Imunohistochémia (IHC) detekuje nukleokapsidový proteín koronavírusu mačiek vo formalínom fixovaných tkanivách s vysokou citlivosťou a špecifickosťou, ale nie je taká populárna ako RT-PCR (Litster et al., 2013; Ziółkowska et al., 2019). Vzorky na IHC musia obsahovať intaktné infikované makrofágy (obr. 17), čo si vyžaduje starostlivé oddelenie buniek z výpotkov a ich umiestnenie na podložné sklíčka, alebo choré tkanivá fixované vo formalíne a zaliate do parafínu, ktoré vykazujú lézie kompatibilné s FIP. Antigén koronavírusu v makrofágoch v rámci typickej lézie alebo tekutiny FIP sa pozoruje len pri FIP, čo dáva IHC vysokú úroveň špecifickosti.

Obrázok 17. Histologický rez zo zhrubnutého hrubého čreva mačky s črevnou formou FIP. Zhrubnutá stena obsahovala ložiská makrofágov (štvorcová plocha), ktoré sa imunoperoxidázou sfarbili pozitívne (hnedočerveno) na nukleokapsidový proteín FIPV.

Pre diagnostiku charakteristických zmien FIP je nevyhnutné dôkladné oftalmologické vyšetrenie (Pfeiffer a Wilcock 1991; Andrew, 2000). Vzorka vodného moku z prednej komory zapáleného oka môže byť užitočná aj pre cytologické vyšetrenie, PCR a IHC.

Neurologická FIP sa často diagnostikuje pomocou magnetickej rezonancie (MRI) so zvýraznením kontrastu a často je spojená s analýzou mozgovomiechového moku (CSF) (Crawford et al., 2017; Tasker, 2018; Dickinson et al., 2020). Ide však o nákladné postupy, ktoré nie sú vždy dostupné a nesú určité riziko pre mačku. MRI lézie zahŕňajú obštrukčný hydrocefalus, syringomyéliu a herniáciu foramen magnum s kontrastným zvýraznením meningov mozgu a miechy a ependymu tretej komory, mezencefalického akvaduktu a mozgového kmeňa. CSF vykazuje zvýšený počet bielkovín a buniek (neutrofily, lymfocyty, monocyty/makrofágy), a ak sú prítomné, môže byť spoľahlivým materiálom pre PCR alebo IHC vyšetrenie.

Neurologické a/alebo okulárne formy FIP sa často zamieňajú so systémovou toxoplazmózou mačiek a mnohé mačky s FIP sa empiricky liečia na toxoplazmózu ešte pred stanovením diagnózy FIP. Našťastie, dostupnosť účinnej liečby FIP túto prax obmedzila. Systémová toxoplazmóza je oveľa menej rozšírená ako FIP a sérologicky pozitívne bolo menej ako 1 % mačiek s FIP v jednej terénnej štúdii.1 Preto by sa testovanie alebo liečba na toxoplazmózu mali zvážiť až po adekvátnom diagnostikovaní FIP.

Antivírusová liečba ako diagnostický nástroj

Obrázok 18. Mačka s FIP na začiatku liečby liekom GS-441524 (a) a po 1 týždni (b). Odpoveď je rýchla, horúčka vymizne do 24-48 hodín a do 1-2 týždňov sa výrazne zlepší celkový zdravotný stav. Tento typ odpovede sa často používa na potvrdenie diagnózy FIP.

Bežne sa vyskytujú situácie, keď klinické nálezy poukazujú na FIP, ale pochybnosti pretrvávajú. Vtedy je na výber vykonanie viacerých diagnostických testov, ktoré ale nemusia viesť k definitívnejšej diagnóze. Alternatívnym diagnostickým prístupom je liečba vhodným antivirotikom počas 1 – 2 týždňov v správnej dávke pre suspektnú formu FIP.2 Liečba často prinesie klinické zlepšenie už za 24 – 48 hodín a to sa rýchlo stupňuje počas nasledujúcich 2 týždňov a celkovej podanej liečbe (obr. 18). Žiadna reakcia na testovaciu liečbu a/alebo zhoršenie zdravotného stavu by naznačovali potrebu ďalšieho vyšetrenia príčiny (príčin) zlého zdravotného stavu.

Liečba FIP

Pred rokom 2017 neexistoval liek na FIP a liečba bola zameraná najmä na zmiernenie príznakov ochorenia (Izes et al., 2020). Takáto podporná liečba bola zameraná na udržiavanie dobrej výživy, kontrolu zápalu (kortikosteroidy), zmenu imunitných reakcií (interferóny, cyklofosfamid, chlorambucil) a inhibíciu kľúčových cytokínových reakcií (pentoxifylín a iné inhibítory TNF-alfa). Bežne sa používali aj výživové doplnky, ktoré mali pomáhať špecifickým funkciám orgánov, ako napríklad jeden (Polyprenyl Imunostimulant), ktorý mal zlepšiť imunitu a predĺžiť prežívanie u mačiek so suchou, ale nie vlhkou FIP (Legendre et al., 2017). Vplyv dobrej podpornej starostlivosti na prežívanie nebolo možné určiť, pretože väčšina mačiek bola eutanizovaná po stanovení diagnózy alebo v priebehu niekoľkých dní či týždňov. Miera prežitia aj pri najľahších formách suchej FIP a najtrvalejšej liečbe v jednej štúdii bola len 13 % po 200 dňoch a 6 % po 300 dňoch (Legendre et al., 2017).

Mnohé komerčne dostupné lieky a zlúčeniny inhibujú infekciu alebo replikáciu FIPV in vitro, pričom niektoré z nich sú lieky, o ktorých je známe, že inhibujú špecifické proteíny vírusu HIV alebo hepatitídy C, zatiaľ čo iné fungujú tak, že inhibujú normálne bunkové procesy, ktoré si vírus uzurpuje pre svoj vlastný životný cyklus (Hsieh et al., 2010; Izes et al., 2020; Delaplace et al., 2021). Medzi tieto rôzne lieky a látky patria cyklosporín a príbuzné imunofilíny, niekoľko nukleozidov a inhibítorov proteáz, inhibítory vioporínu, pyridínové N-oxidové deriváty, chlorochín a príbuzné zlúčeniny, ivermektín, niekoľko rastlinných lektínov, inhibítory ubikvitínu, itrakonazol a niekoľko antibiotík. Koncentrácie potrebné na inhibíciu replikácie vírusu in vitro sa však často blížia k toxickým hodnotám pre bunky. Bolo tiež ťažké preniesť priaznivé závery in vitro na zvieratá a štúdie na chorých mačkách nasledovali len zriedka. Ribavarín inhibuje replikáciu FIPV in vitro, ale nebol účinný ako liečba experimentálnej FIP (Weiss et al., 1993). Účinnosť chlorochínu sa testovala u laboratórnych mačiek infikovaných FIPV, ale klinické výsledky u liečených mačiek boli len o niečo lepšie ako u neliečených a preukázala sa hepatotoxicita (Takano et al., 2013). U 3-mesačného mačiatka s hrudnou vlhkou FIP liečeného itrakonazolom a prednizolónom sa vyvinula neurologická FIP a po 38 dňoch liečby bolo eutanazinované (Kameshima et al., 2020). Meflochín tiež inhiboval replikáciu FIPV v nízkych koncentráciách v kultivovaných mačacích bunkách bez cytotoxických účinkov a predbežné farmakokinetické štúdie u mačiek sa zdali byť priaznivé (Yu et al., 2020), ale dôkazy o jeho bezpečnosti a účinnosti v klinických štúdiách na mačkách s FIP ešte neboli publikované.

Prelom v liečbe FIP nastal v rokoch 2016-2019, keď sa objavili správy o antivirotických liekoch, ktoré sa zameriavajú na špecifické proteíny FIPV nevyhnutné pre replikáciu. Prvým z týchto liekov bol GC376, inhibítor hlavnej proteázy (Mpro ) FIPV (Kim et al., 2016; Pedersen et al., 2018). Inhibítory proteáz zabraňujú tvorbe jednotlivých vírusových proteínov tým, že inhibujú ich štiepenie z polyproteínových prekurzorov. GC376 dokázal vyliečiť všetky experimentálne infikované mačky a 7 z 21 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP, ale bol menej účinný pre mačky s okulárnymi alebo neurologickými príznakmi (Pedersen et al., 2018). Druhým z týchto liekov bol GS-441514, aktívna časť proliečiva remdesivir (Gilead Sciences; Murphy et al., 2018; Pedersen et al., 2019). GS-441524 je adenozínový nukleozidový analóg, ktorý blokuje replikáciu FIPV vložením bezvýznamného adenozínu do vyvíjajúcej sa vírusovej RNA. GS-441524 dokázal vyliečiť aj všetky experimentálne infikované mačky (Murphy et al., 2018) a 25/31 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP (Pedersen et al., 2019). Ukázalo sa, že pri vyššom dávkovaní bol účinný aj u niekoľkých mačiek s okulárnou a neurologickou FIP (Pedersen et al., 2019) a v súčasnosti je liekom prvej voľby pre mačky s neurologickou FIP (Dickinson et al., 2020). GS-441524 za posledné tri roky vyliečil tisíce mačiek s FIP z celého sveta s celkovou mierou vyliečenia tesne nad 90 % (Jones et al., 2021).1

Hoci schopnosť liekov GC376 a GS-441524 liečiť mačky je známa už niekoľko rokov, ani jeden z nich nie je v súčasnosti legálne dostupný vo väčšine krajín. Práva na liek GC376 zakúpila spoločnosť Anivive, ale zatiaľ nebol uvedený na trh.3 Potenciálne konflikty s vývojom remdesiviru pre liečbu COVID-19 u ľudí viedli spoločnosť Gilead Sciences k zadržaniu práv na GS-441524 pre použitie u zvierat, čo podnietilo vytvorenie neschváleného zdroja pre GS-441524 z Číny (Jones a kol, 2021).1,2,4 Remdesivir sa v tele rýchlo metabolizuje na GS-441524 a v niektorých krajinách bol povolený na liečbu FIP.2 GS-441524 sa môže podávať aj perorálne vo vyšších dávkach a v súčasnosti sa v praxi bežne používa (Krentz et al., 2021).1

Účinnosť liekov ako GC376 a GS-441524 na FIP mačiek, ktorých používanie predchádzalo pandémii COVID-19, uznali výskumníci skúmajúci príbuzné inhibítory SARS-CoV 2 (Yan et al., 2020; Vuong et al., 2021). Remdesivir, injekčný liek uvádzaný na trh pod názvom veklury (Gilead), sa celosvetovo používal na zníženie úmrtnosti na COVID-19 (Beigel et al., 2020). GC373, aktívna forma proliečiva GC376, prešla jednoduchými úpravami na zvýšenie účinnosti a perorálnej biologickej dostupnosti (Vuong et al., 2021). Liek príbuzný lieku GC373, nirmatrelvir, bol úspešne testovaný proti raným infekciám COVID-19 a bol schválený pre liečbu raného COVID-19 a predávaný pod názvom paxlovid (Pfizer). Paxlovid pozostáva z dvoch liekov, nirmatreviru a inhibítora HIV proteázy ritonaviru. Ritonavir nie je významným inhibítorom SARS-CoV 2,ale údajne predlžuje polčas rozpau inhibítorov Mpro, keď sa používa v kombinácii (Vuong a kol., 2020). Nirmatrelvir a paxlovid neboli v súčasnosti testované u mačiek s FIP, ale na základe skúseností s úzko súvisiacim liekom GC376 môžu byť v budúcnosti dôležitou perorálnou liečbou niektorých foriem FIP.

Na liečbu viacerých infekcií spôsobených RNA vírusmi u ľudí a zvierat sa skúmali ďalšie dva nukleozidové analógy EIDD-1931 a EIDD-2801 (Painter et al., 2021). EIDD-1931 je experimentálne označenie pre beta-D-N4-hydroxycytidín, zlúčeninu široko skúmanú od 70. rokov 20. storočia. Beta-D-N4-hydroxycytidín sa metabolizuje na ribonukleozidový analóg, ktorý sa inkorporuje do RNA namiesto cytidínu a vedie k fatálnym mutáciám v reťazci vírusovej RNA.  Zlúčenina je inhibítorom širokého spektra ľudských a živočíšnych RNA vírusov vrátane všetkých známych koronavírusov. EIDD-1931 bol modifikovaný na zvýšenie perorálnej absorpcie a nazvaný EIDD-2801 (molnupiravir) (Painter et al., 2021). Molnupiravir sa v tele deesterifikuje na svoju účinnú zložku, beta-D-N4-hyroxycytidín. Preto sú EIDD-1931 a molnupiravir analogické GS-441524 a remdesiviru. Molnupiravir sa predáva na domácu liečbu primárneho COVID-19 pod názvami Lagevrio (Merck, USA) alebo Molnulup (Lupin, India).

EIDD-1931 aj EIDD-2801 sa ukázali ako účinné pri inhibícii FIPV v tkanivovej kultúre (Cook et al., 2021) a EIDD-2801 sa v súčasnosti používa na liečbu niektorých prípadov FIP v teréne.5,7 Účinná koncentrácia 50 % (EC50) pre EIDD-1931 proti FIPV je 0,09 µM, EIDD-2801 0,4 µM a GS-441524 0,66 µM (Cook et al., 2021). Percentuálna cytotoxicita pri 100 µM je pre tieto zlúčeniny 2,8, 3,8 a 0,0. EIDD-1931 a -2801 sú teda o niečo viac inhibičné voči vírusom, ale cytotoxickejšie ako GS-441524. Rezistencia na GS-441524 sa zaznamenala v niektorých prípadoch FIP (Pedersen et al., 2019) a na remdesivir u pacientov s COVID-19 (Painter et al., 2021), ale tieto izoláty zostávajú citlivé na molnupiravir (Sheahan et al., 2020). To sa môže ukázať ako užitočné v boji proti rezistencii na GS-441524 u mačiek a ľudí a pri vývoji liečby viacerými liekmi, aby sa zabránilo vzniku rezistencie.

Čo bude úplné schválenie liekov ako molnupiravir a paxlovid pre ľudí znamenať pre mačky? Úplné schválenie pre ľudí by malo veterinárnym lekárom vo väčšine krajín umožniť legálne obstarávať lieky schválené pre ľudí na priame použitie u zvierat za predpokladu, že sa dodržia usmernenia pre použitie u zvierat, ktoré nie sú určené na produkciu potravín.6 To si vyžaduje preformulovanie lieku vyrobeného pre ľudí a zakúpeného za cenu pre ľudí. Dúfajme, že antivirotiká podobné alebo identické s tými, ktoré sú schválené pre ľudí, budú licencované výlučne pre zvieratá a predávané za oveľa nižšiu cenu, ale to bude pravdepodobne trvať ešte roky.

Komerčné a politické otázky, ktoré obmedzujú súčasné používanie antivirotík, ako je GS-441524, pri ochoreniach zvierat, ako je FIP, sú pre súčasných majiteľov mačiek a mačacích podporných skupín, ktoré už obišli súčasný systém schvaľovania liekov a jeho dôraz pre prvoradé humánne potreby, nepodstatné (Jones et al., 2021; Krentz et al., 2021). Obhajcovia liečby FIP sa v súčasnosti nachádzajú po celom svete a často sa združujú pod rozšírenou značkou FIP Warriora. Členovia týchto skupín často pôsobia ako sprostredkovatelia medzi majiteľmi, veterinármi a dodávateľmi antivirotík a často poskytujú poradenstvo tým, ktorí nemôžu získať veterinárnu pomoc pri liečbe. Niektoré z týchto skupín, ako napríklad FIP Warriors Česká republika/Slovensko7, umiestnili svoje skúsenosti s liečbou FIP na internet, kde poskytujú veľmi potrebné informácie o súčasnej liečbe antivirotikami.

Aktuálna situácia liečby FIP

Súčasným liekom voľby na liečbu FIP je adenozínový nukleozidový analóg GS-441524, ktorý bol prvýkrát publikovaný vo vedeckej literatúre v experimentálnych podmienkach (Murphy et al., 2018) a neskôr proti prirodzene sa vyskytujúcemu ochoreniu (Pedersen et al., 2019). Hoci počiatočné experimentálne a terénne štúdie GS-441524 sa uskutočnili v rámci spolupráce medzi výskumníkmi spoločnosti Gilead Sciences a Kalifornskej univerzity v Davise, príbuznosť lieku Remdesivir s GS-441524 a začiatok pandémie COVID-19 v roku 2019 viedli spoločnosť Gilead Sciences k tomu, že nakoniec neposkytla práva na používanie lieku GS-441524 pre zvieratá s odôvodnením, že môže zasahovať do vývoja lieku Remdesivir na humánne použitie.4 Námietky voči tomuto rozhodnutiu boli vyjadrené priamo spoločnosti a na viacerých internetových fórach.4 Následný tlak zo strany majiteľov mačiek, skupín na záchranu mačiek a milovníkov mačiek spolu s oportunistickými čínskymi výrobcami liekov rýchlo vytvorili alternatívny neschválený zdroj lieku GS-441524, trh s ním a sieť na liečbu.4  Táto sieť do veľkej miery obišla veterinárov, z ktorých väčšina sa rozhodla počkať na legalizáciu lieku (Jones a kol., 2021). Výsledkom tohto vzťahu bol takmer bezproblémový prechod liečby FIP liekom GS-441524 z laboratória na rýchlo sa rozširujúcu celosvetovú sieť skupín, voľne zastrešených pod hlavičkou FIP Warriors (Jones a kol., 2021).4,7 

Predaj a používanie GS-441524 v praxi na liečbu FIP sa začalo takmer okamžite s prvým uverejnením výsledkov poľných pokusov (Pedersen et al., 2019) (obr. 19).

Obrázok 19.  Graf mesačného vývoja liečby mačiek z Českej republiky a Slovenska od augusta 2019. Tento graf pochádza z webovej stránky FIP Warrior CZ/SK.1 Tieto údaje odrážajú skúsenosti iných skupín FIP Warrior na celom svete. Od roku 2019, keď bola publikovaná prvá terénna štúdia GS-441524 (Pedersen et al. 2019), boli na celom svete úspešne liečené už tisíce mačiek na FIP. Zimné vrcholy ochorenia odrážajú neskorý jarný a letný nárast počtu narodených mačiatok a vysoký výskyt FIP, ktorý sa zvyčajne začína vo veku 3 až 6 mesiacov (obr. 6). Tento graf je z webovej stránky FIP Warrior CZ/SK.1
Obrázok 20. Hlavní účastníci podávania liečby GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Skutočnosť, že liek GS-441524 nie je legálne schválený na použitie u zvierat, zabránila mnohým veterinárnym lekárom uznať túto liečbu alebo sa na nej podieľať. Len 25 % mačiek v skupine liečenej CZ/SK dostalo veterinárnu podporu pri podávaní liečby (obr. 20), hoci sa na diagnostike ochorenia mohlo podieľať viac veterinárnych lekárov. Zaujímavé je, že toto číslo bolo vyššie ako 8,7 % liečených mačiek v USA, ktoré dostali veterinárnu starostlivosť (Jones et al., 2021). Účastníci CZ/SK štúdie a podobných skupín na celom svete však nie sú bez lekárskych skúseností, keďže mnohí z nich sa venujú dočasnej starostlivosti/záchrane a mali značné priame aj nepriame veterinárne skúsenosti s chorobami mačiek a ich liečbou a kastračnými programami.

Z prvých laboratórnych štúdií a výskumov čínskych výrobcov bolo známe, že GS-441524 sa môže absorbovať perorálnou cestou, aj keď s menšou účinnosťou (Kim et al. 2016).9 Prví predajcovia GS-441524 skúmali túto skutočnosť ďalej a zistili, že účinné hladiny v krvi možno dosiahnuť zvýšením množstva podaného perorálne v porovnaní s injekciou.8 Do perorálnych kapsúl alebo tabliet GS-441524 sa často pridávali doplnky s tvrdením, že zvyšujú absorpciu alebo majú aditívny terapeutický prínos (Krentz et al., 2011).  Väčšina hlavných predajcov injekčného lieku GS-441524 teraz ponúka perorálne verzie a perorálna liečba sa stáva čoraz populárnejšou buď ako jediná liečba, alebo v kombinácii s injekčným liekom GS-441524 (obrázok 21). Úspešnosť perorálnej liečby GS-441524 sa výrazne nelíši od injekčnej liečby GS-441524 (obrázok 22).

Obrázok 21. Porovnanie použitia perorálnych (tablety alebo kapsuly) a injekčných (subkutánnych) foriem GS-441524 na liečbu FIP u mačiek z Českej republiky a Slovenska. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 22. Pri perorálnom podávaní lieku GS-441524 v porovnaní so subkutánne podávaným GS nie je významný rozdiel v úspešnosti liečby, ale skutočné množstvo (mg) lieku podaného perorálne v každej dávke je až dvojnásobne vyššie ako množstvo obsiahnuté v rovnakej dávke injekčného GS. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Odporúčaná dávkovacia schéma pre GS-441524 na základe publikovaných údajov z terénnych štúdií (Pedersen et al., 2019) bola 4 mg/kg, subkutánne (SC), každý deň (q24h), t. j. 4 mg/kg, SC, q24h. Táto odporúčaná počiatočná dávka pre mačky s mokrou alebo suchou FIP bez očných alebo neurologických príznakov mala tendenciu sa v priebehu času zvyšovať na 6 mg/kg SC q24h (obr. 23). 8 mg/kg SC q24h je súčasné doporučené dávkovanie pre mačky s okulárnymi príznakmi a 10 alebo 12 mg/kg SC q24h pre mačky s neurologickými príznakmi.

Obrázok 23. Denná dávka lieku GS-441524, ktorá bola použitá na liečbu FIP u mačiek z Českej republiky a Slovenska. Bežná začiatočná dávka bola 6 mg/deň, pričom u niektorých mačiek boli potrebné vyššie dávky na základe odpovede na liečbu, formy ochorenia a výskytu recidív po tom, čo sa liečba zdala byť úspešná. Perorálne prípravky GS-441524 sú zvyčajne označené tak, aby zodpovedali dávkovaniu používanému pri injekčnom lieku, ale obsahujú až dvojnásobok označeného množstva. Tento graf je z webovej stránky FIP Warrior CZ/SK.1

Optimálne trvanie liečby, ako bolo stanovené v úvodnej klinickej štúdii, je 84 dní (Pedersen et al., 2019). V niektorých prípadoch akútnej vlhkej FIP u mladších mačiek sa dosiahlo vyliečenie za 6 – 8 týždňov, ale niektoré mačky potrebujú viac ako 84 dní. Ako je uvedené na obrázku 24,72 % mačiek sa liečilo 81 – 90 dní, 19 % dlhšie a len 9 % sa liečilo kratšie. Bohužiaľ, neexistuje jednoduchý a presný test na stanovenie momentu vyliečenia, a rozhodnutie o ukončení liečby je tak založené na úplnom návrate k zdraviu a normálnym hodnotám krvných testov. Mačky liečené oveľa dlhšie ako 100 dní boli zvyčajne tie, ktoré vyžadovali dávku GS vyššiu ako 12 mg/kg denne injekčne alebo ekvivalentnú perorálnu dávku, mačky, u ktorých došlo k recidíve ochorenia počas 12-týždňového obdobia pozorovania po ukončení liečby, mačky s neurologickým ochorením alebo mačky, ktoré sa stali rezistentné na GS-441524.   

Obrázok 24. Trvanie liečby liekom GS-141524 u 352 mačiek úspešne liečených na všetky formy FIP. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 25. Počiatočná liečba bola úspešná u 88,1 % mačiek a 6,2 % mačiek uhynulo alebo bolo utratených buď z dôvodu nedostatočnej odpovede na liečbu, finančných dôvodov alebo vedľajších účinkov liečby. U ďalších 5,7 % mačiek došlo po počiatočnej liečbe k recidíve a približne rovnaký počet mačiek sa po ďalšej liečbe buď vyliečil, alebo uhynul. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Úspešnosť liečby všetkých foriem FIP u mačiek z Českej republiky a Slovenska je 88,1 % pri prvej liečbe, ale keď sa zahrnú aj mačky, ktoré po prvej liečbe recidivovali a po druhej liečbe sa vyliečili (3,1 %), celková úspešnosť bola viac ako 91 % (obr. 25). Táto miera vyliečenia je totožná s mierou vyliečenia iných skupín bojovníkov proti FIP (Jones a kol., 2021). Úspešnosť liečby sa nelíši medzi mačkami s vlhkou alebo suchou FIP a bez očného alebo neurologického postihnutia (obr. 26). Miera vyliečenia u mačiek s očným a neurologickým postihnutím však bola nižšia, a to 80 % oproti 92 % u všetkých ostatných foriem FIP (obr. 26).

Obrázok 26.  Miera vyliečenia mačiek s vlhkou alebo suchou FIP bez okulárnych alebo neurologických príznakov a mačiek s okulárnym alebo neurologickým ochorením ako hlavným znakom ich ochorenia. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 27.  Zdravotný stav mačiek rok po úspešnom ukončení liečby liekom GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Mačky, ktoré boli úspešne liečené na FIP, boli sledované po dobu 4 až 5 rokov, ak zahrnieme prípady hlásené v prvých terénnych štúdiách. V tejto skupine prvých terénnych pokusov sa doteraz nevyskytli žiadne recidívy alebo opakované prípady FIP. K dispozícii sú údaje o ročnom prežívaní z oveľa väčšej populácie štúdie CZ/SK, ktoré ukazujú, že 90,5 % mačiek je rok po ukončení liečby stále zdravých (obr. 27). Iba 1,3 % týchto mačiek uhynulo z iných príčin ako FIP a 8,2 % kohorty je v súčasnosti v neznámom zdravotnom stave. Nízky podiel mačiek, ktoré uhynuli z neznámych príčin počas roka po liečbe, a ich pozitívna reakcia na liečbu naznačujú, že FIP bola diagnostikovaná správne.

EIDD-2801 (molnupiravir) sa práve teraz používa v teréne pre hlavnú liečbu a na liečbu mačiek s rezistenciou na GS-441524.5,7,9 EIDD-1931, aktívna forma EIDD-2081, sa musí podrobiť hlbšiemu výskumu, pretože sa na neho už nevzťahuje patentová ochrana a je tak ľahko schváliteľný pre použitie u zvierat, ak sa zistí, že je skutočne bezpečný a účinný.5 Bližšie preštudovať pre účely liečby FIP sa ešte musí aj Nirmatrelvir, perorálna forma GC373 a úzko príbuzná GC376.

Poďakovanie

Som zaviazaný Ladislavovi Mihokovi a jeho spolupracovníkom z “FIP Warriors Czech Republic/Slovakia” za to, že mi umožnili zdieľať údaje z ich webovej stránky. Táto webová stránka obsahuje najvýznamnejšiu, najdôkladnejšiu a najusporiadanejšiu zbierku údajov o liečbe FIP antivirotikami v súčasnosti. Webová stránka obsahuje aj užitočné informácie a rady o zahájení, vedení a monitorovaní aktuálnej liečby. Zbierka mačiek a údajov o nich je priebežne a pravidelne aktualizovaná a v čase písania tohto článku zahŕňala viac ako 600 mačiek s FIP.

Literatúra

  • Addie DD, Toth S, Murray GD, Jarrett O, 1995. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. American Journal of Veterinary Research, 56, 429-34.
  • Addie DD, Schaap IA, Nicolson L, Jarrett O, 2003. Persistence and transmission of natural type I feline coronavirus infection. Journal of General Virology 84, 2735–2744.
  • Andrew SE, 2000. Feline infectious peritonitis. Veterinary Clinics of North America and Small Animal Practice 30, 987-1000.
  • Barker EN, Stranieri A, Helps CR, Porter EL, Davison AD, Day MJ, Knowles T, Kipar A, Tasker S, 2017. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Veterinary Research 48, 60.
  • Beigel JH, Tomashek KM, Dodd LE, Mehta EK, Zingman BS, et al., 2020. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 383, 1813-1826,
  • Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P, 2020. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens 9, 958.
  • Cassado Ados A, D’Império Lima, Bortoluci KR., 2015. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in Immunology 6, 225.
  •  Cave TA, Thompson H, Reid SW, Hodgson DR, Addie DD, 2002. Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000). Veterinary Record 151, 497–501.
  • Chang H-W, Egberink HF, Halpin R, Spiro DJ, Rottier PJM, 2012. Spike protein fusion peptide and feline coronavirus virulence. Emerging Infectious Diseases 18, 1089–1095.
  •  Cook SE, Vogel H, Castillo D, Olsen M, Pedersen N, Murphy BG, 2021. Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery. doi: 10.1177/1098612X211048647. Epub ahead of print. PMID: 34676775.
  • Cornelissen E, Dewerchin HL, Van Hamme E, Nauwynck HJ, 2007. Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Veterinary Microbiology. 121, 131-137,
  • Cotter SM, Gilmore CE, Rollins C. 1973, Multiple cases of feline leukemia and feline infectious peritonitis in a household. Journal of the American Veterinary Medical Association 162, 1054–1058.
  • Court MH., Greenblatt DJ. 2000, Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms Pharmacogenetics, 10, 355-369
  • Crawford AH, Stoll AL, Sanchez-Masian D, Shea A, Michaels J, Fraser AR, Beltran E, 2017. clinicopathologic features and magnetic resonance imaging findings in 24 cats with histopathologically confirmed neurologic feline infectious peritonitis. Journal of Veterinary Internal Medicine 31, 1477-1486.
  • Day MJ, 2010. Ageing, immunosenescence and inflammageing in the dog and cat. Journal of Comparative Pathology 142 Suppl 1, S60-69.
  • Delaplace M, Huet H, Gambino A, Le Poder S, 2021. Feline coronavirus antivirals: A review. Pathogens 10, 1150. doi: 10.3390/pathogens10091150.
  • Dempsey SM, Ewing PJ, 2011. A Review of the Pathophysiology, Classification, and Analysis of Canine and Feline Cavitary Effusions. Journal of the American Animal Hospital Association 47, 1–11.
  • de Sousa JR, Sotto MN, Simões Quaresma JA, 2017. Leprosy as a complex infection: Breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease. Frontiers in Immunology 8,1635.
  • Dewerchin HL, Cornelissen E, Van Hamme E, Smits K, Verhasselt B, Nauwynck HJ, 2008. Surface-expressed viral proteins in feline infectious peritonitis virus-infected monocytes are internalized through a clathrin- and caveolae-independent pathway. Journal of General Virology 89, 2731-2740
  • Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ, 2014. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Veterinary Research 45, 17.
  • Dickinson PJ, Bannasch M, Thomasy SM, Murthy VD, Vernau KM, Liepnieks M, Montgomery E, Knickelbein KE, Murphy B, Pedersen NC, 2020. Antiviral treatment using the adenosine nucleoside analogue GS‐441524 in cats with clinically diagnosed neurological feline infectious peritonitis. Journal of Veterinary Internal Medicine 34, 1587–1593.
  • Drechsler Y, Alcaraz A, Bossong FJ, Collisson EW, Diniz PP, 2011. Feline coronavirus in multicat environments. Veterinary Clinics North America and Small Animal Practice41, 1133-1169.
  • Fankauser R, Fatzer R, 1997. Meningitis and chorioependymitis granulomatosa der Katze. Mögliche beziehungen zur felinen infectiösen peritonitis (FIP). Klientierpraxis 22, 19–22.
  • Felten S, Leutenegger CM, Balzer HJ, Pantchev N, Matiasek K, Wess G, Egberink H, Hartmann K, 2017. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis. BMC Veterinary Research 13, 228.
  •  Felten S, Hartmann K, 2019. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 11, 1068.
  • Fischer Y, Sauter-Louis C, Hartmann K, 2012. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Veterinary Clinical Pathology 41, 558-67.
  • Foley JE, Poland A, Carlson J, Pedersen NC, 1997. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. Journal of the American Veterinary Medicine Association 210, 1313-1318.
  • Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC, 1998. Diagnostic features of clinical neurologic feline infectious peritonitis. Journal of Veterinary Internal 12, 415–423.
  • Gaskell RM, Povey RC, 1977. Experimental induction of feline viral rhinotracheitis virus re-excretion in FVR-recovered cats. Veterinary Record 100, 128–133.
  • Golovko L, Lyons LA, Liu H, Sørensen A, Wehnert S, Pedersen NC, 2013. Genetic susceptibility to feline infectious peritonitis in Birman cats. Virus Research 175, 58-63.
  • Gunn-Moore DA, Gaunt C, Shaw DJ, 2012. Incidence of mycobacterial infections in cats in great britain: estimate from feline tissue samples submitted to diagnostic laboratories. Transboundary and Emerging Diseases. 60, 338-344.
  • Gut, M, Leutenegger, CM, Huder, JB, Pedersen NC, H, 1999. One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. Journal of Virological Methods 77, 37–46.
  • Hardy WD Jr, 1981. Feline leukemia virus non-neoplastic diseases. Journal of the American Animal Hospital Association 17, 941-949.
  • Healey EA, Andre NM, Miller AD, Whitaker GR, Berliner EA, 2022. Outbreak of feline infectious peritonitis (FIP) in shelter-housed cats: Molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a ‘circulating virulent-avirulent theory’ of FIP pathogenesis. Journal of Feline Medicine and Surgery Open Reports 8, 20551169221074226.
  • Herrewegh AAPM, Mähler M, Hedrich HJ, Haagmans BL, Egberink HF, Horzinek MC, Rottier PJM, de Groot RJ, 1997. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.
  • Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ, 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. Journal of Virology 72, 4508–4514.
  • Hickman MA, Morris JG, Rogers QR, Pedersen NC, 1995. Elimination of feline coronavirus infection from a large experimental specific pathogen-free cat breeding colony by serologic testing and isolation, Feline Practice 23, 96–102.
  • Hsieh L-E, Lin C-N, Su B-L, Jan T-R, Chen C-M, Wang C-H, Lin D-S, Lin C-T, Chueh L-L. 2010. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Research 88, 25–30.
  • Holzworth J, 1963. Some important disorders of cats. Cornell Veterinarian 53, 157–160.
  • Izes AM, Yu J, Norris JM, Govendir M, 2020. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Veterinary Quarterly
    40, 322–330.
  • Jones S, Novicoff W, Nadeau J, Evans S, 2021. Unlicensed GS-441524-like antiviral therapy can be effective for at-home treatment of feline infectious peritonitis. Animals 11, 2257.
  • Kalakonda A, Jenkins BA, John S. Physiology, Bilirubin. [Updated 2021 Sep 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470290/
  • Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE, 2019. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV). BMC Veterinary Research 15,165.
  • Kameshima S, Kimura Y, Doki T, Takano T, Park CH, Itoh N, 2020. Clinical efficacy of combination therapy of itraconazole and prednisolone for treating effusive feline infectious peritonitis. Journal of Veterinary Medical Science 82, 1492-1496.
  • Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC, 2016. Reversal of the progression of fatal coronavirus Infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathogens 12:e1005531.
  • Kipar A, May H, Menger S, Weber M, Leukert W, Reinacher M, 2005. Morphologic features, and development of granulomatous vasculitis in feline infectious peritonitis. Veterinary Pathology 42, 321–330.
  • Krentz D., Zenger K., Alberer M., Felten S., Bergmann M, Dorsch R., Matiasek, K., Kolberg, L., Hofmann-Lehmann, R., Meli, M.L., et al., 2021. Curing cats with feline infectious peritonitis with an oral multi-component drug containing GS-441524. Viruses 13, 2228.
  • Legendre AM, Kuritz T, Galyon G, Baylor VM, Heidel RE, 2017. Polyprenyl immunostimulant treatment of cats with presumptive non-effusive feline infectious peritonitis in a field study. Frontiers in Veterinary Science 4, 7.
  • Leseigneur C, Lê-Bury P, Pizarro-Cerdá J, Dussurget O, 2020. Emerging Evasion Mechanisms of Macrophage Defenses by Pathogenic Bacteria. Frontiers in Cellular and Infection Microbiology, 10, 538.
  • Lewis KM, O’Brien RT, 2010. Abdominal ultrasonographic findings associated with feline infectious peritonitis: a retrospective review of 16 cases. Journal of the American Animal Hospital Association. 46, 152-60.
  • Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, Whittaker GR, 2013. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging Infectious Diseases 19, 1066–1073.
  • Lin CN, Su BL, Wang CH, Hsieh MW, Chueh TJ, Chueh LL, 2009. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan. Veterinary Microbiology 136, 233-239.
  • Litster AL. Pogranichniy R, Lin TL, 2013. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis. Veterinary Journal 198, 362-366.
  • Lloret A, Hartmann K, Pennisi MG, Ferrer L, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, et al., 2013. Rare systemic mycoses in cats: blastomycosis, histoplasmosis and coccidioidomycosis: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery 15, 624-627.
  • Longstaff L, Porter E, Crossley VJ, Hayhow SE, Helps CR, Tasker S, 2017. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. Journal of Feline Medicine and Surgery 19, 240–245.
  • Mahase E. 2021. Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports. BMJ 375, n2422.
  • Malbon AJ, Meli ML, Barker EN, Davidson AD, Tasker S, Kipar A, 2019. inflammatory mediators in the mesenteric lymph nodes, site of a possible intermediate phase in the immune response to feline coronavirus and the pathogenesis of feline infectious peritonitis? Journal of Comparative Pathology 166, 69-86.
  • Malbon AJ, Russo G, Burgener C, Barker EN, Meli ML, Tasker S, Kipar A, 2020. the effect of natural feline coronavirus infection on the host immune response: A whole-transcriptome analysis of the mesenteric lymph nodes in cats with and without feline infectious peritonitis. Pathogens 7, 524.
  • Montali RJ, Strandberg JD, 1972. Extraperitoneal lesions in feline infectious peritonitis. Veterinary Pathology 9, 109–121.
  • Mor G, Cardenas I, 2010. The immune system in pregnancy: A unique complexity. American Journal of Reproductive Immunology 63, 425-433.
  • Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC, 2018. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology 219, 226-233.
  • Painter WP, Holman W, Bush JA, Almazedi F, Malik H, Eraut NCJE, Morin MJ, Szewczyk LJ, Painter GR, 2021. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrobial Agents and Chemotherapeutics 65:e02428-20.
  • Paltrinieri S, Giordano A, Tranquillo V, Guazzetti S, 2007. Critical assessment of the diagnostic value of feline α1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach. Journal of Veterinary Diagnostic Investigation. 19, 266-272.
  • Pearson M, LaVoy A, Evans S, Vilander A, Webb C, Graham B, Musselman E, LeCureux J, VandeWoude S, Dean GA, 2019. Mucosal Immune Response to Feline Enteric Coronavirus Infection. Viruses 11, 906.
  • Pedersen NC, 1976a. Feline Infectious Peritonitis: Something Old, Something New. Feline Practice 6,42‑51.
  • Pedersen NC, 1976b. Serologic Studies of Naturally Occurring Feline Infectious
  •          peritonitis. American Journal of Veterinary Research 37, 1447‑1453.
  • Pedersen NC, 2009. A review of feline infectious peritonitis virus infection:1963-2008. Journal of Feline Medicine and Surgery 11, 225-258.
  • Pedersen NC, Boyle J, 1980. Immunologic Phenomena in the Effusive Form of Feline Infectious Peritonitis. American Journal of Veterinary Research 41:868‑876.
  • Pedersen NC, Ward J, Mengeling WL, 1978. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Archives of Virology58, 45‑53.
  • Pedersen NC, Allen CE, Lyons LA, 2008. Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery 10, 529–541.
  • Pedersen NC, Theilen G, Keane MA, Fairbanks L, Mason T, Orser B, Che CH, Allison C, 1977. Studies of naturally transmitted feline leukemia virus infection. American Journal of Veterinary Research 38, 1523–1531.
  • Pedersen NC, Boyle JF, Floyd K, Fudge A, Barker J, 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. American Journal of Veterinary Research 42, 368-377.
  • Pedersen NC, Meric SM, Hoe E, Johnson L. Plucker S, Theilen GH, 1982. The clinical significance of latent feline leukemia virus infection. Feline Practice 14, 32‑48.
  • Pedersen NC, Black JW, Boyle JF, Evermann JF, McKeirnan AJ, Ott RL, 1984. Pathogenic differences between various feline coronavirus isolates. Advances in Experimental Medicine and Biology 173, 365–380.
  • Pedersen NC, Liu H, Dodd KA, Pesavento PA, 2009. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses1, 166-184.
  • Pedersen NC, Liu H, Durden M, Lyons LA, 2016. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veterinary Immunology and Immunopathology 171, 17-20.
  • Pedersen NC, Liu H, Scarlett J, Leutenegger CM, Golovko L, Kennedy H, Kamal FM, 2012. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Research 165,17-28
  • Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO, 2018. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. Journal of Feline Medicine and Surgery 20, 378-392.
  • Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H, 2019. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery 21, 271-281.
  • Peiffer RL Jr, Wilcock BP, 1991. Histopathologic study of uveitis in cats: 139 cases (1978-1988). Journal of the American Veterinary Medical Association 198, 135–138.
  • Pesteanu-Somogyi LD, Radzai C, Pressler BM, 2006. Prevalence of feline infectious peritonitis in specific cat breeds. Journal of Feline Medicine and Surgery 8, 1–5.
  • Poland AM, Vennema H, Foley JE, Pedersen NC, 1996. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with the feline enteric coronavirus. Journal of Clinical Microbiology 34, 3180-3184.
  • Regan A, Whitaker G, 2008. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. Journal of Virology 82, 11992-11996.
  • Riemer F, Kuehner KA, Ritz S, Sauter-Louis C, Hartmann K, 2016. Clinical and laboratory features of cats with feline infectious peritonitis–a retrospective study of 231 confirmed cases (2000-2010). Journal of Feline Medicine and Surgery 18, 348–356.
  • Rohrbach BW, Legendre AM, Baldwin CA, Lein DH, Reed WM, Wilson RB, 2001. Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals. Journal of the American Veterinary Medical Association 218, 1111–1115.
  • Rojko J, Hoover E, Quackenbush, S. Olsen RG, 1982. Reactivation of latent feline leukaemia virus infection. Nature 298, 385–388.
  • Rothman AL. Ennis FA, 1999. Immunopathogenesis of Dengue Hemorrhagic Fever. Virology 257, 1–6.
  • Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Aostini, ML, Leist, SR, Schäfer, A, Dinnon, KH 3rd., Stevens, LJ et al., 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine. 12, eabb5883.
  • Spencer, SE, Knowles, T, Ramsey, IK. 2017. Pyrexia in cats. retrospective analysis of signalment, clinical investigations, diagnosis and influence of prior treatment in 106 referred cases. Journal of Feline Medicine and Surgery 19, 1123–1130.
  • Stella J, Croney C, Buffington T, 2013. Effects of stressors on the behavior and physiology of domestic cats. Applied Animal Behavior Science 143, 157-163.
  • Stranieri A, Giordano A, Bo S, Braghiroli C, Paltrnieri S, 2017. Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004–2009 vs 2013–2014). Journal of Feline Medicine and Surgery 19, 880–887.
  • Takano T, Katoh Y, Doki T, Hohdatsu T, 2013. Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo. Antiviral Research. 99, 100–107.
  • Tasker S, 2018. Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests. Journal of Feline Medicine and Surgery 20, 228–243.
  • Tekes G, Ehmann R, Boulant S, Stanifer ML, 2020. Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection. Cells 9, 2085.
  • Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K, 2014. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9, e106534.
  • Van Hamme E, Dewerchin HL, Cornelissen E, Verhasselt B, Nauwynck HJ, 2008. Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. Journal of General Virology 89, 2147–2156.
  • Vennema H, Poland A, Foley J, Pedersen NC, 1995. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150-157.
  • Vogel L, Van der Lubben M, , Te Lintelo EG, Bekker CPJ, Geerts T, Schuif LS, Grinwis GCM, Egberink HF, Rottier PJM, 2010. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Veterinary Research 41, 71.
  • Vuong, W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby, KD, Lu, J, Arutyenova, E, Joyce, MA, Saffran, HA et al., 2021. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. European Journal of Medicinal Chemistry, 222, 113584.
  • Wang YT, Su BL, Hsieh LE, Chueh LL, 2013. An outbreak of feline infectious peritonitis in a Taiwanese shelter: Epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. Veterinary Research, 44, 57.
  • Ward JM, 1970. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology 41, 191–194.
  • Watanabe R, Eckstrand C, Liu H, Pedersen NC, 2018. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Veterinary Research 49, 81.
  • Weiss RC, Scott FW, 1981. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comparative Immunology, Microbiology and Infectious Diseases 4, 175-189.
  • Weiss RC, Cox NR, Martinez ML, 1993. Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Research in Veterinary Science 55, 162e72.
  • Wolfe LG, Griesemer RA, 1966. Feline Infectious Peritonitis Path. Pathological Veterinaria 3, 255-270.
  • Wolfe, L.G., Griesemer, RA, 1971. Feline infectious peritonitis: review of gross and histopathologic lesions. Journal of the American Veterinary Medical Association 158, 987–993.
  • Worthing KA, Wigney DI, Dhand NK, Fawcett A, McDonagh P, Malik R, Norris JM, 2012. Risk factors for feline infectious peritonitis in Australian cats. Journal of Feline Medicine and Surgery 14, 405-412.
  • Yan VC, Muller FL, 2020. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Medicinal Chemistry Letters 11, 1361-1366
  • Yu J, Kimble B, Norris JM, Govendir M, 2020. Pharmacokinetic profile of oral administration of mefloquine to clinically normal cats: A preliminary in-vivo study of a potential treatment for feline infectious peritonitis (FIP). Animals 10, 1000.
  • Yuki M, Aoyama R, Nakagawa M, Hirano T, Naitoh E, Kainuma D, 2020. A Clinical Investigation on serum amyloid A concentration in client-owned healthy and diseased cats in a primary care animal hospital. Veterinary Sciences, 7, 45.
  • Ziółkowska N, Paździor-Czapula K, Lewczuk B, Mikulska-Skupień E, Przybylska-Gornowicz B, Kwiecińska K, Ziółkowski H, 2017. Feline infectious peritonitis: immunohistochemical features of ocular inflammation and the distribution of viral antigens in structures of the eye. Veterinary Pathology, 54, 933-940.
  • Zook BC, King NW, Robinson RL, McCombs HL, 1968. Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Veterinary Pathology 5, 91–95.

Poznámky pod čiarou

  1. FIP Treatment – Czechia /Slovakia. Basic data, 2022. https://docs.google.com/spreadsheets/d/e/2PACX-1vRAnj_FV_fteWIW1HXsROLuJ7YY1-i_Sf81BCmM9JT9LbCT2mcnwD1rL9IBsLCTB1U59CcnalOGjFqq/pubhtml?gid=1340189982&single=true  (Accessed 4 April2022).
  2. Hughes D, Howard G, Malik R, 2021. Treatment of FIP in cats with Remdesivir. Clinical review, 2021. The Veterinarian. https://www.turramurravet.com.au/wp-content/uploads/2021/07/FIP-Article_The-Veterinarian.pdf (Accessed 5 March 2022).
  3. Anonymous. Thanks to Cats, One Promising Coronavirus Treatment is Already in Development-The GC376 story. 2021,  https://anivive.com/coronavirus (Accessed 4 April 2022)
  4. Zhang S (2020) A Much-Hyped COVID-19 Drug Is Almost Identical to a Black-Market Cat Cure. The Atlantic. https://www.theatlantic.com/science/archive/2020/05/remdesivir-cats/611341/ (Accessed 4 April 2022).
  5. Pedersen NC, 2021. The long history of Beta-d-N4-hydroxycytidine and its modern application to treatment of Covid-19 in people and FIP in cats. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Molnuparivir%20as%20a%20third%20antiviral%20drug%20for%20treatment%20of%20FIP%20v13_1.pdf  (Accessed 4 April 2022).
  6. American Veterinary Medical Association. Guidelines for veterinary prescription drugs. 2022. https://www.avma.org/resources-tools/avma-policies/guidelines-veterinary-prescription-drugs (Accessed 4 April 2022).
  7. FIP Warriors CZ/SK. https://www.fipwarriors.eu/en/ (accessed 15 April 2022).
  8. Pedersen NC, Jacque N, 2021. Treatment with oral formulations of GS-441524. https://sockfip.org/2021-treatment-with-oral-formulations-of-gs-441524/  (Accessed 11 December 2021).
  9. Pedersen NC, Jacque N. 2021.  Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Approaches-to-drug-resistance-in-cats-treated-with-GS-441524-for-FIP-v3.pdf (Accessed 16 April 2022).
Prečítať “História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu”

Prehľad diagnostiky FIP

Pôvodný článok: A review on the diagnosis of feline infectious peritonitis
3.3.2022

Jehanzeb Yousufa | Riyaz Ahmed Bhatb | Shahid Hussain Darb | Alisa Shafib | Snober Irshadc | Mohammad Iqbal Yatoob | Jalal Udin Parrahb | Amatul Muheeb | Abdul Qayoom Mirb

Abstrakt: Mačacia infekčná peritonitída alebo jednoducho FIP je vírusové ochorenie spôsobené koronavírusom u mačiek zvyčajne mladších ako tri roky. Prejavuje sa extrémnou zápalovou reakciou v tkanivách v brušnej dutine, obličiek a mozgu. Tento prehľadový článok sa zaoberá rôznymi diagnostickými testami a ich prínosom pri diagnostike prípadov suspektnej FIP s cieľom definitívnej diagnózy. Tento prehľad môže pomôcť porovnať rôzne diagnostické parametre a tiež zvýšiť povedomie o ich výhodách a nevýhodách.

Kľúčové slová: proteíny akútnej fázy, koronavírus, mačacia infekčná peritonitída, Rivaltov test.

1. Úvod

Infekčná peritonitída mačiek (FIP) je dobre známe a široko rozšírené systémové ochorenie vyvolané koronavírusom (CoV) u mačiek, charakterizované fibrinózno-granulomatóznou serozitídou s výpotkami bohatými na bielkoviny do telesných dutín, granulomatóznounekrotizujúcou flebitídou a periflebitídou a granulomatóznymi zápalovými léziami vo viacerých orgánoch (Weiss a Scott 1981; Kipar a kol. 2005). Mačací CoV (FCoV) sa šíri fekálno-orálnou cestou a primárne sú infikované enterocyty (Pedersen 1995), ale následne sa šíri systémovo prostredníctvom monocytovej virémie (Meli et al 2004; Kipar et al 2005). Ukázalo sa, že zvýšená schopnosť replikácie vírusu by mohla byť kľúčovým znakom pri vzniku FIP, a tiež sa predpokladá, že FIP je spôsobená mutáciami bežného mačacieho enterického koronavírusu (FECV), ktorý sa vyskytuje u mačiek na celom svete a nie je závažnou infekciou (Pedersen et al 2009; Healey et al 2022). Približne u 10 % infikovaných mačiek sa vyskytujú mutácie, ktoré majú za následok infekčnú peritonitídu mačiek. Vo veľkých situáciách s viacerými mačkami sa FECV vylučuje v truse väčšiny zdanlivo zdravých mačiek a k prenosu dochádza priamym kontaktom s výkalmi alebo kontaminovanou podstielkou a inými fomitmi (Pedersen et al 2004). Približne vo veku 9 týždňov sa nakazia mačiatka (Pedersen et al. 2008). Čas medzi vznikom klinických príznakov a úmrtím sa tiež líši, ale mladšie mačky a mačky s efuzívnym ochorením majú kratší priebeh ochorenia ako staršie mačky a mačky s neeufuzívnym ochorením (Pedersen 2014). Dokonca aj pri ťažkej forme FIP môžu niektoré mačky žiť celé mesiace. v situáciách, keď sa vyskytuje viacero mačiek, je mačací enterický koronavírus (FECV) mimoriadne častý a vysoko nákazlivý. Takmer všetky mačky, ktoré sa dostanú do kontaktu s FECV od vylučujúcich mačiek, ochorejú, ale na druhej strane infekcia je zvyčajne asymptomatická alebo spôsobuje len miernu dočasnú hnačku (Pedersen et al 2008; Vogel et al 2010; Ermakov et al 2021). Na druhej strane vírus mačacej infekčnej peritonitídy (FIPV) sa neprenáša fekálno-orálnou cestou, ale pochádza z avirulentného FECV u malého percenta infikovaných mačiek a spôsobuje mačacie infekčné peritonitídy (FIP) (Pedersen et al 1981; Vennema et al 1998). Anorexia, letargia, strata hmotnosti, pyrexia, očné a neurologické príznaky, ako sú abnormality chôdze alebo neprimeraná mentácia, sú nešpecifické (Giori et al 2011; Kipar et al 2014). Infekcia má dve formy: “vlhkú” a “suchú”. Suchá forma spôsobuje zápalové zmeny v okolí ciev, záchvaty, ataxiu a nadmerný smäd, zatiaľ čo vlhká forma vedie k zäčšeniu brucha v dôsledku nadmerného hromadenia tekutiny v brušnej dutine. Špecifickosť je vždy najdôležitejšou diagnostickou hodnotou, ktorú je potrebné zohľadniť, aby sa predišlo chybnej diagnóze FIP u nepostihnutých mačiek.

2. Diagnostické testy na infekčnú peritonitídu mačiek

Pri diagnostike sa zohľadňuje vek, pôvod, klinické príznaky a fyzikálne vyšetrenie mačky. U mačiek s efuzívnou (vlhkou) alebo neefuzívnou (suchou) formou FIP sú bežné abdominálna distenzia s ascitom, dyspnoe s pleurálnym výpotkom, žltačka, hyperbilirubinúria, zreteľné masy na obličkách a/alebo mezenterických lymfatických uzlinách, uveitída a rôzne neurologické príznaky spojené s postihnutím mozgu a/alebo miechy. U mačiek postihnutých FIP sa často vyskytujú očné zmeny, pričom najčastejším očným postihnutím sú zmeny na sietnici. Môže sa vyskytnúť manžeta sietnicových ciev, ktorá sa javí ako rozmazané sivasté čiary po oboch stranách ciev. Príležitostne sa vyskytujú granulomatózne zmeny na sietnici. Zistilo sa, že infekcia FIPV je spojená s depléciou T-buniek apoptózou, hoci vírus nemôže infikovať CD4+ a CD8+ T-bunky (Haagmans et al. 1996; De Groot et al. 2005). Vzhľadom na vysokú úmrtnosť sú mnohí veterinárni lekári a majitelia domácich zvierat opatrní pri diagnóze založenej na “primeranej istote”. Výzvou je rozhodnúť, či test zvyšuje pravdepodobnosť, že klinické príznaky sú spôsobené FIP (nepriame testy), alebo ponúka definitívnu diagnózu (priame testy). Je nevyhnutné si uvedomiť, že citlivosť a špecifickosť akéhokoľvek nepriameho testu sa bude líšiť v závislosti od toho, aká je pravdepodobnosť, že mačka je infikovaná na základe iných faktorov. To znamená, že pozitívna prediktívna hodnota testu, ako je kompletný krvný obraz (CBC) alebo pomer albumín:globulín (A:G), na predpovedanie FIP bude oveľa vyššia u mačiek so signalizáciou podobnou FIP, ako u mačiek so sigalizáciou netypickou pre FIP. Je potrebné poznamenať, že výsledky ostatných nepriamych testov sú len odhadmi a výsledky dodatočných nepriamych testov majú potenciál zmiasť aj podporiť diagnostický proces.

3. Diagnostické testy

Problém diagnostiky FIP spočíva v tom, že neinvazívne testy nie sú dostatočne spoľahlivé. Vo všeobecnosti majú testy z efúzie podstatne vyššiu prediktívnu hodnotu ako krvné testy (Stranieri et al 2018; Hartmann et al 2003). V dôsledku toho je identifikácia FIP ante mortem u mačiek bez výrazného výpotku je obzvlášť zložitá. Najužitočnejším ante mortem ukazovateľom je pozitívny titer protilátok proti vírusu Corona (IgG) v mozgovomiechovom moku (CSF), vysoký celkový proteín v sére a zmeny na MRI, ako je periventrikulárne kontrastné zosilnenie, dilatácia komôr a hydrocefalus. Monoklonálne protilátky z postihnutých tkanív a polymerázová reťazová reakcia (PCR) špecifická pre koronavírus sú však cenné pri post mortem hodnotení (Foley et al. 1998). Keďže jednoznačná diagnóza sa nedá určiť len na základe symptómov, anamnézy a klinických a laboratórnych ukazovateľov, tieto faktory by sa mali vždy posudzovať ako celok, niekedy v kombinácii s inými faktormi, ako sú molekulárne alebo dokonca invazívnejšie diagnostické postupy.

3.1. Analýza vzoriek výpotku

V prípade podozrenia na FIP s výpotkom môže byť vzorka výpotku neuveriteľne nápomocná pri určovaní diagnózy a potom pri hematologických nálezoch, preto by malo byť získanie vzoriek výpotku vždy najvyššou prioritou. V prípade ascitu sa môže vzorkazískať ultrazvukom riadenou aspiráciou tenkou ihlou alebo technikou “lietajúcej mačky”. Na identifikáciu malých množstiev tekutiny v hrudníku a bruchu poskytuje ultrasonografia užitočnú pomoc pri lokalizácii výpotkových vreciek v bruchu, zatiaľ čo dôkaz perikardiálnych výpotkov možno získať prostredníctvom tlmených srdcových oziev a elektrokardiografických zmien. Ultrasonografia by sa mala používať opakovane na identifikáciu akýchkoľvek výpotkov s malým objemom a ultrasonografia sa môže použiť aj na usmernenie odberu vzoriek malých vreciek tekutiny. U mačiek s perikardiálnymi výpotkami sa auskultáciou srdca zistia tlmené zvuky a EKG odhalí typické zmeny.
Výpotky pri FIP sú často číre, viskózne/lepkavé, slamovožlté a bohaté na bielkoviny (cytológia často opisuje husté eozinofilné bielkovinové pozadie) s celkovou koncentráciou bielkovín > 35 g/l (> 50 % globulínov). Zriedkavo sa popisujú chylózne výpotky. Výpotky pri FIP majú často pyogranulomatózny charakter s makrofágmi, nedegenerovanými neutrofilmi a relatívne malým počtom lymfocytov. V dôsledku toho sa výpotky často označujú ako modifikované transsudáty na základe počtu buniek (< 5×109 buniek/l), ale exsudáty na základe koncentrácie bielkovín (viac ako 35 g/l). Typické výpotky FIP majú nízky pomer A:G (pozri vyššie) a zvýšený obsah AGP, ktorý je podobný obsahu v sére. V nedávnej štúdii (Hazuchova et al. 2017) sa zistilo, že koncentrácie AGP vo výpotkoch (> 1,55 mg/ml) sú užitočnejšie (senzitivita a špecificita 93 %) pri rozlišovaní prípadov FIP od prípadov bez FIP ako hladiny AGP v sére alebo iných APP.
Rivaltov test je jednoduchý test, ktorý možno použiť na rozlíšenie transsudátu od exsudátu vo vzorke výpotku (Barker a Tasker 2020). Pozitívne výsledky jednoducho naznačujú, že výpotok je exsudát a nie sú špecifické iba pre FIP; pozitívne výsledky na transsudát boli zdokumentované v iných situáciách ako FIP (napr. bakteriálna/septická peritonitída a lymfóm) (Fischer a kol. 2012).

3.2. Biochémia séra

Hoci zmeny v biochémii krvi pozorované v prípadoch FIP sú variabilné a často nešpecifické, existuje niekoľko kľúčových anomálií, na ktoré sa treba zamerať, aby bolo možné potvrdiť diagnózu FIP.

3.2.1. Proteíny akútnej fázy

Pri mnohých zápalových a nezápalových ochoreniach sa v pečeni produkujú proteíny akútnej fázy (APP) ako odpoveď na cytokíny uvoľňované makrofágmi a monocytmi (najmä interleukíny 1 a 6 a tumor nekrotizujúci faktor α).
AGP je skratka pre α1-kyslý glykoproteín a jeho vyšetrenie môže pomôcť pri diagnostike FIP. Hoci zvýšenie hladiny AGP (> 0,48 mg/ml) nie je špecifické pre FIP, pacienti s FIP majú často výrazne vysoké hladiny AGP (> 1,5 mg/ml). V dôsledku toho môže byť veľkosť zvýšenia cenná z hľadiska pomoci pri diagnostike FIP, pričom vyššie hladiny efektívnejšie zvyšujú index podozrenia (Giori et al 2011; Hazuchova et al 2017).

3.2.2. Hyperglobulinémia

V 89% prípadov je prítomná hyperglobulinémia; často v spojení s hypoalbuminémiou alebo nízkou-normálnou hladinou sérového albumínu (pozorovaná v 64,5 % prípadov) (Riemer et al. 2016). Hyperproteinémia sa nemusí vždy vyskytovať z dôvodu existencie hypoalbuminémie. Pomer albumín:globulín (A:G) je pri hyperglobulinémii a hypoalbuminémii (nízka-normálna koncentrácia albumínu) nízky a tento parameter sa môže použiť na posúdenie pravdepodobnosti FIP v konkrétnom prípade.

3.2.3. Hyperbilirubinémia

Hyperbilirubinémia sa vyskytuje v 21-63 % prípadov FIP a je častejšia pri efuzívnej FIP, kde sú bežne vysoké aktivity enzýmov alanínaminotransferázy (ALT), alkalickej fosfatázy (ALP) a γ-glutamyltransferázy (hoci tieto môžu byť v prípadoch FIP mierne zvýšené). FIP sa zriedkavo spája s hyperbilirubinémiou v dôsledku imunitne sprostredkovanej hemolytickej anémie (IMHA) (Norris et al. 2012) a mačky často nie sú vážne anemické. V prípade absencie vysokej aktivity pečeňových enzýmov alebo závažnej anémie by prítomnosť hyperbilirubinémie mala vzbudiť podozrenie na FIP (upozorňujeme, že sepsa a pankreatitída môžu spôsobiť hyperbilirubinémiu aj bez zvýšenej aktivity pečeňových enzýmov). Na základe postupného hodnotenia mačiek s FIP bolo zdokumentované, že hyperbilirubinémia bola typickejšie rozpoznaná u mačiek tesne pred smrťou alebo eutanáziou ako pri prvej prezentácii (Harvey et al. 1996). Okrem toho sa v tomto vyšetrovaní pozorovali vyššie hladiny bilirubínu u mačiek tesne pred smrťou alebo eutanáziou ako pri prvej prezentácii.

3.3. Hematológia

Pri FIP sú hematologické zmeny nešpecifické; existuje však niekoľko abnormalít, ktoré treba preveriť, aby sa potvrdila diagnóza. Lymfopénia je najčastejšou zmenou (55 – 77%) prípadov, pričom nedávna štúdia (Riemer et al. 2016) odhalila lymfopéniu len v 49,5 % prípadov FIP, pričom bola opísaná aj neutrofília (39 – 57 %), posun doľava a mierna až ťažká normocytárna, normochrómna anémia (37 – 54 %) (Riemer et al. 2016; Norris et al. 2012). Nedávno bola objavená súvislosť medzi FIP a mikrocytózou (s anémiou alebo bez nej). FIP môže spôsobiť závažnú IMHA so súčasnou regeneratívnou anémiou; ide však o nezvyčajný jav.

3.4. Sérológia

ELISA, nepriame imunofluorescenčné testy na protilátky a rýchle imunomigračné testy sú najbežnejšie testy na protilátky proti FCoV v sére (Addie et al. 2015). Vo väčšine štúdií sa ako substrát používajú bunky infikované CoV ošípaných alebo mačiek a titre sa merajú v násobkoch zriedení séra. Pozitívny test na protilátky proti FCoV znamená, že mačka bola infikovaná FCoV a došlo u nej k sérokonverzii (ktorá trvá 2 – 3 týždne od infekcie). Testy majú preto obmedzený klinický význam. Boli zistené rozdiely v mediáne titrov protilátok proti FCoV v závislosti od plemena, čo by mohlo naznačovať rozdiely v reakcii plemena na infekciu FCoV (Meli et al. 2013).
Hoci mačky s FIP mali vyššie titre protilátok proti FCoV ako mačky bez FIP, medzi mediánom titrov protilátok proti FCoV u zdravých mačiek a mačiek s podozrením na FIP nebol zistený žiadny rozdiel. V dôsledku toho je titer u jedného zvieraťa len okrajovo užitočný pri identifikácii mačiek s FIP (Bell et al 2006). Mnohé klinicky zdravé mačky (najmä tie v domácnostiach s viacerými mačkami) majú pozitívne a často veľmi vysoké titre protilátok proti FCoV, zatiaľ čo 10 % mačiek s FIP je séronegatívnych, čo by mohlo byť spôsobené naviazaním vírusu na protilátku a jej zneprístupnením pre sérologický test, čo tiež poukazuje na problémy s interpretáciou (Meli et al 2013). Negatívny test na protilátky FCoV v prípade podozrenia na suchú FIP môže byť účinnejší pri vylúčení FIP (Addie et al 2009). Napriek tomu boli v situáciách neurologickej FIP pozorované negatívne výsledky (Negrin et al 2007). V dôsledku toho sa lekári rozchádzajú v názore, či vykonať sérologické vyšetrenie v podozrivých prípadoch, napriek tomu, že pozitívny výsledok takmer vždy znamená expozíciu FCoV.

3.5. Súčasné trendy v oblasti diagnostiky

Použitie testovania protilátok proti koronavírusu v mozgovomiechovom moku (CSF) na diagnostiku v prípadoch zahŕňajúcich centrálny nervový systém je ďalším prelomovým objavom, pri ktorom sa IgG zisťuje v CSF. Protilátka sa však vo väčšine prípadov zistila len u mačiek s vysokým titrom IgG v sére (Boettcher et al. 2007)
Dôležitým rozdielom medzi infekciou mačacím koronavírusom a FIP je správanie génu NSP3c. Zistilo sa, že infikované tkanivové izoláty z druhého prípadu majú porušený gén 3c, zatiaľ čo u prvého prípadu bol gén neporušený. Rozhodujúcim prispievajúcim faktorom je aj mutácia lokusu S1/S2 a modulácia furínového rozpoznávacieho miesta, ktoré je normálne prítomné v S-géne enterického koronavírusu (Levy a Hutsell 2019).
Diagnostická užitočnosť imunocytochémie mozgovomiechového moku sa využíva aj na diagnostiku FIP prejavujúcej sa závažným postihnutím centrálneho nervového systému. Imunocytochemické farbenie (ICC) protilátok proti koronavírusu mačiek v makrofágoch mozgovomiechového moku je vysoko citlivý test najmä na diagnostiku ante mortem s citlivosťou 85 % a špecificitou 83,3 % (Gruendl et al 2017).

4. Závery

U mačiek s podozrením na FIP by mali korelovať anamnéza, klinické príznaky a klinicko-patologické vyšetrenia. Suchá forma sa diagnostikuje ťažšie ako vlhká forma. Pri vlhkej forme sa môže vykonať laboratórna analýza tekutiny, napríklad Rivaltova skúška. Ak je skúška negatívna, pravdepodobnosť FIP je malá, ale ak je skúška pozitívna, mali by nasledovať ďalšie diagnostické testy na potvrdenie FIP. Pri FIP je pomer A:G nízky, pretože je prítomná hyperglobulinémia a hypoalbuminémia (nízka normálna koncentrácia albumínu), a tento parameter sa môže použiť na posúdenie pravdepodobnosti FIP v konkrétnom prípade. Pacienti s FIP majú často výrazne vysoké hladiny AGP (α1-kyslý glykoproteín). Pri rozlišovaní prípadov FIP od prípadov bez FIP majú koncentrácie AGP vo výpotkoch (>1,55 mg/ml) senzitivitu a špecificitu 93 %.

Konflikt záujmov

Autori vyhlasujú, že nie sú v konflikte záujmov.

Financovanie

Nebola poskytnutá žiadna finančná podpora zo žiadneho inštitútu ani iného zdroja.

5. Literatúra

Addie D, Belak S, Boucraut-Baralon C (2009) Feline infectious peritonitis. ABCD guidelines on prevention and management. J Feline Med Surg  11:594–604.

Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, Hartmann K, Hosie MJ, Lloret A, Lutz H (2009) Feline infectious peritonitis. ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery 11:594–604.

Addie DD, le Poder S, Burr, P (2015) Utility of feline coronavirus antibody tests. J Feline Med Surg 17:152–162.

Barker E, Tasker S (2020) Update on feline infectious peritonitis. In Practice 42:372-383.

Bell ET, Malik R, Norris JM (2006) The relationship between the feline coronavirus antibody titre and the age, breed, gender and health status of Australian cats. Aust Vet J  84:2–7.

Bell ET, Toribio JA, White JD (2006) Seroprevalence study of feline coronavirus in owned and feral cats in Sydney, Australia. Aust Vet J 84:74–81.

Boettcher IC, Steinberg T, Matiasek CEG, Hartmann K, Fischer A (2007) Use of anti-corona virus antibody testing of cerebrospinal fluid for diagnosis of feline infectious peritonitis involving the central nervous system. J Am Vet Med Assoc 230:199-205.

De Groot-Mijnes JD, Van Dun JM, Van der Most RG, de Groot RJ (2005) Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease, Journal of Virology 79:1036–1044

Fischer Y, Sauter-Louis C, Hartmann K (2012) Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Vet Clin Pathol 41:558–567.

Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC (1998) Diagnostic features of clinical neurologic feline infectious peritonitis. J Vet Intern Med 12:415423.

Giori L, Giordano A, Giudice C (2011) Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. J Small Anim Pract  52:152–157.

Gruendl S, Matasek K, Matiasek L, Fischer A, Felten S, Jurina K, Hartmann K (2017) Diagnostic utility of cerebrospinal fluid immunocytochemistry for diagnosis of feline infectious peritonitis manifesting in central nervous system. J Feline Med Surg 19:576-585. 

Haagmans BL, Egberink HF, Horzinek MC (1996) Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 70:8977-8983

Hartmann K, Binder C, Hirschberger J, Cole D, Reinacher M, Schroo S, Frost J, Egberink H, Lutz H, Hermanns W (2003) Comparison of different tests to diagnose feline infectious peritonitis. J. Vet. Intern. Med.17:781–790. 

Harvey CJ, Lopez JW, Hendrick MJ (1996) An uncommon intestinal manifestation of feline infectious peritonitis: 26 cases (1986-1993). J Am Vet Med Assoc 209:1117–1120. 

Hazuchova K, Held S, Neiger R (2017) Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions. J Feline Med Surg 19:809–816.

Healey EA, Andre NM, Miller AD, Whitaker GR, Berliner EA (2022). Outbreak of feline infectious peritonitis (FIP) in shelter-housed cats: molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a ‘circulating virulent–avirulent theory’of FIP pathogenesis. Journal of Feline Medicine and Surgery Open Reports 8:20551169221074226.

Kipar A, May H, Menger S, Weber M, Leukert W, Reinacher M (2005) Morphological features and development of granulomatous vasculitis in feline infectious peritonitis, Veterinary Pathology 42:321–330

Kipar A, Meli ML (2014) Feline infectious peritonitis: Still an enigma? Vet. Pathol. 51:505–526.

Levy  JK,  Hutsell  S  (2019)  MSD  veterinary  manual:  Feline  infectoius peritonitis (FIP). USA: Merck Sharp and Dohme Corp.

Meli M, Kipar A, Müller C, Jenal K, Gönczi E-E, Borel N, Gunn-Moore D, Chalmers S, Lin F, Reinacher M, Lutz H (2004) High viral loads despite absence of clinical and pathological findings in cats experimentally infected with feline coronavirus (FCoV) type I and in naturally FCoV-infected cats, Journal of Feline Medicine and Surgery 6:69–81.

Meli ML, Burr P, Decaro N (2013) Samples with high virus load cause a trend toward lower signal in feline coronavirus antibody tests. J Feline Med Surg 15:295– 299.

Negrin A, Lamb CR, Cappello R (2007) Results of magnetic resonance imaging in 14 cats with meningoencephalitis. J Feline Med Surg  9:109–116.

Norris JM, Bosward KL, White JD (2012) Clinico-pathological findings associated with feline infectious peritonitis in Sydney, Australia: 42 cases (1990-2002). Aust Vet J 83:666–673. 

Pedersen N C (2014) An update on feline infectious peritonitis: diagnostics and therapeutics. The veterinary journal 201:133-141.

Pedersen NC (2009) A review of feline infectious peritonitis virus infection: 1963–2008. J. Feline Med. Surg.11:225–258. 

Pedersen NC (1995) An overview of feline enteric coronavirus and infectious peritonitis virus infections. Feline Practice 23:7–20.

Pedersen NC, Allen CE, Lyons LA (2008) Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery 10:529–541.

Pedersen NC, Liu H, Dodd KA, Pesavento PA (2009) Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 1:166–184 

Pedersen NC, Sato R, Foley JE, Poland AM (2004) Common virus infections in cats, before and after being placed in shelters, with emphasis on feline enteric coronavirus. Journal of Feline Medicine and Surgery 6:83–88.

Pedersen NC, Boyle JF, Floyd K (1981) Infection studies in kittens, using feline infectious peritonitis virus propagated in cell culture. Am. J. Vet. Res.42:363– 367.

Riemer F, Kuehner KA, Ritz S (2016) Clinical and laboratory features of cats with feline infectious peritonitis – a retrospective study of 231 confirmed cases (2000-2010). J Feline Med Surg 18:348–356.

Stranieri A, Giordano A, Paltrinieri, S Giudice C, Cannito V, Lauzi S (2018) Comparison of the performance of laboratory tests in the diagnosis of feline infectious peritonitis. J. Vet. Diagn. Investig. 30:459–463. 

Vennema H, Poland A, Foley J, Pedersen NC (1998) Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157.

Vogel L, Van der Lubben M, teLintelo EG, Bekker, CP Geerts T, Schuijff LS, Grinwis GC, Egberink HF, Rottier PJ (2010) Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Vet. Res. 41:71–82.

Weiss RC, Scott FW (1981) Pathogenesis of feline infectious peritonitis: nature and development of viraemia, American Journal of Veterinary Research 4:382– 390. Prečítať “Prehľad diagnostiky FIP”

Dve očkovacie platformy na prevenciu ochorenia spôsobeného mačacím koronavírusom

Pôvodný článok: Two Vaccine Platforms to Prevent Feline Coronavirus Disease

Vedúci projektu: Hector Aguilar-Carreno

Department of Microbiology and Immunology
Email: ha363@cornell.edu
Sponzor: Cornell Feline Health Center Research Grants Program
Názov: Two Vaccine Platforms to Prevent Feline Coronavirus Disease
Rozpočet projektu: $69,920
Trvanie projektu: Júl 2021 – Jún 2022

Popis (poskytnutý žiadateľom): 

Zatiaľ čo u väčšiny mačiek infikovaných mačacím koronavírusom (FCoV) sa vyvinie mierne až nevýrazné hnačkové ochorenie, u časti z nich sa vyvinie ničivá a smrteľná mačacia infekčná peritonitída (FIP). FCoV sa môže šíriť fekálno-orálnou alebo respiračnou cestou, najmä v prostredí mačacích útulkov. Koronavírusy majú tri obalové glykoproteíny, S, E a M, ale povrchový proteín (S) je zodpovedný za vstup vírusu. S proteín sa viaže na povrchový receptor bunky a vedie k spojeniu vírusovej membrány s plazmatickou alebo endozomálnou membránou bunky, čo umožnuje vstup vírusu do bunky. S proteín tiež spôsobuje fúziu buniek (syncytózu) po infekcii. Proteín S väčšiny koronavírusov je tiež vysoko imunogénny. Ničivé ochorenie FIP si vyžaduje vývoj ochranných vakcín. Identifikovali sme malú molekulu XM-01, ktorá sa usadzuje vo vírusových membránach a inhibuje fúziu membrán. Dôležité je, že táto nová metóda inhibície spôsobuje, že virióny nie sú infekčné, pričom sa zachováva prirodzená konformácia povrchových glykoproteínov, čo je ideálne na vyvolanie účinnej imunitnej odpovede proti takýmto vírusovým glykoproteínom. Je pozoruhodné, že očkovanie chrípkovými viriónmi ošetrenými XM-01 prinieslo zvýšenie neutralizačných protilátok a miery prežitia a zníženie chorobnosti a úmrtnosti pri vírusovej záťaži na modeli myší v porovnaní s tradičnou formalínom inaktivovanou chrípkovou vakcínou. Naším cieľom 1 bude teda určiť, či sa XM-01 môže použiť na vývoj inaktivovanej vakcíny proti FeCoV. Dôležité je, že naše nedávne predbežné údaje obsahujú už stanovené podmienky pre úplnú inaktiváciu FCoV. Budeme optimalizovať inaktiváciu FCoV pomocou XM-01 aby sme zistili, či táto vakcína môže viesť k ráznej imunitnej odpovedi proti FCoV. Okrem toho naše laboratórium úspešne použilo replikačne nekompetentné pseudotypizované virióny vírusu vezikulárnej stomatitídy (VSV) na očkovanie a ochranu škrečkov proti ochoreniam spôsobeným vírusmi Nipah, Hendra a Ebola so 100 % bezpečnosťou a 100 % účinnosťou (rukopis v konečnej revízii pre Nature Publishing Journals Vaccines). V rámci nášho cieľa 2 sa použije replikačne nekompetentný systém VSV na vývoj vakcíny proti FCoV. Budeme optimalizovať inkorporáciu FCoV-S do viriónov VSV aby sme zistili, či táto vakcína môže vyvolať dostatočnú imunitnú odpoveď proti tomuto vírusu. Keďže vakcinačné platformy s inaktivovanými aj replikačne nekompetentnými viriónmi boli úspešne použité na prevenciu iných vírusových ochorení, dokončenie našich Cieľov umožní našim vakcinačným platformám ľahko postúpiť do klinických skúšok/licencovania vakcinácie. Prečítať “Dve očkovacie platformy na prevenciu ochorenia spôsobeného mačacím koronavírusom”

Propuknutí infekční peritonitidy koček v útulku na Taiwanu: epidemiologický a molekulární důkaz horizontálního přenosu kočičího koronaviru nového typu II

Ying-Ting Wang,1 Bi-Ling Su,2 Li-En Hsieh,1 a Ling-Ling Chueh1
Pôvodný článok: An outbreak of feline infectious peritonitis in a Taiwanese shelter: epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus
Český preklad čiastočne prevzatý z : Výsledky Potvrzení propuknutí FIP v útulku koček – Sevaron
13.7.2013

Abstrakt

Infekční peritonitida koček (FIP) je fatální onemocnění, způsobené infekcí kočičího koranaviru (FCoV). FCoV je možné rozdělit na sérotypy I a II. Tvrdí se, že virus, který způsobuje FIP (FIPV), se vyskytuje sporadicky a nešíří se často z jedné kočky na druhou. Nedávno bylo potvrzeno propuknutí onemocnění na Taiwanu z jednoho zvířecího útulku. Byl analyzován FCoV ze všech koček v tomto útulku, aby se stanovila epidemiologie tohoto propuknutí. Bylo identifikováno třináct ze 46 (28,2%) koček s typickými příznaky FIP. Z nich byla FIP u sedmi koček potvrzena nekropsií nebo histopatologickým vyšetřením. I přes skutečnost, že v tomto prostředí s větším množstvím koček byl identifikován vice jak jeden FCoV, u osmi koček s příznaky FIP bylo spolehlivě zjištěno, že jsou infikovány FCoV typu II. Sekvenční analýza odhalila, že FIPV typu II, nalezený ze vzorků kočičího trusu, tělesných výpotků a homogenátu granulomatózní tkáně od koček, které podlehly FIP, obsahoval ve všech případech identickou rekombinaci v jejich S genu. U dvou koček, které podlehly FIP, bylo zjištěno, že mají identickou nesmyslnou mutaci v 3c genu. Vylučování viru tohoto typu II v trusu u efuzivní formy FIP je možné zjistit až šest dní před uhynutím zvířete. Obecně vzato, naše údaje prokazují, že horizontální přenos FIPV je možný a že FIP kočky mohou představovat potenciální riziko pro ostatní kočky, žijící v tomtéž prostředí.

Úvod

Infekční peritonitida koček (FIP) je fatální onemocnění koček, způsobené infekcí kočičího koranaviru (FCoV). FCoV je obalený RNA virus, který patří do druhu Alphacoronavirus, čeledi Coronaviridae a do řádu Nidovirales. Velikost genomu FCoV činí přibližně 28,9 kb, včetně nestrukturního replikačního genu; čtyř strukturních genů, které kódují spike (S), obálku, membránu a nukleokapsidní proteiny; a pěti pomocných /nestrukturních genů 3abc a 7ab[1].

Kočičí koronaviry způsobují mírné, málo zjevné a přechodné infekce střev a jsou všudypřítomné mezi populací koček na celém světě [2]. Vyskytují se ve dvou sérotypech, I a II [3]. Typ I FCoV zde převažuje, kdežto virus typu II představuje jen 2-30% infekcí [48]. Po nahromadění genetických důkazů je zjevné, že  FCoV typu II vznikl dvěma homologními rekombinacemi mezi FCoV typu I a psího koronaviru CoV (CCoV) [9,10]. Oba sérotypy mohou zmutovat v hostiteli, dojde k makrofágnímu tropismu a ke vzniku systemického onemocnění, které nazýváme infekční peritonitidou koček [2,11,12]. Vzhledem ke slabému vylučování viru ve studiích FIP u koček jsou mutantní FIP viry (FIP vyvolávající FCoV, FIPV) podle všeho obsaženy pouze v nemocných tkáních a nejsou za přirozených podmínek přenášeny při kontaktu z kočky na kočku [2,11,13,14].

V tomto článku podáváme zprávu o epizootické FIP v jednom útulku na Taiwanu, která byla způsobena novým typem II FCoV. Epidemiologické a molekulární vyšetření izolátů z různých zdravých i nemocných koček z tohoto útulku velmi silně naznačuje, že tento virus byl vnesen přesunutím koťat z jiného útulku s následným horizontálním rozšířením na dospělé kočky, se kterými nová koťata sdílela útulek.

Materiály a metody

Zvířata a sběr vzorků

Do této studie, která probíhala od září 2011 do srpna 2012, bylo zařazeno celkem 46 koček ze soukromého útulku.V tomto útulku jsou umístěny dospělé kočky a čas od času i pár koťat.   Všechny kočky byly buď zatoulané anebo byly zachráněny a některé z nich byly získány z domů různých soukromých záchranářských stanic, kde byly zachráněné kočky dočasně umístěny. Před propuknutím tohoto onemocnění žily všechny kočky společně ve vnitřním prostředí bez klecí, dělily se o potravu, pití a o toalety. Některé kočky byly sourozenci, jiné s nimi spřízněné nebyly (Tabulka 1).

Tabulka 1
Informace o všech kočkách z tohoto útulku, u kterých bylo podezření na FIP a u kterých bylo toto onemocnění potvrzeno

KočkaVěk 1 Datum přijetí do útulku Datum nástupu horečky Datum úmrtí Klinické nálezy Nekroptické nálezy Efuzivní/neefuzivní
13m16. června 201117. srpna 201101. září 2011Horečka, anorexie, ascites, neurologické příznaky  
2a4m06. srpna 2011NA 221. září 2011Klinické příznaky nejsou k dispozici  
3b3m11. července 201118. srpna 201125. září 2011Horečka, anorexie, úbytek hmotnosti, neurologické příznaky  
42.5mJun. 08, 201116. srpna 201128. září 2011Horečka, ascites, neurologické příznaky  
5a4m06. srpna 201115. srpna 201120. října 2011Horečka, pleurální výpotek, průjem  
67m24. dubna 2011NA22. října 2011Anorexie, úbytek hmotnosti, neurologické příznaky  
73y6mRezidentNA27. října 2011 Ascites, žloutenka, granulomatózní léze v ledvině, fibrinózní peritonitidaEfuzivní
86m11. července 2011NA14. prosince 2011 Granulomatózní změny v ledvinách, játrech, plicích, mozku a očích Neefuzivní
92yRezidentNA28. prosince 2011 Ascites, pleurální výpotek a perikardiální výpotek, granulomatózní změny v ledvinách, játrech a střevě.Efuzivní/neefuzivní
10 b3m11. července 2011NA05. listopadu 2011 Granulomatózní změny v ledvinách, játrech a omentu Neefuzivní
11 c1y6mRezidentNA14. února 2012 Ascites a pleurální výpotek, žloutenka, fibrinózní peritonitida, granulomatózní změny v ledvinách, játrech, plicích a slezině.Efuzivní/neefuzivní
12 c1y6mRezidentNA19. března 2012 Žloutenka, fibrinózní peritonitida, granulomatózní změny hrudní a břišní stěny, ledvin, jater, plic, sleziny omenta a očí.Efuzivní/neefuzivní
131y7mRezidentNA13. dubna 2012 Žloutenka, zvětšení jater a mezenterických lymfatických uzlin, granulomatózní změny v ledvinách a plicích.Neefuzivní

1 Věk koček v době, kdy se objevily klinické příznaky FIP.
2 Není k dispozici. 
a, b, c : sourozenci.

Od všech asymptomatických koček byl minimálně jednou odebrán trus nebo rektální vzorky pro sledování výskytu FCoV. Od koček, které již vykazovaly příznaky onemocnění anebo u nichž bylo podezření na FIP, se standardně odebíraly tělesné výpotky, vzorky krve, vzorky výtěrů, včetně rektálních, nazálních, orálních a konjunktiválních. Kromě podpůrné péče byly kočky s podezřením na FIP léčeny prednisolonem (Prelon®, YF Chemical Corp., New Taipei City, Taiwan), benazeprilem (Cibacen®, Novartis, Barbera del Valles, Španělsko) a rekombinačním lidským interferonem alfa (Roferon®-A, Roche, Basilej, Švýcarsko). Kočky, které podlehly nemoci, byly podrobeny nekropsii za účelem patologického potvrzení. Při nekropsii byly nejprve jehlou a injekční stříkačkou odebrány tělesné výpotky, pak následovaly stěry, odběr krve, moči a granulomatózních lézí na vnitřních orgánech. Všechny vzorky byly zmraženy při -20 °C až do okamžiku použití. Všechny vzorky byly vyšetřeny na FCoV polymerázovou řetězovou reakcí nested s reverzní transkripcí (RT-nPCR) [15]. Vzorky s pozitivními výsledky byly následně podrobeny další analýze.

Příprava vzorků a reverzní transkripce

Vzorky stěrů byly suspendovány v 1 ml vody, ošetřené 0,1% diethyl pyrokarbonátem (DEPC). Vzorky trusu byly suspendovány s 9x upravenou vodou 0,1% DEPC vortexováním. Suspenze byla centrifugována a supernatant byl přenesen do nové zkumavky. Cca 0,5 g tkání bylo zmraženo a potom rozdrceno paličkou v hmoždíři za přítomnosti 2 ml Trizolu [16]. Celková RNA byla extrahována ze 300 μl suspenze stěru, celé krve, suspenze trusu, homogenátu tkáně a tělesného výpotku pomocí Trizolu. Dvacet jedna mikrolitrů izolované RNA bylo podrobeno reverzní transkripci se specifickým primerem N1 (5′-gctacaattgtatcctcaac-3′) nebo P211 [15] s reverzní transkripcí Moloneyho virusu myší leukémie (Invitrogen, CA, USA). Reakce byla inkubovaná při 37°C po dobu 60 min, při 72°C po dobu 15 min a nakonec při 94°C po dobu 5 minut.

Určení typu FCoV pomocí nested PCR

Pro stanovení typu FCoV byla provedena nested PCR v souladu s postupy, uváděnými Addie a kol. [5] s mírnou modifikací. Po reverzní transkripci bylo přidáno 5 μl komplementární DNA k 25 μl směsi PCR (Invitrogen, CA, USA), a to podle pokynů výrobce pro následující sady primerů: S1 a Iffs pro určení FCoV typu I a S1 a Icfs pro určení FCoV typu II. Nested PCR byl provedena na 2 μl prvního PCR produktu pomocí nested primerů. Očekávaná velikost druhé PCR, dosažená pro typ I a pro typ II FCoV činila 360 a 218 bp. Produkty RT-nPCR byly podrobeny elektroforéze a potom byly cílové fragmenty DNA čištěny (Geneaid Biotech, Ltd, Taipei) a sekvenovány (Mission Biotech, Taipei, Taiwan) – z obou orientací.

Amplifikace, sekvenování a analýza genu 3a a 3c  z FCoV typu II

Pro amplifikaci 3a genu FCoV typu II z FIP koček byla navržena sada specifických primerů, které je schopna amplifikovat z S genu typu II na gen 3a. Komplementární DNA, amplifikovaná sadou primerů, zaměřila 3′ konec S genu (Icfs) FCoV typu II a 5′ konec 3a genu FCoVe (3aR2: 5′-caccaaaacctatacacacaag-3′). Teplotní cyklus byl následující: 5 minut předehřátí při 94°C; 35 cyklů denaturace při 94°C po dobu 20 s, žíhání při 50°C po dobu 20 a prodloužení při 72°C po dobu 30 s; a konečné prodloužení při 72°C po dobu 5 minut. Následovala druhé série amplifikace pomocí primerů nIcfs a 3aR2; očekávaná velikost produktu činila cca 600 bp. Amplikony byly podrobeny elektroforéze, čištěny a sekvenovány z obou orientací, aby se potvrdily nukleotidové sekvence.

Pro amplifikaci 3c genu FCoV typu II z FIP koček byla navržena sada specifických primerů, které je schopna amplifikovat z S genu typu II na gen 3c. Komplementární DNA byla amplifikovaná forward primerem (Icfs) a reverzním primerem (E68R: 5′-aatatcaatataattatctgctgga-3′ případně N21R: 5′-gttcatctccccagttgacg-3′). Teplotní cyklus byl následující: 5 minut předehřátí při 94°C; 40 cyklů denaturace při 94°C po dobu 30 s, žíhání při 46°C po dobu 30 s a prodloužení při 72°C po dobu 90 s; a konečné prodloužení při 72°C po dobu 7 minut. Následovala druhé série amplifikace pomocí primerů nIcfs a E68R, produkty byly podrobeny elektroforéze, čištěny a sekvenovány z obou orientací, aby se potvrdily nukleotidové sekvence.

Fylogenetická analýza a rekombinační analýza FCoV typu II

Bylo provedeno několik sekvenčních vyrovnání pomocí ClustalW 2.0 s ruční editací v EditSeq (DNASTAR, Madison, USA). Byly provedeny fylogenetické analýzy pomocí MegAlign, verze 7.2.1 (DNASTAR, Madison, USA). Byly sestaveny bootscan a podobné grafy s využitím software SimPlot 3.5.1 (SCRoftware, Baltimore, USA).

Výsledky

Potvrzení propuknutí FIP v útulku koček

Útulek funguje tři a půl roku. Před srpnem 2011 neexistují žádné záznamy o výskytu FIP. Koťata (kočky 1, 3, 4, 8 a 10) byly přesunuty do tohoto útulku v období mezi červnem a červencem 2011. Po přivezení si tato koťata společně hrála a bydlela společně s dospělými kočkami, které tu žily již dříve. Před vypuknutím nemoci byla koťata jednotlivě brána k veterináři za účelem vakcinace a návštěv s cílem adopce. Horečka byla poprvé zjištěna u čtyř koťat (kočky 1, 3, 4, 5) během několika dní (od 15. do 18. srpna) (Tabulka 1). Klinické příznaky, např. horečka, anorexie, neurologické příznaky, těžké oddechování a rozšíření břicha bylo pozorováno během následujících dvou měsíců a koťata postupně uhynula v rozmezí od 1. září do 22. října (Tabulka 1). Pečovatelé z útulku požádali o naši pomoc 27. září. Všechny kočky, dlouhodobě umístěné v útulku, byly okamžitě vyšetřeny na FCoV pomocí metody RT-nPCR. Všechny FCoV pozitivní kočky byly izolovány a drženy odděleně.Přesto počínaje zářím se u dospělých koček s FIP (kočky 7-13) objevily klinické příznaky obdobné jako u koťat a všechny tyto kočky později uhynuly.

U šesti koťat (kočky 1-6) s tělesnými výpotky případně neurologickými příznaky, které podlehly v prvních dvou měsících, nebylo provedeno potvrzení nekropsií (Tabulka 1). Kočka 1 byla jednou přivezena do naší fakultní nemocnice a byl u ní odebrán ascites (volná tekutina v dutině břišní). U koček 7-13 byly zjištěny typické příznaky, konkrétně ascites nebo pleurální výpotky v dutině těla (efuzivní FIP) a granulomatózní léze v některých orgánech, zejména v ledvinách, jádrech, plicích, omentum (předstěra) a očích (neefuzivní FIP). U koček 9, 11 a 12 byla při nekropsii prokázána smíšená forma nemoci (Tabulka 1).

Celkem 13 ze 46 koček (28,3%) zemřelo v období od září 2011 do dubna 2012 na FIP. V této době 33 koček (71,7%) vypadalo, že jsou klinicky zdravé a 26 z těchto asymptomatických koček (78,7%) bylo pozitivních minimálně jednou na FCoV – zjištěno z trusu pomocí metody RT-nPCR. Ostatních sedm z těchto asymptomatických koček bylo negativních při zjišťování výskytu FCoV (Tabulka 2).

Tabulka 2
Zjištění výskytu a typu FCoV ze vzorků trusu u zdravých koček z téhož útulku

Kočka
FCoV
Typ
Oct. 2011Feb. 2012Jun. 2012 Jul. 2012
14+++++++netypizovatelný
15+ netypizovatelný
16++ netypizovatelný
17+++++++I
18++++++++I
19 +netypizovatelný
20 +netypizovatelný
21  
22++++ netypizovatelný
23++++I
24+ netypizovatelný
25++++++I
26 +netypizovatelný
27++++++I
28+++++++I
29  
30++++I
31   
32+++I
33 ++netypizovatelný
34++   I
35 ++netypizovatelný
36+++++I
37    
38  + netypizovatelný
39 ++++I
40 +netypizovatelný
41 ++netypizovatelný
42  +netypizovatelný
43    
44    
45    
46  + netypizovatelný

++: FCoV detekován v prvním kole PCR.
+: FCoV detekován pouze v nested PCR.

FIPV typu II byl zjištěn u všech koček, které podlehly FIP

Aby bylo možné dále prošetřit vztah mezi těmito sedmi histopatologicky potvrzenými FIP kočkami, byla amplifikovaná DNA typována, sekvenována a analyzována. FIPV typu II byl zjištěn u všech osmi zvířat, které podlehly FIP, a to ze stěrů, trusu, moči, tělesných výpotků, cerebrospinální tekutiny a homogenátů tkání (Tabulka 3). Viry typu II, které způsobují FIP, byly nalezeny  nejen v nemocné tkáni, ale také ve vzorcích trusu (kočky 7, 11, 12 a 13), ve vzorcích nazálního/orálního/konjunktiválního stěru (kočky 7, 8, 9, 11 a 12) a v moči, odebrané cystocentézou (kočka 11) (Tabulka 3). I když nebyla provedena nekropsie, ascites od kočky 1 – první kočka, která v útulku zemřela na FIP, byly k dispozici pro analýzu.U této kočky bylo potvrzeno, že byla infikována virem typu II. U zdravých zvířat byl ze vzorků trusu zjištěn pouze typ I anebo FCoV bez určení typu (Tabulka 2). Kočky 8, 9 a 13 byly infikovány oběma typy FCoV (Tabulka 3). I když bylo zjištěno, že v tomto prostředí s mnoha kočkami se vyskytuje více jak jeden typ FCoV, tj. typ I, II nebo viry bez určení typu, u všech osmi FIP koček byla nalezena infekce FCoV typu II, kdežto u zdravých zvířat tomu tak nebylo (Tabulky 2 a​ 33).

Tabulka 3
Charakteristika 3c genů FCoV získaných z různých vzorků FIP koček

KočkaGenotyp FCoVS místo genového kříženíIntegrita 3c genub
NOCR/FUA/PCSFLiLuKiBrSpIntR/FA/PLiLuKiBrSp
1   II       4250a neporušený     
7IIII II IIIIIIIIII 4250neporušený neporušenýneporušenýneporušený neporušený
8III   +IIII+        
9III II +II IIII+4250 G210*   G210*G210*
10     ++IIII II4250    neporušený  
11IIIIIIII+IIIIII + 4250   E47*   
12IIII IIII+IIII II+4250G210*G210*     
13 I/II  +++IIII+ 4250     Q218* 

NOC, výtěry z nosu/úst/konjunktivu; R/F, výtěry z konečníku nebo vzorky stolice; A/P, ascites nebo pleurální výpotek; CSF, mozkomíšní mok; Li, játra; Lu, plíce; Ki, ledviny; Br, mozek; Sp, slezina; Int, střevo.
+: FCoV pozitivní, ale typ viru nelze určit. -: FCoV negativní.
a: FCoV/NTU2/R/2003; GenBank: DQ160294.
b : E47*, G210* a Q218*: byly nalezeny zkrácené proteiny 3c s předčasnými stop kodony na aminokyselinách 47, 210 a 218.

FIPV typu II téhož původu byl objeven u koček, které podlehly FIP

Za účelem dalšího prošetření vztahu těchto virů typu II, které způsobují nemoc a které byly izolovány od koček, které podlehly FIP, byly k analýze virálních sekvencí použity sady specifických primerů, které jsou schopny specificky amplifikovat z 3′ konce S gene typu II ma následný gen. Identita 620 bp amplikonů, odvozených ze sedmi FIPV typu II, činila přibližně 98,7% až 99,8%. Fylogenetická analýza zjistila, že FCoV typu II, vyvozené z výše popisovaného vypuknutí nemoci, byly všechny seskupeny do samostatného clusteru, který se odlišuje od ostatních čtyř FCoV typu II, které jsou momentálně k dispozici v GenBank, tj. FIPV 79-1146 (GenBank: {“type”:”entrez-nucleotide”,”attrs”:{“text”:”DQ010921″,”term_id”:”63098796″}}DQ010921), FCoV 79-1683 (GenBank: {“type”:”entrez-nucleotide”,”attrs”:{“text”:”JN634064″,”term_id”:”384038902″}}JN634064), FCoV DF-2 (GenBank: {“type”:”entrez-nucleotide”,”attrs”:{“text”:”DQ286389″,”term_id”:”87242672″}}DQ286389) a FCoV NTU156 (GenBank: {“type”:”entrez-nucleotide”,”attrs”:{“text”:”GQ152141″,”term_id”:”240015188″}}GQ152141) (údaje nejsou uvedeny).

Rekombinace na 3′ konci S genu s domnělým místem rekombinace na nukleotidu 4250 byla stanovena u všech FCoV typu II, získaných z tělesných výpotků a tkáňového homogenátu u koček 1, 7, 9, 10, 11, 12 a 13 (Dodatečný soubor 1) (Tabulka 3). Sekvence nad tímto místem vykazují vyšší podobnost s CCoV, kdežto sekvence za tímto místem se podobaly spíše na FCoV typu I (Obr. 1). Tyto nálezy skutečně naznačují, že FCoV typu II, zjištěný u všech FIP koček, má společný původ.

Obrázek 1
Rekombinace FIPV od koček 1, 7, 9, 10, 11, 12 a 13 na genu S. Zarovnání 3′ konce genu S s následnými geny FCoV izolovanými od sedmi koček FIP s FCoV typu I a CCoV. Světle a tmavě stínované oblasti zahrnují vyšší podobnost s CCoV a FCoV typu I. Předpokládaná rekombinační událost nastala na nukleotidu 4250 na základě srovnání s FCoV NTU2 a je označena šipkou. Sekvence byly získány z FIPV nalezených v jednotlivých vzorcích a tkáních a jsou uvedeny souhrnně. NOC: výtěry z nosu/úst/konjunktivu; RS: výtěry z konečníku; As: ascites; PE: pleurální výpotek; Li: játra; Lu: plíce; Ki: ledviny; Br: mozek; Sp: slezina; dbd: dny před smrtí. Přístupové číslo GenBank: FCoV C1Je (GenBank: DQ848678), FCoV Black (GenBank: EU186072), FCoV NTU2 (GenBank: DQ160294) a CCoV NTU336 (GenBank: GQ477367).

Identická nesmyslná mutace na 3c genu byla zjištěna u dvou koček, které podlehly FIP

Za účelem další analýzy vztahu těchto FIPV, byly 3c geny, navrhovaný faktor FIP spojený s virulencí, amplifikovány z FCoV typu II, který způsobuje onemocnění. Zmutované 3c geny s identickým předčasným stop codonem na nukleotidech 628-630 (aminokyselina 210, G210*) byly nalezeny u dvou FIP koček, kočka 9 (ascites, slezina a mozek) a 12 (ascites a rektální stěry ze dne, kdy kočka uhynula a čtyři dny předtím) (Obr. 2A). Stojí za zmínku, že FIPV, získaný z kočky 12, vykazoval identickou nesmyslnou mutaci jako virus v jejích ascites. Intaktní 3c geny byly objeveny u koček 1, 7 a 10, které dříve podlehly FIP. Dvě další jasné/rozdílné nesmyslné mutace byly objeveny u koček 11 (E47*) a 13 (Q218*) (Obr. 2A-B, Tabulka 3).

Obrázek 2:
Zarovnání kompletních genů 3c FIPV z koček 1, 7, 9, 10, 11, 12 a 13. (A) Plné délky genů 3c analyzované v této studii byly zarovnány s FCoV typu I, FCoV NTU2. Sekvence byly získány z FIPV nalezených v jednotlivých vzorcích a tkáních a jsou uvedeny společně. Rámeček představuje identifikované předčasné stop kodony. (B) Schéma ukazuje umístění předčasných stop kodonů (PT) genu 3c různých vzorků z různých FIP koček.

Vylučování FIPV typu II je možné zjistit v terminální fázi u FIP koček

Výskyt FCoV byl průběžně analyzován, aby bylo možné objasnit možnou cestu vylučování a přenosu FIPV. Bylo zjištěno, že FCoV typu II, spojený s onemocněním, se vylučoval nazální/orální/konjunktivální cestou a trusem (Tabulka 4). Fekální a nazální/orální / konjunktivální vylučování viru typu II je možné zjistit od 6. dne (kočka 11) a od 4. dne (kočka 12) před uhynutím. Virémii je možné zjistit během terminálního stádia u koček trpících FIP až do 18 dní před uhynutím, a současné vylučování trusem bylo zjištěno u jedné kočky (kočka 12) (Tabulka 4).

Tabulka 4
Vylučování a sérotypy kočičího koronaviru, zjištěné u FIP koček v kočičím útulku

KočkaVzorkaDni před smrtí
−80−66−60−57−50−43−36−29−25−23−20−18−14−12−8−6−40*
9Výkaly I            I  II
 NOC tampony                 II
 Viremie              II  +
 Efuze              IIII II
11Výkaly            II II
 NOC tampony               II
 Viremie             
 Efuze     +           II
12Výkaly+ +  IIII
 NOC tampony      IIII
 Viremie  II++   
 EfuzeII                II

+: FCoV pozitivní; -: FCoV negativní.
I, II: FCoV typu I nebo typu II.
*: Vzorky byly odebrány bezprostředně před eutanazií, s výjimkou kočky 12, které byly vzorky odebrány až po smrti.

Diskuse

Možnost horizontálního přenosu  je u FIP obecně zpochybňována, protože (i) výskyt FIP je sporadický a je běžné, že se v prostředí s velkým množstvím koček vyvine FIP u jediné z nich [2]; (ii) teorie interní mutace, která popisuje, že FIPV je mutant, generovaný z enterického FCoV u jedné kočky [12,17]; (iii) neexistuje dostatek důkazů, že se mutantní FIPV vylučuje z FIP koček; a (iv) mutace 3c genu je unikátní pro každou FIP kočku [11,13,18]. Současné přesvědčení je takové, že kočky, které podlehly FIP, nevylučují a nepřenášejí FIPV na jiné kočky [11,13,14,1820]. Naše údaji signalizují, že toto vypuknutí FIP bylo způsobeno viry téhož původu. Za prvé, všechny kočky, uhynulé na FIP, měly infekci typu II a rekombinace těchto sedmi virů typu II byla lokalizována na témže místě. Rekombinace virů typu II, které jsou v současné době k dispozici v genetické bance, tj. FIPV 79-1146, FCoV 79-1683 a FCoV NTU156, byly všechny unikátní, specifické a vyskytovaly se nezávisle [9,10]. Zadruhé, FIPV, zjištěný u tří koťat, která uhynula během prvních dvou měsíců po vzniku horečky, měl intaktní 3c gen, kdežto viry od koček, které přežily déle (uhynuly o čtyři až osm měsíců později) všechny obsahovaly nesmyslnou mutaci, tj. G210* (kočky 9 a 12), E47* (kočka 11) a Q218* (kočka 13). Protože tři nesmyslné mutace, zjištěné ve FIPV u těchto zvířat, byly všechny umístěny na různých místech,viry, které původně infikovaly tyto kočky, by měly mít intaktní 3c gen – obdobně jako virus, objevený u koťat, která uhynula dříve. Po infikování došlo k místním mutacím během replikace viru u jednotlivých koček, což dalo vzniknout FIPV s 3c genem, který nese nesmyslné mutace na různých místech. Zjištění, že viry, které byly identifikovány  nejen ve tkáních, ale také ve vzorcích trusu u dvou koček (kočky 9 a 12), měly identickou mutaci ve 3c genu, dále potvrdilo, že došlo k horizontálnímu přenosu (Tabulka 3). Souhrnně řečeno, všechny tyto nálezy prokázaly, že vysoce virulentní FIPV se šířil od jednoho zvířete ke druhému horizontálně.

Toto je první zpráva vypuknutí FIPV typu II s důkazem horizontálního přenosu FCoV, vyvolávajícího onemocnění. K propuknutí FIP došlo poté, co se v rozmezí od června a července 2011 dostalo do tohoto útulku pět koťat (kočky  1, 3, 4, 8 a 10). Protože kauzativní viry typu II se specifickým genetickým markerem v S genu byly potvrzeny jako rekombinace kočičího a psího koronaviru a u některých z koťat, které uhynuly dříve, bylo zjištěno, že žila společně nebo vedle psů v době mezi jejich zachráněním a převezením do tohoto útulku, některé z těchto koťat mohlo být zdrojem tohoto viru typu II. Psi a zejména mladí psi často v útulcích vylučují velká množství psího koronaviru ve výkalech a rekombinace mezi kočičím– psím a psím-kočičím koronavirem je již dobře zdokumentovaná [2123]. A kromě toho tytp kauzativní viry typu II byly zjištěny v řade exkretů a sekretů u koček, které uhynuly na FIP (Tabulka 3), čímž se prokazuje, že je možné šíření mezi jednotlivými kočkami.

I když bezprostředně po prvním vyšetření všech zvířat z tohoto útulku na FCoV byly kočky, které vylučovaly FCoV, umístěny v samostatných klecích a přenos následně ustal, úmrtnost při vypuknutí této nemoci byla vysoká (28%, 13/46). Výsledky tří studií, které se zabývaly propuknutím FIP, byly uvedeny již dříve. Výsledky čtyřleté studie, prováděné v blízké chovatelské stanici koček, prokázaly průměrnou úmrtnost 17,3% [24]; úmrtnost, plynoucí z desetileté studie, prováděné v blízké chovatelské stanici, činila 29,4% (5/17) [25]. Další studie epidemií, která se prováděla v sedmi chovatelských stanicích /útulcích odhalila >10% úmrtnost [20]. Vysoký výskyt FIP v těchto uzavřených chovatelských stanicích by mohl být ovlivněn geneticky predisponovanými chovnými zvířaty. V naší studii pouze několik FIP koček v tomto útulku byly sourozenci a ostatní kočky nebyly geneticky spřízněné.  Naše studie prokazuje, že i bez vlivu genetických predispozičních faktorů může být úmrtnost na FIP vysoká v uzavřeném prostředí s velkým množstvím koček, pokud zůstane neodhaleno šíření FCoV, který způsobuje onemocnění.

V tomto prostředí s velkým počtem koček byly tři FIP kočky infikovány nejen FCoV typu II, ale také koinfikovány FCoV typu I (Tabulka 3). FCoV typu I byl nalezen pouze ve vzorcích trusu, kdežto FCoV typu II byl nalezen v různých vzorcích, včetně tělesných výpotků, homogenátů granulomatózní tkáně a v cerebrospinální tekutině. Tento nález ukazuje, že u těchto dvojnásobně infikovaných zvířat byl FCoV typu II hlavní příčinou FIP. Tento nález odpovídá našemu dřívějšímu nálezu, že se infekce FCoV typu II je významně spojena s FIP [4].

Výskyt FCoV v plné krvi v terminální fázi byl zjištěn již dříve [26,27]; ovšem pokud je nám známo, výskyt FIPV v trusu před konečnou fází onemocnění nebyl až do naší studie nikde publikován. Vylučování viru tohoto typu II trusem a nazální/orální/konjunktivální cestou je možné zjistit u efuzivní formy FIP až šest dní před uhynutím zvířete. Další experimentální studie infekce prokázala, že inokulované viry bylo možné odhalit až cca dva týdny po inokulaci, dříve než se rozvinuly klinické příznaky onemocnění [14]. Souhrnně řečeno, k přenosu FIPV by mohlo dojít na počátku, před projevy nemoci a v terminální fázi. Při propuknutí onemocnění v našem případě byly všechny kočky zpočátku umístěny společně v otevřené místnosti. Poté, co sedm koček postupně tomuto onemocnění podlehlo, byly všechny kočky pozitivní na FCoV umístěny samostatně v klecích a drženy odděleně. Izolace pravděpodobně zabrzdila přenos onemocnění. Toto propuknutí nemoci, které usmrtilo 13 koček, nám umožnilo jednoznačně stanovit, že FIPV může být přenášen horizontálně a ukázat, že izolace nemocných koček by měla být zohledněna v prostředí, kde se nachází větší množství koček.

Konkurenční zájmy

Autoři prohlašují, že nemají žádné konkurenční zájmy.

Příspěvky a vklady autorů

YTW provedl odběr vzorků a přípravu, detekování FCoV, určení typu, amplifikaci 3c genu a další analýzy a sestavil rukopis. BLS prováděl dozor nad odběrem vzorků a ošetřováním všech FIP zvířat a přispěl k sestavení rukopisu. LEH se účastnil amplifikace 3c genu, genetické analýzy a přípravy rukopisu. LLC vymyslel studii, účastnil se koncipování studie, koordinace a podílel se na přípravě rukopisu. Všichni autoři přečetli a schválili konečnou verzi rukopisu.

Přídavný materiál

Dodatečný soubor 1:

Analýza místa rekombinace FIPV u koček 1, 7, 9, 10, 11, 12 a 13 na S genu. Analýza vynesené podobnosti s využitím Kimurova (dvouparametrového) distančního modelu, modelu sousedních propojených stromů a 100 replikátů bootstrap ukázala, že došlo k rekombinaci a domnělé místo křížení (přechodu) je uvedeno šipkou. 

Poděkování

Autoři by rádi vyslovili poděkování ošetřovatelům v uváděném kočičím útulku, bez jejichž pomoci by tuto studii nebylo možné dokončit.

Literatura

  1. Lai MMC, Perlman S, Anderson LJ. In: Fields virology. Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE, editor. Philadelphia: Lippincott Wiilliams & Wikins; 2007. Coronaviridae; pp. 1305–1335.
  2. Pedersen NC. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg. 2009;44:225–258. doi: 10.1016/j.jfms.2008.09.008. [PubMed] [Cross Ref]
  3. Pedersen NC, Black JW, Boyle JF, Evermann JF, McKeirnan AJ, Ott RL. Pathogenic differences between various feline coronavirus isolates. Adv Exp Med Biol. 1984;44:365–380. doi: 10.1007/978-1-4615-9373-7_36. [PubMed] [Cross Ref]
  4. Lin CN, Su BL, Wang CH, Hsieh MW, Chueh TJ, Chueh LL. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: a 5-year study in Taiwan. Vet Microbiol. 2009;44:233–239. doi: 10.1016/j.vetmic.2008.11.010. [PubMed] [Cross Ref]
  5. Addie DD, Schaap IA, Nicolson L, Jarrett O. Persistence and transmission of natural type I feline coronavirus infection. J Gen Virol. 2003;44:2735–2744. doi: 10.1099/vir.0.19129-0. [PubMed] [Cross Ref]
  6. Benetka V, Kubber-Heiss A, Kolodziejek J, Nowotny N, Hofmann-Parisot M, Mostl K. Prevalence of feline coronavirus types I and II in cats with histopathologically verified feline infectious peritonitis. Vet Microbiol. 2004;44:31–42. doi: 10.1016/j.vetmic.2003.07.010. [PubMed] [Cross Ref]
  7. Hohdatsu T, Okada S, Ishizuka Y, Yamada H, Koyama H. The prevalence of types I and II feline coronavirus infections in cats. J Vet Med Sci. 1992;44:557–562. doi: 10.1292/jvms.54.557. [PubMed] [Cross Ref]
  8. Kummrow M, Meli ML, Haessig M, Goenczi E, Poland A, Pedersen NC, Hofmann-Lehmann R, Lutz H. Feline coronavirus serotypes 1 and 2: seroprevalence and association with disease in Switzerland. Clin Diagn Lab Immunol. 2005;44:1209–1215. [PMC free article] [PubMed]
  9. Lin CN, Chang RY, Su BL, Chueh LL. Full genome analysis of a novel type II feline coronavirus NTU156. Virus Genes. 2013;44:316–322. doi: 10.1007/s11262-012-0864-0. [PubMed] [Cross Ref]
  10. Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol. 1998;44:4508–4514. [PMC free article] [PubMed]
  11. Vennema H, Poland A, Foley J, Pedersen NC. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology. 1998;44:150–157. doi: 10.1006/viro.1998.9045. [PubMed] [Cross Ref]
  12. Rottier PJ, Nakamura K, Schellen P, Volders H, Haijema BJ. Acquisition of macrophage tropism during the pathogenesis of feline infectious peritonitis is determined by mutations in the feline coronavirus spike protein. J Virol. 2005;44:14122–14130. doi: 10.1128/JVI.79.22.14122-14130.2005. [PMC free article] [PubMed] [Cross Ref]
  13. Chang HW, de Groot RJ, Egberink HF, Rottier PJ. Feline infectious peritonitis: insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol. 2010;44:415–420. doi: 10.1099/vir.0.016485-0. [PubMed] [Cross Ref]
  14. Stoddart ME, Gaskell RM, Harbour DA, Gaskell CJ. Virus shedding and immune responses in cats inoculated with cell culture-adapted feline infectious peritonitis virus. Vet Microbiol. 1988;44:145–158. doi: 10.1016/0378-1135(88)90039-9. [PubMed] [Cross Ref]
  15. Herrewegh AA, de Groot RJ, Cepica A, Egberink HF, Horzinek MC, Rottier PJ. Detection of feline coronavirus RNA in feces, tissues, and body fluids of naturally infected cats by reverse transcriptase PCR. J Clin Microbiol. 1995;44:684–689. [PMC free article] [PubMed]
  16. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;44:156–159. [PubMed]
  17. Poland AM, Vennema H, Foley JE, Pedersen NC. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. J Clin Microbiol. 1996;44:3180–3184. [PMC free article] [PubMed]
  18. Pedersen NC, Liu H, Scarlett J, Leutenegger CM, Golovko L, Kennedy H, Kamal FM. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Res. 2012;44:17–28. doi: 10.1016/j.virusres.2011.12.020. [PubMed] [Cross Ref]
  19. Foley JE, Poland A, Carlson J, Pedersen NC. Patterns of feline coronavirus infection and fecal shedding from cats in multiple-cat environments. J Am Vet Med Assoc. 1997;44:1307–1312. [PubMed]
  20. Foley JE, Poland A, Carlson J, Pedersen NC. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. J Am Vet Med Assoc. 1997;44:1313–1318. [PubMed]
  21. Stavisky J, Pinchbeck G, Gaskell RM, Dawson S, German AJ, Radford AD. Cross sectional and longitudinal surveys of canine enteric coronavirus infection in kennelled dogs: a molecular marker for biosecurity. Infect Genet Evol. 2012;44:1419–1426. doi: 10.1016/j.meegid.2012.04.010. [PubMed] [Cross Ref]
  22. Decaro N, Mari V, Elia G, Addie DD, Camero M, Lucente MS, Martella V, Buonavoglia C. Recombinant canine coronaviruses in dogs, Europe. Emerg Infect Dis. 2010;44:41–47. doi: 10.3201/eid1601.090726. [PMC free article] [PubMed] [Cross Ref]
  23. Decaro N, Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet Microbiol. 2008;44:221–234. doi: 10.1016/j.vetmic.2008.06.007. [PubMed] [Cross Ref]
  24. Potkay S, Bacher JD, Pitts TW. Feline infectious peritonitis in a closed breeding colony. Lab Anim Sci. 1974;44:279–289. [PubMed]
  25. Watt NJ, MacIntyre NJ, McOrist S. An extended outbreak of infectious peritonitis in a closed colony of European wildcats (Felis silvestris) J Comp Pathol. 1993;44:73–79. doi: 10.1016/S0021-9975(08)80229-0. [PubMed] [Cross Ref]
  26. de Groot-Mijnes JD, van Dun JM, van der Most RG, de Groot RJ. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol. 2005;44:1036–1044. doi: 10.1128/JVI.79.2.1036-1044.2005. [PMC free article] [PubMed] [Cross Ref]
  27. Tsai HY, Chueh LL, Lin CN, Su BL. Clinicopathological findings and disease staging of feline infectious peritonitis: 51 cases from 2003 to 2009 in Taiwan. J Feline Med Surg. 2011;44:74–80. doi: 10.1016/j.jfms.2010.09.014. [PubMed] [Cross Ref]
Prečítať “Propuknutí infekční peritonitidy koček v útulku na Taiwanu: epidemiologický a molekulární důkaz horizontálního přenosu kočičího koronaviru nového typu II”

Pôvod brušných alebo hrudných výpotkov u mačiek s vlhkou FIP a príčiny ich pretrvávania počas liečby

Niels C. Pedersen, DVM, PhD
Centrum pre zdravie spoločenských zvierat
Kalifornská univerzita, Davis
24.9.2021

Pôvodný článok: Origin of abdominal or thoracic effusions in cats with wet FIP and reasons for their persistence during treatment


Pôvod FIP výpotkov. Výpotky pri vlhkej FIP pochádzajú z malých ciev (venúl), ktoré lemujú povrch brušných a hrudných orgánov (viscerálne) a stien (parietálne), mezentéria/mediastína a omenta. Priestory okolo týchto ciev obsahujú špecifický typ makrofágov, ktoré pochádzajú z progenitorov monocytov, ktoré neustále recirkulujú medzi krvným obehom, intersticiálnymi priestormi okolo venúl, aferentnou lymfou, regionálnymi lymfatickými uzlinami a späť do krvného obehu. Ďalšie miesta tejto recirkulácie sa nachádzajú v meningách, ependyme mozgu a uveálnom trakte očí. Malá časť týchto monocytov sa vyvinie na nezrelé makrofágy (monocyt/makrofág) a nakoniec na rezidentné makrofágy. Makrofágy nepretržite vyhľadávajú infekcie.

FIPV vzniká mutáciou z mačacieho enterického koronavírusu (FECV) prítomného v lymfoidných tkanivách a lymfatických uzlinách v dolnej časti čreva. Mutácia mení bunkový tropizmus FECV z enterocytov na makrofágy peritoneálneho typu. Monocyty/makrofágy sa zdajú byť prvým typom buniek, ktoré sú infikované. Táto infekcia spôsobí, že viac monocytov opustí krvný obeh a začne sa ich premena na makrofágy, ktoré pokračujú v cykle infekcie [2]. Monocyty/makrofágy nepodliehajú programovanej bunkovej smrti, ako sa zvyčajne očakáva, ale pokračujú vo svojom dozrievaní na veľké makrofágy naložené vírusom. Tieto veľké makrofágy nakoniec podliehajú programovanej bunkovej smrti (apoptóze) a uvoľňujú veľké množstvo vírusu, ktorý potom infikuje nové monocyty/makrofágy [1]. Infikované monocyty/makrofágy a makrofágy produkujú niekoľko látok (cytokínov), ktoré sprostredkúvajú intenzitu zápalu (ochorenie) aj imunitu (rezistenciu) [1,2].

Zápal spojený s FIP vedie k trom typom zmien vo venulách. Prvým je strata integrity cievnej steny, mikrokrvácanie a únik plazmatického proteínu bohatého na aktivované faktory zrážania a aktivácie komplementu a ďalšie zápalové proteíny. Druhý typ poškodenia zahŕňa trombózu a zablokovanie prietoku krvi. Tretie poškodenie sa vyskytuje v chronickejších prípadoch a zahŕňa fibrózu (zjazvenie) okolo ciev. Variácie v týchto troch udalostiach určujú množstvo a zloženie výpotkov podľa štyroch Starlingových síl, ktoré určujú pohyb tekutín medzi krvným obehom a intersticiálnymi priestormi [3].

Klasický výpotok pri vlhkej FIP vzniká najmä v dôsledku akútneho poškodenia cievnych stien a úniku plazmy do intersticiálnych priestorov a nakoniec do telesných dutín. Proteín uniknutý do intersticiálnych priestorov priťahuje ďalšie tekutiny, čo sa môže zhoršiť zablokovaním venózneho prietoku krvi a zvýšením kapilárneho tlaku. Tento typ výpotku, známy ako exsudát, obsahuje aj vysoké hladiny proteínov, ktoré sa podieľajú na zápale, imunitných reakciách a zrážaní krvi.

Táto tekutina obsahuje aj veľký počet neutrofilov, makrofágov/monocytov, makrofágov, eozinofilov a nižší počet lymfocytov a červených krviniek. Tento klasický typ tekutiny má konzistenciu vaječného bielka a tvorí slabé zrazeniny obsahuje vysoké množstvo bilirubínu. Bilirubín nepochádza z ochorenia pečene, ale skôr z deštrukcie červených krviniek uniknutých do buniek intersticiálneho tkaniva a pohltených monocytmi/makrofágmi a makrofágmi. Červené krvinky sa rozkladajú a hemoglobín sa štiepi na hem a globín. Globín sa ďalej metabolizuje na biliverdín (zelenkastá farba) a nakoniec na bilirubín (žltkastá farba), ktorý sa potom vylučuje pečeňou. Mačky však majú nedostatok enzýmov používaných na konjugáciu, a preto sú neúčinné pri odstraňovaní bilirubínu z tela [4]. To vedie k hromadeniu bilirubínu v krvnom obehu a dáva výpotku žltý nádych. Čím tmavší je žltý odtieň, tým viac bilirubínu je vo výpotku, tým závažnejšia je iniciujúca zápalová reakcia a tým závažnejšia je výsledná bilirubinémia, bilirubinúria a žltačka.

Opačným extrémom klasického a akútnejšieho výpotku pri FIP sú výpotky vznikajúce prevažne pri chronických infekciách a blokáde venózneho prietoku krvi a následnom zvýšení kapilárneho tlaku. Vysoký kapilárny tlak vedie k výpotku, ktorý sa vzdialenejšie podobá intersticiálnej tekutine ako plazme, má nižší obsah bielkovín, je skôr vodnatý ako lepkavý, číry alebo mierne žlto sfarbený, nie je náchylný na zrážanie a má nižší počet akútnych zápalových buniek, ako sú neutrofily. Existujú aj výpotky FIP, ktoré sú medzi týmito extrémami, v závislosti od relatívneho stupňa akútneho zápalu a chronickej fibrózy. Tieto prechodné typy tekutín sa vo veterinárnej literatúre bežne označujú ako modifikovaný transsudát, čo je však nesprávne pomenovanie. Modifikovaný transsudát začína ako transsudát a mení sa, keď pretrváva a vyvoláva mierny zápal. Výpotky s nízkym obsahom bielkovín a buniek pri FIP vznikajú ako exsudáty a nie ako transsudáty a nezodpovedajú tomuto opisu. Správnejší termín je “modifikovaný exsudát” alebo “variantný exsudatívny výpotok”.

Ako dlho zvyčajne pretrvávajú výpotky u mačiek liečených liekom GS-441524 alebo GC376? Prítomnosť brušných výpotkov často vedie k veľkému roztiahnutiu brucha a potvrdí sa palpáciou, aspiráciou dutou ihlou, röntgenom alebo ultrazvukom. Mačky s hrudnými výpotkami sa najčastejšie prezentujú závažnou dýchavičnosťou a potvrdzujú sa rádiologickým vyšetrením a aspiráciou. Hrudné výpotky sa takmer vždy odstraňujú, aby sa zmiernila dýchavičnosť, a v porovnaní s brušnými výpotkami sa opakujú pomaly. Preto sa brušné výpotky zvyčajne neodstraňujú, pokiaľ nie sú masívne a nezasahujú do dýchania, pretože sa rýchlo nahradia. Opakovaná drenáž brušných výpotkov môže tiež vyčerpať bielkoviny a spôsobiť škodlivé zmeny v rovnováhe tekutín a elektrolytov u ťažko chorých mačiek.

Hrudné výpotky pri liečbe liekom GS-441524 miznú rýchlejšie, so zlepšením dýchania do 24-72 hodín a vymiznutím zvyčajne za menej ako 7 dní. Abdominálne výpotky sa zvyčajne výrazne zmenšia do 7-14 dní a vymiznú do 21-28 dní. Detekcia výpotkov, ktoré pretrvávajú po tomto čase, závisí od ich množstva a metódy detekcie. Malé množstvá pretrvávajúcej tekutiny sú zistiteľné len ultrazvukom.

Pretrvávanie výpotkov počas antivírusovej liečby alebo po nej. Existujú tri základné dôvody pretrvávania výpotkov. Prvým je pretrvávanie infekcie a z nej vyplývajúceho zápalu na určitej úrovni, čo môže byť spôsobené nevhodnou liečbou, zlým liekom alebo rezistenciou na liek. Neadekvátna liečba môže byť dôsledkom nesprávneho dávkovania zlého lieku alebo získania rezistencie vírusu na liek. Druhým dôvodom pretrvávania tekutín je chronické poškodenie venúl a zvýšený kapilárny tlak. Môže to byť spôsobené infekciou nízkeho stupňa alebo reziduálnou fibrózou z infekcie, ktorá bola odstránená. Tretím dôvodom perzistencie je existencia iných ochorení, ktoré sa tiež môžu prejavovať výpotkami. Patria k nim vrodené srdcové choroby, najmä kardiomyopatia, chronické ochorenie pečene (získané alebo vrodené), hypoproteinémia (získaná alebo vrodená) a rakovina. Vrodené ochorenia spôsobujúce výpotky sa častejšie vyskytujú u mladých mačiek, zatiaľ čo získané príčiny a rakovina sa častejšie diagnostikujú u starších mačiek.

Diagnostika a liečba pretrvávajúcich výpotkov. Predpokladom diagnózy a liečby je dôkladné vyšetrenie tekutiny, ako je opísané vyššie. Ak má tekutina zápalový alebo polozápalový charakter a bunkový pelet je pozitívny pomocou PCR alebo IHC, musí sa určiť dôvod pretrvávania infekcie. Bola antivírusová liečba správne vedená, bolo antivírusové liečivo aktívne a jeho koncentrácia správna, existovali dôkazy o získanej rezistencii na liečivo? Ak má tekutina zápalový charakter a PCR a IHC sú negatívne, aké iné ochorenia pripadajú do úvahy? Tekutiny s nízkym obsahom bielkovín a buniek, ktoré nenaznačujú prítomnosť zápalu a ktorých test PCR a IHC je negatívny, poukazujú na diagnózu reziduálnej fibrózy malých ciev a/alebo na iné prispievajúce príčiny, ako je ochorenie srdca, chronické ochorenie pečene, hypoproteinémia (ochorenie čriev alebo obličiek). Niektoré z porúch spôsobujúcich tento typ výpotku si môžu vyžadovať exploratívnu laparotómiu s dôkladnou prehliadkou brušných orgánov a selektívnou biopsiou na určenie pôvodu tekutiny. Liečba pretrvávajúcich výpotkov sa bude veľmi líšiť v závislosti od konečnej príčiny. Pretrvávajúce výpotky spôsobené reziduálnou fibrózou malých ciev u mačiek vyliečených z infekcie často ustúpia až po mnohých týždňoch alebo mesiacoch. Pretrvávajúce výtoky spôsobené úplne alebo čiastočne inými ochoreniami si vyžadujú liečbu zameranú na tieto ochorenia.

Identifikácia a charakteristika pretrvávajúcich výpotkov. Prítomnosť tekutiny po 4 týždňoch liečby GS je nepríjemná a zvyčajne sa zisťuje niekoľkými spôsobmi v závislosti od množstva tekutiny a jej lokalizácie. Veľké množstvo tekutiny sa zvyčajne zistí podľa stupňa roztiahnutia brucha, palpáciou, röntgenom a aspiráciou brucha, zatiaľ čo menšie množstvo tekutiny sa najlepšie zistí ultrazvukom. Pretrvávajúci pleurálny výpotok sa zvyčajne zisťuje pomocou röntgenových snímok alebo ultrazvuku. Celkovo je ultrazvuk najpresnejším prostriedkom na detekciu a semikvantitatívne stanovenie výpotkov v hrudnej a brušnej dutine. Ultrazvuk sa môže použiť aj v kombinácii s aspiráciou tenkou ihlou na odber malých a lokalizovaných množstiev tekutiny.

Druhým krokom pri skúmaní pretrvávajúcich výpotkov je ich analýza na základe farby, obsahu bielkovín, počtu bielych a červených krviniek a typov prítomných bielych krviniek. Tekutiny vzniknuté primárne zápalom budú mať hladinu bielkovín blízku alebo rovnakú ako plazma a veľký počet bielych krviniek (neutrofily, lymfocyty, monocyty/makrofágy a veľké vakuolizované makrofágy). Tekutiny vytvorené zvýšeným kapilárnym tlakom sa viac podobajú intersticiálnej tekutine s proteínmi bližšie k 2,0 g/dl a počtom buniek < 200. Na diagnostiku výpotkov spojených s FIP sa často používa Rivaltova skúška. Nie je to však špecifický test pre FIP, ale skôr pre výpotky zápalového charakteru. Zvyčajne je pozitívny pri výpotkoch s FIP, ktoré majú vysoký obsah bielkovín a buniek, ale často je negatívny pri výpotkoch s veľmi nízkym obsahom bielkovín a buniek. Výpotky, ktoré sú na pomedzí týchto dvoch typov výpotkov, budú testované buď pozitívne, alebo negatívne, v závislosti od toho, kde sa v spektre nachádzajú.

Tretím krokom je analýza výpotkov na prítomnosť vírusu FIP. Na to je zvyčajne potrebných 5 až 25 ml alebo viac tekutiny. Pri tekutinách s vyšším počtom bielkovín a buniek môže stačiť menšie množstvo, zatiaľ čo pri tekutinách s nízkym počtom bielkovín a buniek je potrebné väčšie množstvo. Čerstvo odobratá vzorka by sa mala centrifugovať a bunkový pelet analyzovať na prítomnosť vírusovej RNA metódou PCR alebo cytocentrifugovať na imunohistochemické vyšetrenie (IHC). Test PCR by mal byť na RNA FIPV 7b a nie na špecifické mutácie FIPV, pretože test na mutácie nemá dostatočnú citlivosť a neposkytuje žiadne výhody pre diagnostiku [5]. Vzorky, ktoré sú pozitívne na základe PCR alebo IHC, poskytujú definitívny dôkaz FIP. Avšak až 30 % vzoriek zo známych prípadov FIP môže mať falošne negatívny test buď z dôvodu nevhodnej vzorky a jej prípravy, alebo preto, že hladina RNA vírusu FIP je pod úrovňou detekcie. Taktiež platí, že čím je tekutina menej zápalová, tým sú hladiny vírusu nižšie. Preto je pravdepodobnejšie, že výpotky s nižšími hladinami bielkovín a bielych krviniek budú testované negatívne, pretože vírusová RNA je pod detekčným limitom testu.

Literatúra

[1] Watanabe R, Eckstrand C, Liu H, Pedersen NC. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet Res. 2018 49(1):81. doi: 10.1186/s13567-018-0578-y.

[2]. Kipar A, Meli ML, Failing K, Euler T, Gomes-Keller MA, Schwartz D, Lutz H, Reinacher M. Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):141-55. doi:10.1016/j.vetimm.2006.02.004. Epub

[3] Brandis K.  Starling’s Hypothesis, LibreTexts. https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Book%3A_Fluid_Physiology _(Brandis)/04%3A_Capillary_Fluid_Dynamics/4.02%3A_Starling%27s_Hypothesis

[4]. Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pract. 2013;43(5):10391054. doi:10.1016/j.cvsm.2013.05.002

[5]. Barker, EN, Stranieri, A, Helps, CR. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Vet Res 2017; 48: 60. Prečítať “Pôvod brušných alebo hrudných výpotkov u mačiek s vlhkou FIP a príčiny ich pretrvávania počas liečby”

Proteíny akútnej fázy u mačiek

April 2019
Rita Mourão Rosa, Lisa Alexandra Pereira Mestrinho
Pôvodný článok: Acute phase proteins in cats

ABSTRAKT: Proteíny akútnej fázy (APP) sú proteíny syntetizované a uvoľňované prevažne hepatocytmi pri poškodení buniek alebo invázii mikroorganizmov. Tento článok obsahuje prehľad použitia APP pri ochoreniach mačiek, identifikuje ich užitočnosť v klinickom prostredí a analyzuje 55 publikovaných prác. Sérový amyloid A, alfa-1 kyslý glykoproteín a haptoglobín sú ukazovatele, ktoré autori považujú za užitočné pri monitorovaní akútnej zápalovej reakcie u mačiek. Hoci sa meranie APP stále vo veterinárnej medicíne rutinne nepoužíva, spolu s klinickými príznakmi a ďalšími krvnými parametrami sú klinicky zaujímavé a použiteľné pri ochoreniach, ako sú infekčná peritonitída mačiek, pankreatitída, zlyhanie obličiek, retrovírusové a kalicivírusové infekcie. Hoci existujú komerčne dostupné súpravy na meranie mačacích APP, štandardizácia testov zameraná na technickú jednoduchosť, väčšiu druhovú špecifickosť a s menšími súvisiacimi nákladmi umožní rutinné používanie v mačacej praxi, tak ako sa to robí v humánnej oblasti.
Kľúčové slová: zápal, proteíny akútnej fázy, mačka.

Úvod

Reakcia akútnej fázy (APR) je včasná nešpecifická systémová vrodená imunitná reakcia na lokálny alebo systémový podnet, ktorá pomáha liečiť a obnoviť homeostázu a minimalizovať poškodenie tkaniva, keď je organizmus zasiahnutý traumou, infekciou, stresom, operáciou, neopláziou alebo zápalom (GRUYS a kol., 2005; CRAY a kol., 2009; ECKERSALL A BELL, 2010). Pri tejto reakcii pozorujeme niekoľko rôznych systémových účinkov: horúčku, leukocytózu, hormonálne zmeny – hlavne koncentrácie kortizolu a tyroxínu, so sekundárnym katabolickým stavom a úbytkom svalových bielkovín, železa a zinku v sére (CERÓN et al. 2005, JAVARD et al. 2017).
Vplyvom cytokínov IL-1β, TNF-α a najmä IL-6 a približne 90 minút po poranení sa zvyšuje syntéza bielkovín v hepatocytoch, lymfatických uzlinách, tonzilách a slezine, ako aj v leukocytoch krvi. Tieto novovytvárané proteíny sa nazývajú proteíny akútnej fázy (APP) (TIZARD, 2013b).

Proteíny akútnej fázy

Koncentrácie APP sa môžu v reakcii na zápal zvýšiť (pozitívne APP) alebo znížiť (negatívne APP) (PALTRINIERI et al., 2008) (JOHNSTON & TOBIAS, 2018). Môžu aktivovať leukocytózu a komplement, spôsobiť inhibíciu proteáz, viesť k zrážaniu krvi a opsonizácii – obrannému mechanizmu, ktorý vedie k eliminácii infekčných agensov, obnove tkanív a obnoveniu zdravého stavu (CRAY et al., 2009). APP môžu mať dve funkcie, pro- a/alebo protizápalový účinok, ktoré musia byť jemne vyvážené na podporu homeostázy (HOCHEPIED et al., 2003).

Podľa veľkosti a trvania reakcie nasledujúcej po podnete sa rozlišujú tri hlavné skupiny APP (MURATA a kol., 2004; PETERSEN a kol., 2004; CERÓN a kol.), Pozitívne APP možno rozdeliť do dvoch skupín: prvá skupina zahŕňa APP so zvýšením 10 až 1000-násobným u ľudí alebo 10 až 100-násobným u domácich zvierat počas prítomnosti zápalu – napr. c-reaktívny proteín (CRP) a sérový amyloid A (SAA). Druhá skupina sú APP, ktoré sa pri zápalovej reakcii zvýšia 2 až 10-násobne – napr. haptoglobín a alfa-globulíny. Posledná skupina zahŕňala negatívne APP, pri ktorých koncentrácia klesá v reakcii na zápal – napr. albumín (KANN et al., 2012).

Pozitívne proteíny akútnej fázy


Pozitívne APP sú glykoproteíny, ktorých sérové koncentrácie sa pri stimulácii prozápalovými cytokínmi počas procesu ochorenia zvyšujú o 25 % a uvoľňujú sa do krvného obehu. Tieto koncentrácie sa môžu merať a používať pri diagnostike, prognóze, na monitorovanie odpovede na liečbu, ako aj na všeobecný zdravotný skríning. Možno ich tiež považovať za kvantitatívne biomarkery ochorenia, vysoko citlivé na zápal, ale málo špecifické, pretože zvýšenie APP sa môže vyskytnúť aj pri nezápalových ochoreniach (CERÓN a kol., 2005; ECKERSALL a BELL, 2010).

Pozitívne APP reagujú na cytokíny rôzne, pričom tieto skupiny sa delia do dvoch hlavných tried. Typ 1 APP, ktorý zahŕňa AGP, zložku komplementu 3, SAA, CRP, haptoglobín a hemopexín, je regulovaný IL-1, IL-6 a TNF-α a tiež glukokortikoidmi. Typ 2, ktorý zahŕňa tri reťazce fibrinogénu (α-, β- a γ-fibrinogén) a rôzne inhibičné proteázy, je regulovaný cytokínmi IL-6 a glukokortikoidmi (BAUMANN et al., 1990; BAUMANN & GAULDIE, 1994).

U mačiek je najdôležitejším APP SAA alebo alfa-1-kyslý glykoproteín (AGP). Hladina SAA v krvi môže indikovať zápalové stavy, ako je infekčná peritonitída mačiek (FIP) a iné infekčné ochorenia, ako je kalicivírusová infekcia, chlamýdióza, leukémia a infekčná imunodeficiencia, pretože sa zvyšuje 10- až 50-násobne(TIZARD, 2013b). SAA môže byť zvýšená aj pri iných ochoreniach, ako je diabetes mellitus a rakovina. Haptoglobín sa zvyčajne zvyšuje 2- až 10-násobne a je obzvlášť vysoký pri FIP (TIZARD, 2013b). V tabuľke 1 sú zhrnuté jednotlivé pozitívne APP v kontexte ochorenia mačiek.

Negatívne proteíny akútnej fázy

Najvýznamnejším negatívnym APP je albumín, ktorého koncentrácia v krvi počas APR klesá v dôsledku odchýlky aminokyselín smerom k syntéze pozitívnych APP (CRAY et al., 2009; PALTRINIERI, 2007a). Ďalšími negatívnymi APP sú transferín, transtyretin, retinol ligand a proteín viažuci kortizol, proteíny podieľajúce sa na transporte vitamínov a hormónov (JAIN et al., 2011).

Proteíny akútnej fázy pri ochorení mačiek

Na rozdiel od cytokínov, ktoré majú malú veľkosť a sú rýchlo filtrované obličkami, proteíny akútnej fázy majú vyššiu molekulovú hmotnosť (viac ako 45 kDa) a následne dlhšie zotrvávajú v plazme (SALGADO et al., 2011).

Hladiny APP môžu vypovedať iba o zápale a následne ich koncentrácie môžu pomôcť pri diagnostike a monitorovaní ochorenia. APP môže pomôcť odhaliť subklinický zápal, odlíšiť akútne ochorenie od chronického a predpovedať jeho priebeh (VILHENA et al, 2018; JAVARD et al., 2017). Keďže APR sa začína pred vznikom špecifických imunologických zmien, môžu sa použiť ako včasný marker ochorenia, skôr ako nastanú zmeny leukogramu, pričom ich magnitúda súvisí so závažnosťou ochorenia (PETERSEN et al., 2004; CÉRON et al., 2005; VILHENA et al., 2018). Z tohto dôvodu možno monitorovanie ochorení považovať za jednu z najzaujímavejších a najsľubnejších aplikácií APP.

Hladiny APP spolu s klinickými príznakmi a krvnými testami sa hodnotili pri rôznych ochoreniach zvierat (t. j. FIP, zápalové ochorenie čriev psov, leishmanióza, ehrlichióza a pyometra psov) a ukázali sa ako užitočné pri diagnostike, monitorovaní odpovede na liečbu a prognóze (ECKERSALL a kol.), 2001; MARTINEZ- SUBIELA et al., 2005; SHIMADA et al., 2002; JERGENS et al., 2003; GIORDANO et al., 2004; PETERSEN et al., 2004; DABROWSKI et al., 2009; VILHENA et al., 2018).

Na získanie úplných informácií o APR by sa mal súčasne vyhodnotiť jeden hlavný a jeden stredne veľký pozitívny, ako aj jeden negatívny APP (CERÓN a kol., 2008). Vysoké koncentrácie hlavného APP zvyčajne súvisia s infekčnými ochoreniami, zvyčajne systémovou bakteriálnou infekciou alebo imunitne sprostredkovaným ochorením (CERÓN et al., 2008; TROÌA et al., 2017). Aj keď by sa APP mali analyzovať spolu s počtom bielych krviniek a neutrofilov, sú najcitlivejšie pri včasnom odhalení zápalu a infekcie (CERÓN et al., 2008; ALVES et al., 2010). Špecifickosť týchto proteínov je však pri zisťovaní príčiny procesu nízka, pričom sa zvyšuje aj pri fyziologických stavoch, ako je napríklad tehotenstvo (PALTRINIERI et al., 2008).

APPChoroba
SAAFIP
Indukovaný zápal a chirurgický zákrok
Rôzne ochorenia (pankreatitída, zlyhanie obličiek, FLUTD, nádory, diabetes mellitus; ochorenie obličiek, poranenie atď.)
Sepsa
FeLV; infekcie hemotropnými mykoplazmami
Infekcia Hepatozoonfelis a Babesia vogeli
Dirofilariaimmitis
Mačky s FIV liečené rekombinantným mačacím interferónom
AGPInfekcia spôsobená Chlamydophila psittaci;
Pankreatitída a nádory pankreasu
FIP
Lymfóm a iné nádory
Indukovaný zápal a chirurgický zákrok
Mačky s FIV liečené rekombinantným mačacím interferónom
Abscesy, pyotorax, nekróza tukového tkaniva
Rôzne ochorenia (FLUTD, nádory, diabetes mellitus, ochorenia obličiek, poranenia atď.)
HaptoglobínFIP
Indukovaný zápal a chirurgický zákrok
Abscesy, pyotorax, nekróza tukového tkaniva
Rôzne ochorenia (FLUTD, nádory, diabetes mellitus, ochorenia obličiek, poranenia atď.)
Infekcia Hepatozoonfelis a Babesia vogeli
FeLV, hemotropné mykoplazmy
Dirofilariaimmitis
CRPMačky s FIV liečené rekombinantným mačacím interferónom
Indukovaný zápal a chirurgický zákrok
Tabuľka 1 – Proteíny akútnej fázy skúmané v súvislosti s chorobami mačiek.
Legenda: Sérový amyloid A (SAA), α1-kyslý glykoproteín (AGP), syndróm systémovej zápalovej reakcie (SIRS), ochorenie dolných močových ciest mačiek (FLUTD), mačacia infekčná peritonitída (FIP), vírus leukémie mačiek (FeLV), vírus imunodeficiencie mačiek (FIV); mačací kalicivírus (FCV).

Obrázok 1 znázorňuje očakávané správanie pozitívnych proteínov akútnej fázy na základe revidovaných štúdií. AGP, SAA a haptoglobín boli označené za užitočné indikátory na monitorovanie akútnej zápalovej reakcie u mačiek (WINKEL et al., 2015; PALTRINIERI et al., 2007a,b; KAJIKAWA et al., 1999). APP u mačiek boli prvýkrát identifikované po porovnávacích meraniach v sére klinicky normálnych a chorých zvierat, v štúdiách experimentálne vyvolaného zápalu a v pooperačných štúdiách (KAJIKAWA et al., 1999). Koncentrácia SAA sa údajne zvýšila ako prvá, následne sa zvýšila koncentrácia AGP a haptoglobínu, čo bolo v protiklade s menej výrazným zvýšením CRP (KAJIKAWA et al., 1999). Jedna štúdia ukázala, že CRP sa pri zápale u mačiek správa podobne ako SAA a AGP (LEAL et al., 2014).

Sérový amyloid A

SAA je u viacerých druhov jedným z hlavných APP, dôležitý u ľudí aj mačiek (KAJIKAWA et al., 1999). Moduluje imunitnú odpoveď tým, že priťahuje zápalové bunky do tkanív a vedie k produkcii viacerých zápalových cytokínov (GRUYS et al., 2005; TIZARD, 2013a). Jeho koncentrácia sa môže pri zápalovom stave zvýšiť viac ako 1 000-krát, čo následne chápeme ako zápal (TAMAMOTO a kol., 2013). Takéto zvýšenie sa však môže pozorovať pri nezápalových i zápalových ochoreniach a pri neopláziách (TAMAMOTO a kol., 2013). Podľa štúdie vykonanej u mačiek, ktoré podstúpili operáciu, sa koncentrácia SAA začína zvyšovať približne po 3 až 6 hodinách, pričom najvyššiu hodnotu dosahuje 21 až 24 hodín po operácii (SASAKI et al.,2003).

Obrázok 1 – Idealizované správanie sa proteínov akútnej fázy u mačky po zápalovom podnete. Hodnoty znázorňujúce zmeny nemožno považovať za absolútne. Zvýšenie sérového amyloidu A (SAA) 3 až 6 h po podnete, vrchol po 21 až 24 h, veľkosť pri vrchole 10 až 50-násobok jeho bazálnej plazmatickej koncentrácie. Alfa 1 kyslý glykoproteín (AGP) zvýšenie 8 h po podnete, vrchol v 36 h, veľkosť v čase vrcholu 2 až 10-násobok jeho základnej plazmatickej koncentrácie. Zvýšenie haptoglobulínu (Hp) 24 h po podnete, vrchol o 36 až 48 h, veľkosť na vrchole 2 až 10-násobok jeho bazálnej hodnoty plazmatickej koncentrácie. C-reaktívny proteín (CRP) zvýšenie 8 h po podnete, vrchol v 36 h, veľkosť pri vrchole 1,5-násobok jeho bazálnych hodnôt.

Alfa 1-kyslý glykoproteín

Alfa 1-kyslý glykoproteín (AGP) je proteín reagujúci s akútnou fázou, ktorý sa nachádza v séromukoidovej časti séra (SELTING et al., 2000; WINKEL et al., 2015). Ako väčšina pozitívnych APP je AGP glykoproteín syntetizovaný prevažne hepatocytmi pri APR a uvoľňovaný do krvného obehu (CÉRON et al., 2005).

AGP možno použiť na monitorovanie včasnej liečby interferónom u mačiek infikovaných vírusom imunodeficiencie mačiek (FIV) (GIL et al., 2014). AGP, ako aj haptoglobín (Hp) sa zvyšuje u anemických mačiek trpiacich pyotoraxom, abscesmi alebo tukovou nekrózou (OTTENJANN a kol., 2006).

Zdá sa, že zmeny AGP pri neoplázii mačiek nie sú v jednotlivých štúdiách konzistentné. Niektoré z nich nepopisujú žiadne zmeny u mačiek s lymfómom (CORREA a kol., 2001). Iné naopak poukazujú na zvýšenie AGP aj SAA u mačiek so sarkómami, karcinómami alebo inými okrúhlo-bunkovými nádormi (SELTING et al., 2000; TAMAMOTO et al., 2013; MEACHEN et al., 2015; HAZUCHOVA et al., 2017).

AGP má význam ako indikátorový test pre FIP, ktorý sa používa špeciálne v Európe (CECILIANI et al., 2004). GIORI et al. skúmali špecifickosť a citlivosť viacerých testov u 12 mačiek, pričom 33,33 % mačiek bolo FIP negatívnych na základe histopatológie a imunohistochémie a 66,66 % mačiek bolo FIP pozitívnych potvrdených histopatológiou a imunohistochémiou. Tento autor dospel k záveru, že na potvrdenie FIP sa musí vždy vykonať imunohistochémia, ale vysoké koncentrácie AGP môžu pomôcť podporiť diagnózu FIP v prípade, že imunohistochémiu nie je možné vykonať a histopatológia nie je presvedčivá.

Haptoglobín

Haptoglobín (Hp) je jedným z najdôležitejších proteínov akútnej fázy u hovädzieho dobytka, oviec, kôz, koní a mačiek (TIZARD, 2013a), syntetizovaný najmä hepatocytmi, ale aj inými tkanivami, ako sú koža, pľúca a obličky (JAIN et al, 2011). Hp sa viaže na molekuly železa a zneprístupňuje ich pre invázne baktérie, čím následne inhibuje bakteriálnu proliferáciu a inváziu. Následne sa viaže aj na voľný hemoglobín, čím zabraňuje jeho oxidácii s lipidmi a proteínmi (TIZARD, 2013a), čo odôvodňuje zníženie Hp v prípade hemolýzy.

U mačiek sa Hp zvyčajne zvyšuje 2- až 10-násobne pri zápalových stavoch, pričom je obzvlášť vysoký pri FIP (TIZARD, 2013a). Hp aj SAA však neposkytli dostatočnú oporu na odlíšenie FIP od iných príčin efúzie v porovnaní s AGP (HAZUCHOVÁ et at., 2017).

Meranie APP

Sérum je zložené z veľkého počtu jednotlivých proteínov, v ktorých môže detekcia zmien v jeho frakciách poskytnúť dôležité diagnostické informácie (ECKERSALL, 2008).

V ideálnom prípade by malo byť k dispozícii meranie všetkých sérových proteínov, aby sa dali použiť ako diagnostický nástroj v súvislosti so zápalovými ochoreniami.
V súčasnosti sa APP (tabuľka 2) môžu stanoviť pomocou enzýmovej imunosorbentovej analýzy (ELISA), rádioimunoanalýzy, nefelometrie, imunoturbidimetrie (IT), Western blotu a analýzy messengerovej ribonukleovej kyseliny (mRNA) (CÉRON et al., 2005;PALTRINIERI et al., 2008; SCHREIBER et. al, 1989). Hoci niektoré testy APP pre ľudí boli automatizované aj pre veterinárnu medicínu, testy špecifické pre jednotlivé druhy sú stále obmedzené. Medzidruhové rozdiely APP a obmedzená dostupnosť skrížene reagujúcich činidiel zatiaľ prispeli k nízkej rutinnej úrovni stanovenia APP vo veterinárnych laboratóriách, najmä u mačiek. Bez ohľadu na to sa technológia vyvíja a v blízkej budúcnosti je možné predpokladať rutinné monitorovanie klinicky relevantných APP u mačiek.

Záver

Proteíny akútnej fázy u mačiek sú biomarkery vhodné na monitorovanie zápalu spolu s ďalšími klinickými a laboratórnymi nálezmi, ktoré sú užitočné pri diagnostike subklinických zmien, monitorovaní vývoja a účinku ochorenia v organizme, ako aj pri hodnotení odpovede na liečbu.

U mačky je SAA APP, ktorý sa najviac prejavuje v reakcii na zápal, nasledovaný AGP a haptoglobínom, na rozdiel od CRP, ktorý sa používa u iných druhov.

Hoci existujú komerčne dostupné sety na určovanie mačacích APP, štandardizácia testov zameraná na technickú jednoduchosť, vyššiu druhovú špecifickosť s nižšími súvisiacimi nákladmi umožní rutinné používanie v mačacej praxi, ako sa to robí v humánnej medicíne.

AnalýzyVýhodyNevýhody
Rádioimunoanalýza24 až 48 hodín na získanie výsledkov, nutné špecifické zručnosti operátora
ELISAKomerčne dostupné súpravy, špecifické pre daný druhNedostatok automatizácie, drahé, určitá “between-run” nepresnosť
Imunoturbidimetria30 minút na získanie výsledkov, prispôsobiteľné biochemickým analyzátorom
Western BlotDlhé doba na spracovanie imunoblotov
Nefelometrické imunotestyZávisia od skríženej reaktivity zvýšeného antiséra
Tabuľka 2 – Výhody a nevýhody možných techník merania APP.

Dodatok: APP a ich pozícia v elektroforetograme

Aj keď existujú testy priamo na konkrétne APP, je užitočné vedieť, v ktorom regióne elektroforetogramu sa nachádzajú.

Ukážka elektroforetogramu (Výstup elektroforézy sérových bielkovín)
Sérový proteínElektroforetický región
α1-kyslý glykoproteínα1 (alfa-1)
Sérový amyloid Aα (alfa)
Haptoglobínα2 (alfa-2)
Ceruloplazmín α2 (alfa-2)
Transferínβ1 (beta-1)
C-reaktívny proteínγ (gama)
Pozícia sérových proteínov v elektroforetograme

Referencie

ALVES, A.E. et al. Leucogram and serum acute phase protein concentrations in queens submitted to conventional or videolapa- roscopic ovariectomy. Arquivo Brasileiro de Medicina Veterina- ria e Zootecnia, v.62, n.1, p.86-91, 2010. Available from: . Accessed: Oct. 10, 2018. doi: 10.1590/S0102-09352010000100012.

BAUMANN, H. & GAULDIE, J. The acute phase response.
Immunol Today, v.15, n.2, p.74-80, 1994. Available from:
https://doi.org/10.1016/0167-5699(94)90137-6. Accessed: Aug. 21, 2018. doi: 10.1016/0167-5699(94)90137-6.

BAUMANN, H. et al. Distinct regulation of the interleukin-1 and interleukin-6 response elements of the rat haptoglobin gene in rat and human hepatoma cells. Molecular and Cellular Biology, v.10, n.11, p.5967–5976, 1990. Available from: Accessed: Aug. 21, 2018. doi: 10.1128/ MCB.10.11.5967.

BENCE, L. et al. An immunoturbidimetric assay for rapid quantitative measurement of feline alpha-1-acid glycoprotein in serum and peritoneal fluid. Veterinary Clinical Pathology, v.34, n.4, p335-341, 2005. Available from: . Accessed: Jan. 13, 2019. doi: 10.1111/j.1939-165X.2005.tb00058.x.

CALLAHAN, G. & YATES, R. Veterinary Clinical Laboratory Immunology. In Warren, A. Basic Veterinary Immunology, pp. 295-317, 2014. Boulder, Colorado: University Press of Colorado.

CECILIANI, F. et al. Decreased sialylation of the acute phase protein α1-acid glycoprotein in feline infectious peritonitis (FIP). Veterinary Immunology and Immunopathology, v.99, n.3- 4, p.229-236, 2004. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j. vetimm.2004.02.003.

CERÓN, J. et al. Acute phase proteins in dogs and cats: current
knowledge and future perspectives. Veterinary Clinical

Pathology, v.34, n.2, p.85-99, 2005. Available from: . Accessed: Aug. 20, 2018. doi: 10.1111/j.1939-165X.2005.tb00019.x.

CERÓN, J.J. A seven-point plan for acute phase protein interpretation in companion animals. Veterinary Journal, v.177, n.1, p.6-7, 2008. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/j. tvjl.2007.12.001.

CORREA, S.S et al. Serum alpha 1-acid glycoprotein concentration in cats with lymphoma. Journal of the American Animal Hospital Association, v.37, n.2, p.153-158, 2001. Available from:
https://doi.org/10.5326/15473317-37-2-153. Accessed: Aug. 24, 2018. doi: 10.5326/15473317-37-2-153.

CRAY, C. et al. AcutePhase Response in Animals: A Review. Comparative Medicine, v.59, n.6, p.517–526, 2009. Available from: . Accessed: Aug. 21, 2018.

DABROWSKI, R. et al. Usefulness of C-reactive protein, serum amyloid A component and haptoglobin determinations in bitches with pyometra for monitoring early postovariohysterectomy complications. Theriogenology, v.72, n.4, p.471–476, 2009. Available from: . Accessed: Aug. 23, 2018. doi: 10.1016/j.theriogenology.2009.03.017.

DUTHIE, S. et al. Value of α1-acid glycoprotein in the diagnosis of feline infectious peritonitis. The Veterinary Record, v.141, n.12, p.299–303, 1997. Available from: . Accessed: Aug. 11, 2018. doi: 10.1136/ vr.141.12.299.

ECKERSALL, P. Proteins, Proteomics, and the Dysproteinemias. In Kaneko, J., Harvey, J. & Bruss, M. In Clinical Biochemistry of Domestic Animals. 6. ed. USA: Elsevier, 2008, Chap. 5, p.117-155.

ECKERSALL, P.D. & BELL, R. Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. The Veteri- nary Journal, v.185, n.1, p.23-27, 2010. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/j.tvjl.2010.04.009.

ECKERSALL, P.D. et al. Acute phase protein response in an experimental model of ovine caseous lymphadenitis. BMC Veterinary Research, v.19, p.3-35, 2007. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2010.04.009.

ECKERSALL, P.D. et al. Acute phase proteins in serum and milk from dairy cows with clinical mastitis. Veterinary Record, v.148, n.2, p.35–41, 2001. Available from: . Accessed: Aug. 22, 2018. doi: 10.1136/ vr.148.2.35.

GIL, S. et al. Oral recombinant feline interferon-omega as an alternative immune modulation therapy in FIV positive cats: Clinical and laboratory evaluation. Research in Veterinary Science, v.96, n.1, p.79–85, 2014. Available from: . Accessed: Oct. 10, 2018. doi: 10.1016/j.rvsc.2013.11.007.

GIORDANO, A. et al. Changes in some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection. The Veterinary Journal, v.167, n.1, p.38-44, 2004. Available from:
https://doi.org/10.1016/S1090-0233(03)00055-8. Accessed:
Aug. 9, 2018. doi: 10.1016/S1090-0233(03)00055-8.

GIORI, L. et al. Performances of different diagnostic tests for feline infectious peritonitis in challenging clinical cases. Journal of Small Animal Practice, v.52, n.3, p.152-157, 2011. Available from:
https://doi.org/10.1111/j.1748-5827.2011.01042.x. Accessed:
Aug. 24, 2018. doi: 10.1111/j.1748-5827.2011.01042.x.

GRUYS, E. et al. Acute phase reaction and acute phase proteins. Journal of Zhejiang University. Science B, v.6, n.11, p.1045- 1056, 2005. Available from: . Accessed: Aug. 21, 2018.
doi: 10.1631/jzus.2005.B1045.

HAZUCHOVA, K. et al. Usefulness of acute phase proteins in differentiating between feline infectious peritonitis and other diseases in cats with body cavity effusions. Journal of Feline Medicine and Surgery, v.19, n.8, p.809-816, 2017. Available from: https://doi.org/10.1177/1098612X16658925. Accessed: Aug. 11, 2018. doi: 10.1177/1098612X16658925.

HOCHEPIED, T. et al. α1-Acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev, v.14, n.1, p.25–34, 2003. Available from:
https://doi.org/10.1016/S1359-6101(02)00054-0. Accessed: Aug. 21, 2018. doi: 10.1016/S1359-6101(02)00054-0.

JACOBSEN, S. et al. Evaluation of a commercially available human serum amyloid A (SAA) turbidometric immunoassay for determination of equine SAA concentrations. Veterinary Journal, v.172, n.2, p.315–319, 2006. Available from: . Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2005.04.021.

JAIN, S. et al. Acute-phase proteins: As diagnostic tool. Journal of Pharmacy and Bioallied Sciences, v.3 v.1, p.118–127, 2011. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3053509/. Accessed: Aug. 21, 2018. doi: 10.4103/0975-7406.76489.

JAVARD R. et al. Acute phase proteins and iron status in cats with chronic kidney Disease. Journal of Veterinary Internal Medicine, v.31, n.2, p.457-464, 2017. Available from: . Accessed: Oct. 10, 2018. doi: 10.1111/jvim.14661.

JERGENS, A.E. et al. A scoring index for disease activity in canine inflammatory bowel disease. Journal of Veterinary Internal Medicine, v.17, n.3, p.291–297, 2003. Available from: . Accessed: Aug. 22, 2018. doi: 10.1111/j.1939-1676.2003.tb02450.x.

KAJIKAWA, T. et al. Changes in concentrations of serum amyloid A protein, alpha 1-acid glycoprotein, haptoglobin, and C-reactive protein in feline sera due to induced inflammation and surgery. Veterinary Immunology and Immunopathology, v.68, n.1, p. 91-98, 1999. Available from: Accessed: Aug. 10, 2018. doi: 10.1016/S0165-
2427(99)00012-4.

KANN, R. et al. Acute phase proteins in healthy and sick cats. Research in Veterinay Science, v.93, n.2. p.649-654, 2012. Available from: https://doi.org/10.1016/j.rvsc.2011.11.007. Accessed: Aug. 20, 2018. doi: 10.1016/j.rvsc.2011.11.007.

KURIBAYASHI, T. et al. Alpha 1-acid glycoprotein (AAG) levels
in healthy and pregnant beagle dogs. Experimental Animals, v.52,
n. 5, p.377–381, 2003. Available from: . Accessed: Jan. 13, 2019. doi: 10.1538/expanim.52.377.

LEAL, R. et al. Monitoring acute phase proteins in retrovirus infected cats undergoing feline interferon-ω therapy. Journal of Small Animal Practice, v.55, n.1, p.39-45, 2014. Available from:
https://doi.org/10.1111/jsap.12160. Accessed: Jan. 6, 2019. doi: 10.1111/jsap.12160.

MARTÍNEZ-SUBIELA, S. et al. Validación analítica de técnicas comerciales para la determinación de haptoglobina, proteína C reactiva y amiloide A sérico en caninos [Analytical validation of comercial techniques for haptoglobin, C reactive protein and sérum amyloid A determinations in dogs]. Archivos de Medicina Veterinaria, v.37, n.1, 2005. Available from: . Accessed: Jan. 13, 2019. doi: 10.4067/S0301-732X2005000100009.

MEACHEM, M.D. et al. A comparative proteomic study of plasma in feline pancreatitis and pancreatic carcinoma using 2-dimensional gel electrophoresis to identify diagnostic biomarkers: A pilot study. Canadian Journal of Veterinary Research, v.79, n.3, p.184-189, 2015. Available from: . Accessed: Oct. 10, 2018.

MURATA, H. et al. Current research on acute phase proteins in veterinary diagnosis: An overview. The Veterinary Journal, v.168, n.1, p.28–40, 2004. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/ S1090-0233(03)00119-9.

OTTENJANN, M. et al. Characterization of the anemia of inflammatory disease in cats with abscesses, pyothorax, or fat necrosis. Journal of Veterinary Internal Medicine, v.2, n.5, p. 1143-1150, 2006. Available from: . Accessed: Aug. 24, 2018. doi: 10.1111/j.1939-1676.2006.tb00713.x.

PALTRINIERI, S. Early biomarkers of inflammation in dogs and cats: The acute phase protein. Veterinary Research Communications, v.31, n.1, p.125-129, 2007a. Available from:
. Accessed: Aug. 21, 2018. doi: 10.1007/s11259-007- 0107-3.

PALTRINIERI, S. et al. Serum alpha1-acid glycoprotein (AGP) concentration in non-symptomatic cats with feline coronavirus (FCoV) infection. Journal of Feline Medicine and Surgery, v.9, n.4, p.271-277, 2007b. Available from: . Accessed: Aug. 11, 2018. doi: 10.1016/j. jfms.2007.01.002.

PALTRINIERI, S. The feline acute phase reaction. Review. The Veterinary Journal, v.111, n.1, p.26-35, 2008. Available from:
https://doi.org/10.1016/j.tvjl.2007.06.005. Accessed: Aug. 24, 2018. doi: 10.1016/j.tvjl.2007.06.005.

PETERSEN, H. et al. Application of acute phase protein measurements in veterinary clinical chemistry. Veterinary Research, v.35, n.2, p.163–187, 2004. Available from: . Accessed: Aug. 20, 2018. doi: 10.1051/vetres:2004002.

SALGADO, F. J., et al. (2011). Acute phase proteins as biomarkers of disease: from Bench to Clinical Practice. In Veas, F. Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases. Rijeka, Croatia: InTech. Available from:
http://www.documentation.ird.fr/hor/fdi:010060045. Accessed:
Aug. 21, 2018. doi: 10.5772/1045.

SASAKI, K. et al. Evaluation of feline serum amyloid A (SAA) as an inflammatory marker. Journal of Veterinary Medical Science, v.65, n.4, p.545-8, 2003. Available from: . Accessed: Aug. 10, 2018.

SCHREIBER, G. et al. The acute phase response in the rodent. Annals of the New York Academy of Science, v.557, p.61–85, 1989. Available from: . Accessed: Aug. 24, 2018. doi: 10.1111/j.1749- 6632.1989.tb24000.x.

SELTING, K. et al. Serum alpha 1-acid glycoprotein concentrations in healthy and tumor-bearing cats. Journal of Veterinary Internal Medicine, v.14, n.5, p.503-506, 2000. Available from: . Accessed: Aug. 9, 2018. doi: 10.1111/j.1939-1676.2000.tb02267.x.

SHIMADA, T. et al. Monitoring C-reactive protein in beagle dogs experimentally inoculated with Ehrlichiacanis. Veterinary Research Communications, v.26, n.3, p.171– 177, 2002. Available from: . Accessed: Aug. 22, 2018. doi:
10.1023/A:1015290903332.

SILVESTRE-FERREIRA, A.C. et al. Serum acute phase proteins in Dirofilariaimmitis and Wolbachia seropositive cats. Journal of Feline Medicine and Surgery, v.19, n.6, p.693–696, 2017. Available from: https://doi.org/10.1177/1098612X15625435. Accessed: Sep. 16, 2018. doi: 10.1177/1098612X15625435.

TAMAMOTO, T. et al. Serum amyloid A as a prognostic marker in cats with various diseases. Journal of Veterinary Diagnostic Investigation, v.25, n.3, p.428–432, 2013. Available from: . Accessed: Jan. 27, 2019.

TECLES, F. et al. Validation of a commercially available human immunoturbidimetric assay for haptoglobin determination in canine serum samples. Veterinary Research Communications, v.31, n.1, p.23–36, 2007. Available from: . Accessed: Jan. 13, 2019. doi: 10.1007/s11259-006-3397-y.

TERWEE, J. et al. Characterization of the systemic disease and ocular signs induced by experimental infection with Chlamydia psittaci in cats. Veterinary Microbiology, v.59,
259-281, 1998. Available from: . Accessed: Aug. 20, 2018. doi: 10.1016/ S0378-1135(97)00185-5.

TIZARD, I. Innate immunity:proinflammatory and antimicrobial mediators/systemic responses to inflammation. In Veterinary Immunology. 9.ed. St. Louis, Missouri: Saunders, Elsevier, 2013a. Chap. 6, p.52-58.

TIZARD, I. Innate immunity: proinflammatory and Atimicrobial mediators/systemic responses to Inflammation. In Veterinary Immunology. 9.ed. St. Louis, Missouri: Saunders, Elsevier, 2013b. Chap. 4, p.31-40.

TROÌA, R. et al. Serum amyloid A in the diagnosis of feline sepsis. Journal of Veterinary Diagnostic Investigation, v.29, n.6, p.856-859, 2017. Available from: . Accessed: Aug. 11, 2018. doi: 10.1177/1040638717722815.

VILHENA, H. et al. Acute phase proteins response in cats naturally infected by hemotropic mycoplasmas. Comparative Immunology, Microbiology & Infectious Diseases, v.56, p.1-5, 2018. Available from: https://doi.org/10.1016/j.cimid.2017.11.001. Accessed: Aug. 11, 2018. doi: 10.1016/j.cimid.2017.11.001.

VILHENA, H. et al. Acute phase proteins response in cats naturally infected with Hepatozoonfelis and Babesia vogeli. Veterinary Clinical Pathology, v.48, n.1, p.72-76, 2017. Available from:
https://doi.org/10.1111/vcp.12451. Accessed: Aug. 10, 2018. doi: 10.1111/vcp.12451.

WEIDMEYER, C. & SOLTER, P. Validation of human haptoglobin immunoturbidimetric detection of haptoglobin in equine and canine serum and plasma. Veterinary Clinical Pathology, v.24, n.4, p.141–146, 1996. Available from: . Accessed: Jan. 13, 2019. doi: 10.1111/j.1939-165X.1996.tb00988.x.

WHICHER, T. et al. Immunonephelometric and immunoturbidi- metric assays for proteins. Critical Reviews in Clinical Labo- ratory Sciences, v.18, n.3, p.213–260, 1983. Available from:
https://doi.org/10.3109/10408368209085072. Accessed: Aug. 13, 2019. doi: 10.3109/10408368209085072.

WINKEL, V. et al. Serum α-1 acid glycoprotein and serum amyloid A concentrations in cats receiving antineoplastic treatment for lymphoma. American Journal Veterinary Research, n.76, v.11, p.983-988, 2015. Available from: . Accessed: Aug. 22, 2018. doi: 10.2460/ ajvr.76.11.983. Prečítať “Proteíny akútnej fázy u mačiek”

Alternatívna liečba mačiek s FIP a prirodzenou alebo získanou rezistenciou voči GS-441524

Niels C. Pedersen, Nicole Jacque, 3.11. 2021
Pôvodný článok: Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524

Skratky:
SC – subcutaneous – podkožne
IV – intravenózne
IM – do svalu
PO – per os – perorálne
SID – raz denne
BID – 2x denne
q24h – raz za 24 hodín
q12h – raz za 12 hodín

Úvod

Rezistencia na antivirotiká je dobre zdokumentovaná v prípade chorôb, ako sú HIV/AIDS a hepatitída C. V niektorých prípadoch je táto rezistencia prítomná v infikujúcom víruse, ale častejšie je dôsledkom dlhodobej expozície lieku. Rezistencia na GC376 [1] a GS-441524 [2] bola zdokumentovaná aj u mačiek s prirodzene získanou FIP. Rezistencia sa vyvíja na základe mutácií v oblastiach vírusového genómu, ktoré obsahujú ciele pre antivírusové liečivo. Napríklad v proteáze (3CLpro) izolátu FIPV od mačky s rezistenciou na GC376 sa zistilo niekoľko zmien aminokyselín (N25S, A252S alebo K260N) [3]. Zistilo sa, že zmena N25S v 3CLpro spôsobuje 1,68-násobné zvýšenie 50 % inhibičnej koncentrácie GC376 v tkanivových kultúrach [3]. Rezistencia voči GC376, hoci bola rozpoznaná v počiatočných terénnych testoch, nebola doteraz opísaná. GC376 nie je tak populárny pri liečbe FIP a neodporúča sa pre mačky s okulárnou alebo neurologickou FIP [1].

Prirodzená rezistencia na GS-441524 bola pozorovaná u jednej z 31 mačiek liečených na prirodzene získanú FIP [2]. Jedna z 31 mačiek v pôvodnej terénnej štúdii GS-441524 sa tiež javila ako rezistentná, keďže hladiny vírusovej RNA sa počas celého obdobia liečby neznížili a príznaky ochorenia sa nezmiernili. Hoci sa tento vírus neštudoval, rezistencia na GS-5734 (Remdesivir), proliečivo GS-441524, bola vytvorená v tkanivovej kultúre pomocou aminokyselinových mutácií v RNA polymeráze a korektívnej exonukleáze [4].

Rezistencia voči GS-441524 bola potvrdená u časti mačiek, ktoré boli liečené na FIP pomocou GS-441524 za posledné 3 roky, najmä medzi mačkami s neurologickou FIP [5]. Rezistencia na GS441524 je zvyčajne čiastočná a vyššie dávky často vyliečia infekciu alebo výrazne znížia príznaky ochorenia počas trvania liečby. Zaujímavé je, že rezistencia na GS-441524 sa zisťuje aj u pacientov s Covid19 liečených Remdesivirom [12]. U imunokompromitovaného pacienta sa vyvinul zdĺhavý priebeh infekcie SARS-CoV-2. Liečba Remdesivirom spočiatku zmiernila príznaky a výrazne znížila hladiny vírusu, ale ochorenie sa vrátilo spolu s veľkým nárastom replikácie vírusu. Sekvenovaním celého genómu sa identifikovala mutácia E802D v nsp12 RNA-dependentnej RNA polymeráze, ktorá nebola prítomná vo vzorkách pred liečbou a spôsobovala 6-násobné zvýšenie rezistencie.

Aj keď už bola opísaná história molnupiraviru a jeho nedávne použitie na liečbu FIP [6], v súčasnosti nie sú k dispozícii žiadne štúdie, ktoré by dokumentovali prirodzenú alebo získanú rezistenciu na molnupiravir. Ukázalo sa, že molnupiravir funguje ako mutagén RNA vyvolávajúci viaceré defekty vo vírusovom genóme [7], zatiaľ čo remdesivir/GS-441524 je neobligátny terminátor reťazca RNA [8], čo naznačuje, že jeho profil rezistencie bude odlišný.

Prekonanie rezistencie voči GS-441524

Rezistenciu na lieky možno prekonať len dvomi spôsobmi: 1) postupným zvyšovaním dávky antivirotika, aby sa dosiahli hladiny liečiva v telesných tekutinách, ktoré presahujú úroveň rezistencie, alebo 2) použitím iného antivirotika, ktoré má iný mechanizmus rezistencie, buď samostatne, alebo v kombinácii. Doteraz sa volila prvá možnosť, ktorá sa v mnohých prípadoch ukázala ako účinná. Rezistencia na GS-441524 však môže byť úplná alebo taká vysoká, že zvyšovanie dávky už nie je účelné. V takýchto prípadoch sa čoraz viac využíva druhá možnosť. V súčasnosti dostupnými alternatívami k lieku GS-441524, aj keď stále z neschváleného trhu, sú GC376 a molnupiravir.

Režimy liečby antivírusovými liekmi pri rezistencii na GS-441524

GC376/GS-441524


Kombinovaný režim GS/GC sa osvedčil u mačiek liečených GS-441524 v dávkach až 40 mg/kg bez vyliečenia v dôsledku rezistencie na GS-441524. Je vhodnejšie zasiahnuť hneď, ako sa zistí rezistencia na GS-441524, čo umožní vyliečiť mačku skôr a s menšími finančnými nákladmi majiteľa.

Spoločnosť Rainman je súčasným dodávateľom GC376, ktorý sa dodáva v 4 ml injekčných vialkách s koncentráciou 53 mg/ml.

Dávkovanie GS/GC: Dávka GS (SC alebo PO ekvivalent) pri kombinovanej liečbe antivirotikami je rovnaká ako dávka potrebná na primeranú kontrolu príznakov ochorenia. Zvyčajne je to posledná dávka použitá pred ukončením liečby a vznikom relapsu. K tejto dávke GS-441524 sa pridáva GC376 v dávke 20 mg/kg SC q24h bez ohľadu na formu FIP. Toto je dostatočné pre väčšinu mačiek, vrátane mnohých mačiek s neuro FIP, ale niektoré budú potrebovať vyššie dávky. Ak sa nedosiahne remisia klinických príznakov alebo sú krvné testy znepokojujúce, dávka GC376 sa zvyšuje o 10 mg/kg až na 50 mg/kg SC q24h.

Dĺžka liečby: Odporúča sa osemtýždňová kombinovaná liečba GC/GS, ktorá sa pridáva k predchádzajúcej monoterapii GS. Niektoré mačky boli vyliečené pri 6 týždňoch kombinovanej liečby, ale recidíva je pravdepodobnejšia ako po 8 týždňoch.

Vedľajšie účinky: U väčšiny mačiek sa nevyskytujú žiadne závažné vedľajšie účinky. Približne jedna z piatich mačiek však môže pociťovať nevoľnosť alebo nepríjemné pocity na začiatku liečby a občas aj dlhšie. Zdá sa, že tieto vedľajšie účinky nie sú závislé od dávky a možno ich liečiť liekmi proti nevoľnosti, ako sú Cerenia, Ondansetron alebo Famotidín. Zdá sa, že u niektorých mačiek lepšie účinkoval ondansetrón.

Molnupiravir

Molnupiravir bol hlásený ako účinný v monoterapii mačiek s FIP najmenej jedným čínskym predajcom GS-441524 [9], ale nie sú žiadne správy o jeho použití u mačiek s rezistenciou na GS-441524. Je však nepravdepodobné, že by sa rezistencia na GS-441524 rozšírila aj na molnupiravir. Skutočnosť, že sa zistilo, že je účinný ako perorálny liek, ho robí atraktívnym aj pre samostatnú liečbu, keďže mnohé mačky s rezistenciou na GS-441524 trpeli injekciami veľmi dlhé obdobie.

Terénna štúdia molnupiraviru údajne pozostávala z 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP, ktoré boli vyšetrené na klinikách pre spoločenské zvieratá v USA, Spojenom kráľovstve, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. Medzi 286 mačkami, ktoré sa zúčastnili na skúške, nedošlo k žiadnemu úmrtiu, vrátane siedmich mačiek s očnou (n=2) a neurologickou (n=5) FIP. Dvadsaťosem z týchto mačiek bolo vyliečených po 4 – 6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky zostali zdravé o 3 – 5 mesiacov neskôr, čo je obdobie, počas ktorého by sa u mačiek, ktoré neboli úspešne vyliečené, očakávali recidívy. Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná vo forme rukopisu, predložená na recenzné konanie a publikovaná. Napriek tomu sa teraz predáva majiteľom mačiek s FIP. Minimálne jeden ďalší veľký predajca lieku GS-441524 má tiež záujem o používanie molnupiraviru na FIP, čo naznačuje dopyt po ďalšej liečbe mačiek s FIP antivirotikami.

Dávkovanie molnupiraviru: Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo stanovené na základe dôkladne kontrolovaných a monitorovaných terénnych štúdií, aké boli vykonané napríklad pre GC376 [1] a GS-441524 [2]. Najmenej jeden predajca z Číny však vo svojom reklamnom letáku na produkt s názvom Hero-2801 [9] poskytol niektoré farmakokinetické údaje a údaje z terénnych testov Molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP. V týchto informáciách nie je jasne uvedené množstvo molnupiraviru v jednej z ich “50 mg tabliet” a skutočný dávkovací interval (q12h alebo q24h?). Dávka použitá v tejto štúdii sa tiež zdala byť príliš vysoká. Odhadovanú počiatočnú dávku molnupiraviru u mačiek s FIP možno našťastie získať z publikovaných štúdií o EIDD-1931 a EIDD-2801 [15] in vitro na bunkových kultúrach a laboratórnych a terénnych štúdií GS-441524 [14,18]. Molnupiravir (EIDD-2801) má EC50 0,4 uM/ul proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je približne 1,0 uM/ul [18]. Oba majú podobnú perorálnu absorpciu približne 40 – 50 %, takže účinná subkutánna (SC) dávka molnupiraviru by bola približne polovica odporúčanej začiatočnej dávky 4 mg/kg SC q24h pre GS441524 [14] alebo 2 mg/kg SC q24h. Perorálna (PO) dávka by sa zdvojnásobila, aby sa zohľadnila menej účinná perorálna absorpcia na dávku 4 mg/kg PO q24h. Odhadovanú počiatočná účinnú perorálnu dávku molnupiraviru u mačiek s FIP možno vypočítať aj z dostupných údajov o liečbe Covid-19. Pacientom liečeným Covidom-19 sa podáva 200 mg molnupiraviru PO q12h počas 5 dní. Táto dávka bola samozrejme vypočítaná na základe farmakokinetickej štúdie vykonanej na ľuďoch, a ak priemerný človek váži 60 – 80 kg (70 kg), účinná inhibičná dávka je ~ 3,0 mg/kg PO q12h. Mačka má bazálnu rýchlosť metabolizmu 1,5-krát vyššiu ako človek a za predpokladu rovnakej perorálnej absorpcie u ľudí aj mačiek by minimálna dávka pre mačky podľa tohto výpočtu bola 4,5 mg/kg PO q12h pri neokulárnych a neneurologických formách FIP. Ak molnupiravir prechádza cez hematookulárnu a hematoencefalickú bariéru s rovnakou účinnosťou ako GS-441524 [3,18], dávka by sa mala zvýšiť na ~1,5 a ~2,0-násobok., aby došlo k adekvátnemu prieniku do komorovej vody a mozgovomiechového moku pre mačky s očnou (~8 mg/kg PO, q12 h), resp. neurologickou FIP (~10 mg/kg PO, q12 h). Tieto dávky sú porovnateľné s dávkami používanými u fretiek , kde 7 mg/kg q12h udržiava sterilizujúce hladiny liečiva v krvi proti vírusu chrípky (1,86 uM) počas 24 hodín [10]. Dávky u fretiek 128 mg/kg PO q12h spôsobili takmer toxické hladiny v krvi, zatiaľ čo dávka 20 mg/kg PO q12h spôsobila len nepatrne vyššie hladiny v krvi [10].

Molnupiravir/GC376 alebo Molnupiravir/GS-441524

Kombinácie molnupiraviru s GC376 alebo GS-441524 sa budú používať čoraz častejšie, a to nielen kvôli synergii alebo doplnení ich individuálnych antivírusových účinkov, ale aj ako spôsob prevencie liekovej rezistencie. Liečivé koktaily boli veľmi účinné pri prevencii liekovej rezistencie u pacientov s HIV/AIDS [11]. V súčasnosti však nie sú k dispozícii dostatočné dôkazy o bezpečnosti a účinnosti kombinácie molnupiraviru s GC376 alebo GS-441524 ako počiatočnej liečby FIP.

Prípadové štúdie


Rocky – DSH MN Neuro FIP


9-mesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny mal niekoľko týždňov trvajúce záchvaty so zvyšujúcou sa frekvenciou, ataxiou a progresívnou parézou. Krvné testy boli bez pozoruhodností. Liečba FIP sa začala dávkou 15 mg/kg BID GS-441524, ktorá sa približne týždeň znižovala na SID. U mačky sa do 24 hodín od začiatku liečby prejavilo zlepšenie, záchvaty ustali a zvýšila sa jej pohyblivosť. Do 5 dní liečby bola mačka opäť schopná pohybu. Približne 2 týždne od začiatku liečby sa však u mačky objavila strata zraku, znížená pohyblivosť, obnovenie záchvatov a ťažkosti s prehĺtaním. Bola vykonaná úprava dávky levetiracetamu a prednizolónu, ako aj zmena zloženia lieku GS-441524, po ktorej nasledovalo prechodné zlepšenie pohyblivosti a prehĺtania a zníženie výskytu záchvatov, celkovo sa však stav mačky zhoršil. Dávka lieku GS-441524 sa postupne zvyšovala až na 25 mg/kg, pričom zlepšenie bolo malé alebo žiadne. V tomto bode sa prešlo na perorálne podávanie GS v dávke 25 mg/kg (odhaduje sa, že zodpovedá približne 12,5 mg/kg) a do 3 dní sa mačka začala pohybovať, zlepšilo sa jej videnie a prestali záchvaty spolu so zvýšením energie a chuti do jedla. Zlepšovanie u mačky pokračovalo približne 4 týždne pri perorálnom podávaní GS-441524, potom ustalo približne 3 týždne pred rýchlo postupujúcou parézou. Boli skúšané perorálne dávky až do výšky 30 mg/kg SC ekvivalentu avšak bez účinku. Potom sa prešlo na injekčné podávanie GS-441524 v dávke 20 mg/kg a mačka bola do 4 dní opäť schopná pohybu s dobrou chuťou do jedla a energiou. Po 2 týždňoch sa do dávkovacieho režimu pridala dávka GC376 20 mg/kg BID. Mačka ukončila 6 týždňov kombinovanej liečby GS441524 a GC376 a potom liečbu ukončila. Hoci mačka má určité trvalé neurologické deficity, jej stav je stabilný, má dobrú pohyblivosť, chuť do jedla a aktivitu už 9 mesiacov od ukončenia antivírusovej liečby.

Video Rockyho: https://www.youtube.com/watch?v=RXB_NnfcMOY

Bucky – DSH MN Neuro/okulárna FIP


Štvormesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny bol prezentovaný s mesačnou anamnézou letargie a progresívnou anamnézou ataxie, parézou zadných končatín, pikou, uveitídou, anizokóriou a inkontinenciou moču a stolice. Krvné testy boli väčšinou bez pozoruhodností s výnimkou miernej hyperglobulinémie. Pomer A/G bol 0,6. Mačka bola liečená dávkou 10 mg/kg GS-441524 SC SID počas 3 týždňov. Aktivita, mentácia a uveitída sa zlepšili do 72 hodín od začiatku liečby. Počas prvých 2 týždňov sa pozorovalo pomalé zlepšenie pohyblivosti a očných symptómov, ale potom sa dosiahlo plató. Po 3 týždňoch sa dávka GS-441524 zvýšila na 15 mg/kg GS-441524 SC SID z dôvodu pretrvávajúceho neurologického a očného deficitu. Okrem toho sa v tomto čase zaznamenalo zväčšenie ľavého oka v dôsledku glaukómu a oko naďalej opúchalo až do jeho odstránenia v 8. týždni liečby.
Vzhľadom na pretrvávajúcu slabosť/nedostatok koordinácie v panvovej oblasti a narastajúcu letargiu sa v 9. týždni dávka GS-441524 zvýšila na 20 mg/kg SC SID [alebo ekvivalentnú perorálnu dávku] a o niekoľko dní neskôr sa do režimu pridalo 20 mg/kg SC BID GC376. Výrazne zvýšená aktivita a ochota skákať na vyvýšené povrchy sa prejavila do 48 hodín od začiatku liečby liekom GS376. Kombinovaná liečba GS-441524 a GC376 sa udržiavala počas 8 týždňov. Mačka má po liečbe reziduálne problémy s inkontinenciou, ale inak je 6 mesiacov po liečbe klinicky normálna.

Boris – Mainská mývalia MI vlhká očná FIP


Päťmesačný intaktný (nekastrovaný) kocúr mainskej mývalej mačky, získaný od chovateľa, mal letargiu, nechutenstvo, brušný ascites, kašeľ, anémiu a neutrofíliu. Pri stanovení diagnózy nebol vykonaný žiadny biochemický rozbor. Mačka bola liečená 6 mg/kg GS-441524 SC SID počas 8 týždňov. Po šiestich týždňoch liečby röntgen odhalil uzlíky v pľúcach a po 8 týždňoch pretrvávala hyperglobulinémia. Dávka GS-441524 sa potom zvýšila na 8 mg/kg SC SID počas 4 týždňov. V krvných testoch a na röntgenových snímkach sa zaznamenalo len malé zlepšenie a dávka GS-441524 sa zvýšila na 12 mg/kg SC SID počas 4 týždňov, potom nasledovalo zvýšenie na 17 mg/kg počas 11 týždňov, 25 mg/kg počas 4 týždňov a 30 mg/kg počas 4 týždňov. Po 25 týždňoch liečby sa ultrazvukom zaznamenali pleurálne odchýlky na ľavej strane a röntgenové snímky nepreukázali žiadne zlepšenie pľúcnych uzlín. Okrem toho sa na pravom oku zaznamenala uveitída a odchlípenie sietnice. Boli odobraté aspiráty pľúc, ktoré preukázali zápal zodpovedajúci FIP. Po 33 týždňoch liečby sa do režimu pridalo 20 mg/kg SC BID GC376 a kombinovaná liečba GS-441524 a GC376 pokračovala 12 týždňov. Zvýšená aktivita sa zaznamenala v priebehu niekoľkých dní. V priebehu 5 týždňov sa zrýchlilo priberanie na hmotnosti, zmiernil sa kašeľ a zvýšila sa uroveň energie. Krvné testy ukázali zlepšenie pomeru A/G a röntgenové snímky hrudníka preukázali zmenšenie uzlín v pľúcach. Po 84 dňoch kombinovanej antivírusovej liečby bol pomer A/G 0,85 a mačka sa javila klinicky normálne. Mačka je v súčasnosti 3 mesiace po liečbe.

Literatúra

  1. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018; 20(4):378-392.
  2. Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019; 21(4):271-281.
  3. Perera KD, Rathnayake AD, Liu H, et al. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. J. Vet Microbiol. 2019;237:108398. doi:10.1016/j.vetmic.2019.108398
  4. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9. DOI:10.1128/mBio.00221-18.
  5. Pedersen NC. 2021. The neurological form of FIP and GS-441524 treatment.
    https://sockfip.org/the-neurological-form-of-fip-and-gs-441524-treatment/
  6. Pedersen NC. The long history of beta-d-n4-hyroxycytidine and its modern application to treatment of covid019 in people and FIP in cats. https://sockfip.org/the-long-history-of-beta-d-n4-hydroxycytidineand-its-modern-application-to-treatment-of-covid-19-in-people-and-fip-in-cats/.
  7. Agostini, M. L. et al. Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 2019; 93, e01348.
  8. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531, 381–385.
  9. FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir) https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/
  10. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, Shean RC, Bluemling GR, Kolykhalov AA, Greninger AL, Natchus MG, Painter GR, Plemper RK. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med. 2019;11(515):eaax5866.
  11. Zdanowicz MM. The pharmacology of HIV drug resistance. Am J Pharm Educ. 2006;70(5):100.doi:10.5688/aj7005100
  12. Gandhi, S, Klein J, Robertson A, et al. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. medRxiv, 2021.11.08.21266069AID
Prečítať “Alternatívna liečba mačiek s FIP a prirodzenou alebo získanou rezistenciou voči GS-441524”

Liečba FIP subkutánnym remdesivirom nasledovaným perorálnymi tabletami GS-441524

Richard Malik DVSc PhD FACVS Centrum FASM pre Veterinárne vzdelávanie, Univerzita v Sydney
Pôvodný článok: Treatment of FIP in cats with subcutaneous remdesivir followed by oral GS-441524 tablets

Poznámka prekladateľa: Článok obsahuje informácie o reálnom obsahu GS-441524 v tabletách. Tento obsah ale nemusí zodpovedať “ekvivalentnému” množstvu GS-441524 v tabletách od iných výrobcov, kde je reálny obsah GS-441524 vždy o niečo vyšší kvôli známej zníženej biologickej dostupnosti perorálne používaného liečiva. Preto nie je možné jednoducho a jednoznačne porovnávať doporučene dávkovanie GS-441524 od firmy BOVA v Austrálii a u nás.

Úvod

Infekčná peritonitída mačiek (FIP) je infekčné ochorenie, najmä mladých mačiek. Dochádza k nemu, keď mačací enterický koronavírus množiaci sa v črevách prechádza kritickou mutáciou, ktorá zmení jeho tkanivový tropizmus z enterocytov na makrofágy. Vírus FIP potom cirkuluje po tele v makrofágoch – jedná sa o ultimátny mechanizmus trójskeho koňa. To vedie k diseminovanej infekcii a rozvoju fibrinoidnej nekrotizujúcej vaskulitídy a serozitídy v dôsledku ukladania imunitných komplexov pozostávajúcich z mačacích protilátok a FIP vírusových antigénov.

Vo všeobecnosti existujú dve formy FIP – efuzívna („vlhká“) FIP a neefuzívna („suchá“) FIP. Vlastný chorobný proces sa môže vyskytnúť v brušnej dutine, hrudnej dutine, osrdcovníku, očiach alebo centrálnom nervovom systéme. Kombinácie suchej a vlhkej FIP s postihnutím rôznych tkanív nie sú ničím nezvyčajným.

Až donedávna bola diagnóza infekčnej peritonitídy mačiek (FIP) pre mačacieho pacienta rozudkom smrti. V posledných rokoch však táto predstava bola postavená na hlavu ako výsledok priekopníckej práce profesora Nielsa C. Pedersena a kolegov z UC Davis.

Za posledných 12 mesiacov mnohí veterinári v Austrálii tiež úspešne zvládli mnoho prípadov FIP pomocou remdesiviru a GS-441524.

Omega-interferón (Virbagen) a polyprenyl imunostimulant (PPI) boli prvé lieky používané na liečbu FIP a obe mali u niektorých pacientov isté účinky. Omega interferón bol užitočný v prípadoch efuzívnej („vlhkej“) FIP, často kombinovanej s nízkou dávkou prednizolónu podľa Ishidovho protokolu, zatiaľ čo PPI, ktorého priekopníkom bol Al Legendre, bol užitočnejší v prípadoch neefuzívnej FIP. V niektorých prípadoch boli oba lieky použité súčasne. Problém bol v tom, že obe formy terapie boli často drahé, najmä keď sa používali oba lieky, takže aj keď sa pacienti zlepšili a mohli mať prechodné klinické remisie počas liečby, trvalé klinické vyliečenia boli zriedkavé. V dôsledku toho väčšina veterinárov stále považovala diagnózu FIP za predohru eutanázie.

To všetko sa zmenilo pred niekoľkými rokmi vďaka vyvrcholeniu celoživotneho výskumu FIP Dr. Nielsa Pedersena. Niels je úžasný veterinár, Severoameričan s dánskym pôvodom. Vyrastal na slepačej farme a pôvodne chcel byť klinickým lekárom pre veľké zvieratá, ale s veľkou predvídavosťou sa rozhodol pre vedeckú dráhu. Krátko po promócii odcestoval do Canberry na John Curtin School of Medical Research na ANU, kde koncom 60-tych rokov získal doktorát z imunológie o odmietaní obličkového transplantátu u profesora Bede Morrisa, pričom použil ovce ako experimentálny model na štúdium kinetiky lymfocytov.

Keď sa Niels vrátil na UC Davis, zameral sa na štúdium infekcií a imunity. Aj keď prispel k veľkému množstvu tém z internej medicíny a genomiky psov a mačiek, FIP sa stala jeho obľúbenou chorobou pre svoju obyčajnosť a súčasnú zložitosť. Jeho štúdium siaha od 80. rokov 20. storočia, keď sa špecializoval na diagnostiku, virológiu a patogenézu, až po súčasnosť, s čoraz väčším zameraním na terapiu.

Niels v spolupráci s kolegami z Kansas State University ukázal, že účelovo navrhnutý inhibítor proteázy GC-376 by mohol zabrániť a vyliečiť experimentálne indukovanú FIP u laboratórnych mačiek.1,2 Klinické štúdie v teréne s mačkami s prirodzene sa vyskytujúcou chorobou boli sklamaním, najmä keď mačky mali okulárnu formu FIP alebo ochorenie CNS. Nevzdal sa, a tak prešiel na iný liek – GS-4415243,4 – nukleozidový analóg vyvinutý severoamerickou farmaceutickou spoločnosťou Gilead. Ukázalo sa, že táto molekula je oveľa účinnejšia ako GC-376 na liečbu FIP, a to ako pri experimentálnych infekciách, tak aj v spontánnych prípadoch FIP. Počnúc farmakokinetikou a štúdiami s eskaláciou dávky s použitím širokého spektra klinických prípadov, Niels a kolegovia zistili, že potrebná dávka závisí od toho, či mal pacient suchú alebo vlhkú FIP, a či došlo k postihnutiu očí alebo centrálneho nervového systému (CNS).5

Prekvapivo, Gilead, výrobca, ktorý vyvinul GS441524, doteraz neprejavil záujem o vývoj tejto molekuly pre liečbu mačiek. Aby sa vyplnila prázdno pre účinnú terapiu FIP na celom svete, rôzne laboratóriá v Číne a východnej Európe začali vyrábať GS-441524 a predávať ho na čiernom trhu.

Široká dostupnosť GS-441524, často vysokej kvality a spočiatku veľmi vysokej ceny, poskytla oddaným majiteľom spôsob, ako zachrániť ich mačky s FIP. Štúdie klinickej patologičky Samanthy Evansovej z Ohio State University naznačili mieru vyliečenia približne 80 % v teréne. Obstarávanie lieku bolo donedávna komplikované a plné problémov, ktoré sa na určitej úrovni obchádzali pomocou rôznych „FIP Warriors“ skupín na Facebooku. Nanešťastie pre austrálskych milovníkov mačiek, APVMA a Vet Boards nakoniec pochopili, čo sa deje a Border Force značne sťažila získavanie GS-441524 a jeho bezpečný dovoz pre veterinárne použitie. Varovania regulačných orgánov a veterinárnych výborov pred trestným stíhaním boli namierené proti veterinárom, ktorí umožňovali liečbu mačiek s FIP pomocou liekov z čierneho trhu.

Je iróniou, že nové riešenie tohto problému priniesla pandémia COVID 19. Gilead vyvinul remdesivir (GS-5734) ako liek na liečbu hepatitídy C, Eboly a ľudského koronavírusového ochorenia. Remdesivir je proliečivo GS-441524, ktoré obsahuje dodatočný chemický bočný reťazec (vrátane fosfátovej skupiny), ktorý má zlepšiť intracelulárnu penetráciu (obrázok 1B). Remdesivir (ako produkt Veklury) získal dočasnú registráciu (na dva roky) od TGA v júli 2020 na liečbu infekcií SARS-CoV-2 u ľudských pacientov s COVID-19. Tento proces registrácie by za normálnych okolností trval niekoľko rokov, ale závažnosť pandémie urýchlila tento proces s prihladnutím na predbežné dáta z klinických testov. Keďže sa remdesivir stal licencovaným ľudským liekom a Gilead licencoval výrobu po celom svete, znamenalo to viac možností prístupu ku kvalitnej surovine. Tým sa obišli problémy s užívaním lieku zakúpeného na čiernom trhu, ako aj problémy neznámej čistoty a konzistencie produktu v priebehu času.

V roku 2020 spoločnosť na výrobu veterinárnych zmesí BOVA Australia zabezpečila spoľahlivé dodávky remdesiviru vo vhodnom formáte na IV a subkutánnu aplikáciu. Štúdie v Austrálii určili, že doba použiteľnosti po rekonštitúcii presahuje 12 dní a potvrdili účinnosť in vitro proti koronavírusom v tkanivových kultúrach. Analytická čistota liečiva sa pravidelne kontroluje pomocou HPLC. Za posledný rok veterinári v každom štáte Austrálie používali remdesivir na liečbu mačiek s FIP. Vyskytlo sa množstvo efuzívnych a neefuzívnych prípadov, vrátane niektorých mačiek s postihnutím oka (uveitída) a iných s multifokálnym ochorením CNS. Na základe liečby približne 500 mačiek liečených medzi októbrom 2020 a novembrom 2021 sa remdesivir ukazuje ako vysoko účinný pri zvládaní infekcií FIP. Umožnuje o niečo jednoduchšiu subkutánnu aplikáciu a zdá sa, že injekcia je o niečo menej bolestivá v porovnaní s GS-441524 a nespôsobuje lokálne reakcie v mieste vpichu, ktoré sa pozorujú pri injekčnom podaní GS-441524. Pôvodne sa remdesivir používal výhradne v Austrálii, hoci posledné 2 mesiace je dostupný aj v Británii od BOVA UK.

Molekulová hmotnosť remdesiviru je 603 g/mol, zatiaľ čo molekulová hmotnosť GS-441524 je 291 g/mol. To by mohlo naznačovať, že liečba mačiek remdesivirom vyžaduje približne dvojnásobné dávkovanie v porovnaní s GS-441524, aj keď to nezohľadňuje možné zlepšenie intracelulárnej penetrácie remdesiviru do určitých tkanív v porovnaní s GS-441524. Navrhovaná dávka remdesiviru u ľudských pacientov s COVID19 je 200 mg intravenózne (IV), po ktorej nasleduje 100 mg IV denne. Pre 70 kg ľudského pacienta to predstavuje dennú dávku 1,3 mg/kg, takže pri použití alometrického škálovania bola dávka 5-10 mg/kg denne pre mačku považovaná za správnu. Naša skúsenosť z prvých 500 prípadov však bola taká, že veľa mačiek nakoniec pre trvalé vyliečenie potrebovalo vyššiu dávku remdesiviru, a preto sme upravili naše odporúčané dávkovanie smerom nahor (pozri nižsie). Remdesivir poskytuje BOVA ako sterilný roztok s koncentráciou 10 mg/ml pripravený na použitie v 10 ml injekčnej vialke.

Obrázok 1. (A) BOVA Remdesivir rekonštituovaný a pripravený na liečbu. Po rekonštitúcii je obsah injekčnej vialky stabilný najmenej 120 dní pri teplote 5°C – a zvyčajne sa injekčná vialka spotrebuje za 3-7 dní. Vialku je najlepšie uchovávať v chladničke. (B) Dráha, ktorú remdesivir absolvuje intracelulárne, aby sa aktivoval ako GS-441524.

V súčasnosti sú Austrália a Spojené kráľovstvo jedinými krajinami, kde je remdesivir ľahko dostupný na predpis pre veterinárne použitie. Veterinári v Indii, na Novom Zélande, v Južnej Afrike a v niektorých častiach Európy však tiež začali pre prístup k lieku využívat dodávateľov humánnych liečiv.

Diagnostika

Obrázok 2: Úžasne komplexný a praktický prehľad diagnostiky FIP od Severine Tasker .

Úplná diferenciálna diagnostika FIP presahuje rámec tohto článku, ale čitateľom dôrazne odporúčame prečítať si vynikajúci článok od Séverine Tasker v Journal of Feline Medicine & Surgery. 6

Hoci sa FIP môže vyskytnúť u mačiek v akomkoľvek veku, väčšina prípadov sa vyskytuje u mačiatok a mačiek mladších ako 3 roky. Pretrvávajúca a často vysoká horúčka, ktorá nereaguje na antibiotickú liečbu (a často ani NSAID), je bežným nálezom, rovnako ako zvýšená hladina celkového proteínu v plazme v dôsledku zvýšených koncentrácií globulínu (difúzna gamapatia pri elektroforéze séra). Pri efuzívnej alebo „vlhkej“ FIP môže pomer albumínu ku globulínu klesnúť na < 0,45. Reaktanty akútnej fázy, ako je sérový amyloid A a α1-kyslý glykoproteín, majú tendenciu byť výrazne zvýšené. Mnoho mačiek s FIP vykazuje tiež sekundárnu imunitne sprostredkovanú hemolytickú anémiu, zvýšené aktivity AST a ALT a ikterus.

Pre včasnú diagnózu je rozhodujúce diagnostické zobrazovanie, čo bolo značne uľahčené zavedením digitálnej rádiológie a rozšírenou dostupnosťou diagnostického ultrazvuku v praxi malých zvierat. Pleurálny výpotok je ľahko rozpoznateľný z röntgenových snímok hrudníka, zatiaľ čo brušný výpotok je najlepšie detekovaný pomocou ultrazvuku (obrázok 3), najmä ak sú k dispozícii vysokofrekvenčné sondy. Za zmienku stojí, že v niektorých prípadoch môžu byť kapsy s tekutinou ohniskové a lokalizované. Často je okolo obličky pod obličkovým puzdrom nejaká tekutina, mačiatka môžu mať edém skrota, zatiaľ čo v ojedinelých prípadoch je výpotok obmedzený na perikardiálny vak. Ale kľúčové je – hľadať (i) výpotok v akejkoľvek telesnej dutine, (ii) granulómy v obličkách, pečeni alebo pľúcach, (iii) zväčšené vnútrobrušné a mezenterické lymfatické uzliny (obrázok 5) alebo výrazné zhrubnutie iliocekokolickej oblasti („fokálna FIP“) (obrázok 5). Röntgenové snímky hrudníka po drenáži pleurálneho výpotku môžu ukázať zmeny zodpovedajúce vírusovej pneumónii.

Obrázok 2: (A) Ultrazvukové vyšetrenie brucha ukazujúce hojnú vysoko echogénnu tekutinu (vlákna fibrínu) u mačky s ascitom s vysokým obsahom bielkovín v dôsledku efuzívnej FIP. (B) Efúzia obsahuje viskóznu žltú až slamovo sfarbenú tekutinu. (C) Röntgenový snímok brucha so vzhľadom brúseného skla naznačujúci tekutinu v bruchu.

Ak uvidíte výpotok – urobte punkciu – pretože tekutina je najlepšou diagnostickou vzorkou.

Obrázok 3: Výrazná mezenterická lymfadenomegália u mačky so suchou FIP.

Charakteristická je tekutina s vysokým obsahom bielkovín, často žltej až slamovej farby (obrázok 3B). Ak v orgáne vidíte granulóm alebo ak sú zreteľne zväčšené lymfatické uzliny – urobte FNA (aspiračná biopsia tenkou ihlou), urobte náter, použite farbenie s RapidDiff a hľadajte neutrofily a makrofágy (pyogranulomatózny zápal) bez viditeľných infekčných agens (obrázok 4) . Dve choroby, ktoré sa najčastejšie zamieňajú s FIP u dospelých mačiek, sú lymfóm a niektoré typy lymfocytickej cholangitídy (spojené s ascitom s vysokým obsahom bielkovín).

Obrázok 4: RapidDiff zafarbený náter aspirátu tenkou ihlou z mezenterických lymfatických uzlín 4-ročnej orientálnej mačky so suchou FIP. Výrazné makrofágy sú kľúčom k cytologickej diagnóze. Fotografiu poskytla Trish Martin.

Efuzívne ochorenie je samozrejme diagnostikovateľné oveľa ľahšie, pretože ascitická, perikardiálna alebo pleurálna tekutina poskytuje vhodnú vzorku, ktorá môže byť vyšetrená cytologicky, analýzou tekutiny a podrobená imunofluorescencii (IFA) na FIP antigén alebo PCR s reverznou transkriptázou na detekciu FIP nukleovej kyseliny. IFA sa vykonáva na VPDS, B14, University of Sydney (prostredníctvom Vetnostics, QML, ASAP, VetPath, Gribbles alebo IDEXX). Väčšinou je však najlacnejšie odoslať vzorku priamo do univerzitného laboratória.

Suchá FIP je problematickejšia, pretože zvyčajne vyžaduje aspiračnú biopsiu tenkou ihlou pyogranulomatóznych lézií v pečeni, obličkách alebo brušných lymfatických uzlinách. Občas môžu prípady vlhkej FIP paradoxne vykazovať vzorky tekutiny, ktoré sú negatívne pri testovaní IFA a/alebo PCR, no pacient stále pravdepodobne má FIP, čo sa prejavuje priaznivou odpoveďou na liečbu remdesivirom alebo GS-441524.

Liečba

Od októbra 2020 liečime mačky s FIP pomocou remdesiviru (IV a SCI) a odnedávna pomocou GS-441524 (orálne), takže naše protokoly sa skúsenosťami neustále vyvíjajú. Doteraz bolo liečených asi 500 mačiek. Snažíme sa vyhnúť tomu, aby sme boli v našich odporúčaniach príliš normatívni, pretože máme podozrenie, že neexistuje jednotný protokol, ktorý by vyhovoval všetkým pacientom, a každý prípad predstavuje jedinečné okolnosti, vrátane veľkosti pacienta, či je mačka stále „šťastná“ a je primerane, alebo je deprimovaná a dehydrovaná. Dôležitým faktorom je emocionálna a finančná angažovanosť majiteľa. Kľúčovou vlastnosťou, ktorú treba spomenúť, je, že oba lieky sú veľmi bezpečné, dokonca aj u chorých mačiek a mačiatok.

Všimnite si, že nasledujúce odporúčané dávky sú vyššie ako tie, ktoré boli pôvodne odporúčané pred rokom. Aj keď u mnohých pacientov fungovali nižšie dávky, zistili sme, že ide často o nesprávnu ekonomickú úvahu, pretože recidíva ochorenia na konci liečby a rozvoj vírusovej rezistencie počas liečby zrejme súvisia s nedostatočným počiatočným dávkovaním. Takže sme sa od začiatku naučili byť agresívnejší, čo je z dlhodobého hľadiska lacnejšie (tj nevyžaduje sa 2. terapia)

Naša najväčšia skúsenosť je spojená s remdesivirom. Tento liek je drahý a majiteľ sa musí zaviazať k nákladnému liečebnému procesu, ktorý trvá 3 mesiace. Pre väčšinu klientov to predstavuje emocionálnu a finančnú záťaž. Môj názor je, že v mnohých prípadoch je lepšie vynaložiť peniaze na antivírusovú terapiu ako takú, než na rozsiahlu diagnostiku a monitorovanie.

Obrázok 5: Výrazné zhrubnutie iliocekokolickej oblasti mačky Devon Rex s takzvanou „fokálnou FIP“, zvyčajnou formou neefuzívnej FIP. Fotografiu poskytla Penny Tisdall.

Jedným z prístupov u novodiagnostikovaných mačiek so závažným ochorením je hospitalizácia mačiek počas prvých 3-4 dní liečby. Pacienti začínajú liečbu remdesivirom, keď dostávajú IV tekutinovú terapiu (typicky 2-4 ml/kg/h; prvý deň Hartmannov roztok alebo Plasmalyte a následne 0,45 % NaCl a 2,5 % dextrózu s obsahom 20 mmol KCl/l). V 1. deň hospitalizácie sa remdesivir podáva vo vysokej dávke intravenózne (10–15 mg/kg zriedených na 10 ml fyziologickým roztokom a podáva sa POMALY počas 20–30 minút alebo dlhšie, manuálne alebo pomocou infúznej pumpy; u ľudských pacientov aplikácia trvá 2 hodiny), aby sa dosiahla zvýšená štartovacia dávka distribučného objemu liečiva. Tým sa dosiahne rýchla antivírusová účinnosť. V prípadoch s ochorením CNS odporúčame dennú IV dávku 20 mg/kg. Mnohé mačky sa môžu niekoľko hodín po IV infúzii remdesiviru javiť ako trochu deprimované. U ľudských pacientov môže remdesivir spôsobiť reakcie súvisiace s infúziou, vrátane nízkeho krvného tlaku, nevoľnosti, zvracania, potenia alebo triašky, ale u našich mačacích pacientov sme tieto javy nepozorovali.

Výhodou zahájenia liečby intravenózne je, že dehydratácia, ak je prítomná, sa upraví a máte IV prístup v prípade, že potrebujete podať iné lieky (napr. antikonvulzíva, kortikosteroidy). Dôležité je, že akonáhle je zavedený IV katéter, denné injekcie remdesiviru nespôsobujú žiadnu bolesť ani nepohodlie. Ak však mačka žerie a je diagnostikovaná v počiatočnom štádiu priebehu ochorenia, potom IV terapia nie je potrebná a rovnaké dávky možno podávať subkutánne, čím sa ušetrí veľa peňazí.

Mačky s FIP liečené remdesivirom sa typicky výrazne zlepšujú počas prvých 2-3 dní. Zistili sme však, že prípady efúzie a najmä tie, ktoré sa pred liečbou prejavili pleurálnym výpotkom, by sa mali dôkladne sledovať, pretože kombinácia antivírusového účinku remdesiviru a väčšej než udržiavacej dávky kryštaloidov môže viesť k prechodnému zhoršeniu pleurálneho výpotku. To vyžaduje drenáž dvakrát denne pomocou motýľovej ihly 19G (1,1mm – krémová farba) a 3-cestného uzatváracieho kohútika (ideálne pomocou ultrazvukového vedenia na nájdenie najlepšieho miesta pre zavedenie ihly). Tieto „sekundárne“ pleurálne výpotky môžu byť smrteľné, ak sa nezistia včas a zdá sa, že sa vyskytujú približne v 1 z 10 prípadov efuzívnych FIP liečených remdesivirom.

Ďalším problémom, ktorý sa v tejto dobe občas vyskytuje, je rozvoj neurologických príznakov, vrátane záchvatov. Náš názor je, že nejde o účinok lieku ako taký, ale skôr o demaskovanie subklinickej CNS FIP. Takéto mačky potrebujú starostlivé pozorovanie, zatiaľ čo vývoj záchvatov vyžaduje použitie antikonvulzívnych liekov, ako je midazolam (0,3 mg/kg IV), alfaxan alebo propofol (podávaný IV, aby bol účinný), po ktorom nasleduje levetiracetam (Keppra) (10–20 mg /kg, PO každých 8 hodín). Fenobarbitón je spoľahlivé antikonvulzívum, má však tendenciu zvyšovať metabolizmus mnohých liekov, a kým lepšie nepochopíme farmakokinetiku a metabolizmus remdesiviru a GS-441524, je pravdepodobne bezpečnejšie používať levetiracetam. Niektorí lekári tiež podávajú dexametazón alebo prednizolón ako jednorazovú liečbu na zmiernenie zápalu CNS.

Hoci obhajujeme úvodnú IV terapiu pre najťažšie prípady FIP, mačky a mačiatka, ktoré sú stále „šťastné“ a jedia, na začiatku nevyžadujú IV terapiu a môžu namiesto toho začať subkutánnymi injekciami v dávke 10-12 mg/kg/deň ( 20 mg/kg pri ochorení CNS). To je, samozrejme, oveľa lacnejšie, pretože mačky alebo mačiatka nemusia byť umiestnené na infúznej pumpe a hospitalizové v nemocnici, v stresujúcom prostredí. U klientov, ktorí majú finančné limity, môže byť toto vhodnejší spôsob zahájenia terapie. Niektorí šikovní kolegovia, ako napríklad Jim Euclid, vyvinuli hybridný prístup, kde mačiatka dostávajú subkutánne tekutiny denne ako bolus s injektovaným remdesivirom.

Následne boli mačkám podávané priebežné subkutánne injekcie remdesiviru. Pôvodne to trvalo 84 dní a takéto prípady predstavovali väčšinu prípadov, ktoré sme doteraz riešili. V poslednom čase na úvodnú terapiu používame agresívny IV/SCI remdesivir a potom mačky prechádzajú na perorálny GS-441524 počas 10 týždňov trvajúcej konsolidačnej terapie.

Po počiatočnom používaní nižších dávok, ktoré neboli úspešné u každého pacienta, teraz používame nasledujúce liečebné protokoly:

  • pre mačky s vlhkou FIP: 10-12 mg/kg raz denne (SID) počas 2 týždňov
  • pre mačky s výrazným postihnutím oka: 15 mg/kg SID subkutánnou injekciou (SCI) počas 2 týždňov; mačkám s ťažkou uveitídou by sa mali podávať aj lokálne kortikosteroidy (Pred Forte alebo Maxidex) 2-3 dni (nie dlhšie!) a atropínová očná masť
  • pre mačky s neurologickou FIP s príznakmi CNS: podávajte 20 mg/kg SID SCI počas 2-4 týždňov. 5

Je dôležité, aby majitelia boli riadne poučení o tom, ako optimálne podávať denné injekcie. Mačky budú vnímať injekciu ako menej bolestivú, ak sa roztok remdesiviru v injekčnej striekačke nechá zohriať na izbovú teplotu, namiesto toho, aby sa podával vychladený z chladničky. Okrem toho, ak ich naučíte jednoduchým úkonom, ako je používanie novej ihly pri aplikácii injekcii (t. j. použite inú ihlu, ako je tá, ktorá sa používa na natiahnutie lieku z vialky) a používanie ihiel priemeru 21G (0,8mm – zelené) alebo 23G (0,6mm – modré), injekcie budú znesiteľnejšie. Aj keď sú ihly 21G väčšie, u niektorých mačiek to možno dáva výhodu rýchlejšej aplikácie injekcie. Alternatívne môžu veterinári pripraviť kvôli zjednodušeniu pre majiteľa injekcie na celý týždeň, ktoré budú uchovávať v chladničke, a každý deň tak budú aplikovať novú injekciu.

U mačiek, ktoré naďalej vnímajú SC injekcie ako bolestivé, sme použili gabapentín perorálne (50 až 100 mg na mačku) a/alebo transmukozálne alebo SC podávaný buprenorfín 30-60 minút pred injekciou na sedáciu/analgéziu. Oblasť, do ktorej sa má podať injekcia, sa môže tiež ostrihať, aby sa 30 minút pred injekciou mohol aplikovať lokálny krém EMLA. BOVA vyrába rýchlejšie pôsobiaci lokálny anestetický gél, ktorý môže byť užitočný u niektorých pacientov. Vo výnimočných prípadoch sme zavádzali cefalický katéter každých 4-5 dní, aby majitelia mohli podávať IV terapiu namiesto SC injekcií. Zdá sa, že reakcie v mieste vpichu, ktoré boli hlásené v súvislosti s injekčne podávaným GS-441524 v zahraničí, sa pri remdesivire nevyskytujú.

Po 2-4 týždňoch užívania remdesiviru a po vymiznutí tekutiny v bruchu a zlepšení alebo vymiznutí očných a CNS príznakov teraz navrhujeme prechod na tablety GS-441524. Robí sa to z 3 dôvodov: (i) znižuje to náklady (ii) odstraňuje problém s bolestivosťou SC injekcií (iii) u niektorých pacientov je to efektívnejšie. Injekcie Remdesiviru sú pravdepodobne spoľahlivejšie ako perorálny GS-441524 a v najhorších prípadoch by ste sa mohli rozhodnúť podávať ich 4 týždne, ale pre väčšinu mačiek stačia 2 týždne a pohodlie a nižšie náklady na perorálnu formuláciu predbehnú všetko ostatné.

Používanie tabliet GS-441524 je v Austrálii pomerne nové, ale vo veľkej miere sa používa v zámorí. Odporúčaná perorálna dávka GS441524 je zvyčajne rovnaká ako dávka SCI/IV remdesiviru: vlhké prípady FIP dostanú 10-12 mg/kg PO SID, očné prípady 15 mg/kg PO SID a prípady CNS 20 mg/kg ( alebo vyššie). GS-441524 je ekonomickejší a je dokonca bezpečnejší ako remdesivir. V prípadoch CNS, kde sa podávajú veľké dávky, je pravdepodobne najlepšie podávať 10 mg/kg PO každých 12 hodín (BID), aby sa obišiel “stropný” efekt, o ktorom sa hovorí v súvislosti s obmedzenou absorpciou vysokých dávok.

Obrázok 6. Fokálna suchá FIP s pyogranulomatóznym zápalom intraabdominálnych lymfatických uzlín. Namiesto vykonania exploračnej laparotómie, biopsie lymfatických uzlín, histológie a imunohistológie môže byť v prípade vysokého podozrenia na FIP nákladovo efektívnejšie vyskúšať 3-dňovú IV liečbu remdesivirom. FNA zväčšenej lymfatickej uzliny je pravdepodobne ideálnou diagnostickou možnosťou pre lekárov s týmto súborom zručností.

Prečo sú dávkovania približne rovnaké? Na báze mg/kg má GS441524 dvakrát toľko aktívnych molekúl ako remdesivir (kvôli rozdielu v ich molekulovej hmotnosti), ale biologická dostupnosť GS-441524 je možno iba 50 % (absorbuje sa len polovica toho, čo sa podá, a to je ovplyvnené kŕmením a tiež efektom stropnej dávky) – takže tieto dva faktory sa navzájom rušia.

Odporúčame, aby sa tablety GS-441524 podávali s malým pamlskom, aby sa zamaskovala tabletka, pričom hlavné jedlo sa podáva o 1 hodinu neskôr. Tablety, ktoré poskytuje BOVA, sú 50 mg tablety s príchuťou tuniaka, so štyrmi deliacimi ryhami, takže ich možno rozdeliť na polovicu alebo dokonca na štvrtiny.

V situáciách, keď si majitelia nemôžu dovoliť úplnú liečbu, po prvotnej liečbe remdesivirom/GS-441524 používame meflochín (Lariam; 5 mg/kg perorálne raz denne v kapsulách alebo 62,5 mg dvakrát týždenne) .

Phillip McDonagh, Jacqui Norris, Merran Govendir a kolegovia zo Sydney School of Veterinary Science preukázali, že meflochín má antivírusový účinok . 7 K tomu pravdepodobne dochádza tým, že meflochín si uzurpuje biochemické intracelulárne dráhy využívané vírusom FIP, čo je mechanizmus, ktorý bol nedávno preukázaný aj pri klofazimíne 8 (lieku proti lepre), a niekoľkých ďalších liekoch. U niekoľkých mačiek, kde si majitelia nemohli dovoliť úplnú kúru remdesivirom, sa meflochín ukázal ako účinný pre dosiahnutie hranice klinického vyliečenia.

Hlavnou výhodou nákupu remdesiviru a GS-441524 od BOVA na liečbu prípadov FIP je, že produkty, ktoré používame, podliehajú kontrole kvality. Ide len o napísanie receptu s menom a adresou klienta, menom pacienta a dávkou, ktorá sa má podať, a kompaundátor môže zvyčajne poskytnúť vialky alebo tablety ktorémukoľvek veterinárnemu lekárovi v Austrálii do 24-48 hodín.

V súčasnosti je cena 100 mg vialky remdesiviru 250$ plus GST a poštovné (celková cena zvyčajne cca. 280$). GS-441524 sa predáva v balení 10 tabliet za 600$ plus poštovné a balné. Kúpou viacerých vialiek a tabliet súčasne sa samozrejme znížia poštovné a manipulačné poplatky. Veríme, že väčšina majiteľov sa bude cítiť oveľa pohodlnejšie, keď získa produkt od známej austrálskej spoločnosti, než aby posielali peniaze do zámoria a dúfali, že lieky neznámej kvality na čiernom trhu sa bezpečne dostanú do Austrálie bez toho, aby ich zadržala colnica.

Neexistuje žiadny dôvod, prečo by dobre motivovaný veterinár nemohol tieto prípady zvládnuť vo svojej vlastnej praxi. To je často pre majiteľa pohodlnejšie, najmä ak zápasia s každodennými injekciami a potrebujú praktika vo svojej blízkosti.

Obrázok 7: Tablety Gs-441524 od BOVA Australia. Sú s príchuťou tuniaka. Môžu byť rozdelené na polovice alebo dokonca štvrtiny. OVEĽA JEDNODUCHŠIE ako injekcie pre väčšinu mačiek. Menej stresu a menej nákladov.

Veterinári, ktorí chcú preskúmať túto možnosť, alebo majú všeobecné otázky o manažmente prípadov FIP, môžu poslať e-mail Sally Coggins (dr.sallyc@gmail.com), Richardovi Malikovi (richard.malik@sydney.edu.au), Davidovi Hughesovi (concordvets@concordvets.com.au), Grette Howard (drgretta@gmail.com) alebo profesorke Jacqui Norris ( jacqui.norris@sydney.edu.au), o radu v súvislosti s diagnózou alebo liečbou. Mnoho austrálskych veterinárnych lekárov so záujmom o FIP dosiahlo značné odborné znalosti v manažmente týchto prípadov. Napríklad Andrew Spanner v Adelaide liečil viac ako 20 prípadov s vynikajúcimi výsledkami. Je teda už mnoho lekárov pre mačaciu medicínu a odborníkov na internú medicínu so skúsenosťami s liečbou FIP, a tak majú veterinári, ktorí váhajú s liečbou svojich vlastných prípadov, možnosť doporučiť svojim klientom týchto odborníkov.

Medzi lekárov, ktorí akceptujú prípady FIP od všeobecných lekárov, patria napríklad: QLD Rhett Marshall, Marcus Gunew, Alison Jukes, Rachel Korman; NSW Katherine Briscoe, Michael Linton, Randolph Baral, Melissa Catt; VIC – Carolyn O’Brien, Keshuan Chow, Amy Lingard; WA-Martine Van Boeijen a Univerzitná veterinárna nemocnica Murdoch; TAS Moira van Dorsselaer.

Všetci títo lekári (a pravdepodobne ešte viac, o ktorých nevieme) radi prijmú prípady na diagnostiku a terapiu. Všetci s vami pravdepodobne radi prediskutujú manažment prípadov.

Obrázok 8: Bengálske mačiatko s CNS a očnou FIP (A: pred) a (B: po) po Remdesivire. Táto mačka mala tiež pľúcne granulómy.

Sally Coggins, spolupracujúca s Larou Boland, Emily Pritchard, docentkou Mary Thompsonovou a profesorkou Jacqui Norris na Sydney School of Veterinary Science, má záujem o liečbu prípadov s komplexnou diagnózou a monitorovaním poskytovaným zadarmo . Bude to tvoriť súčasť doktorandského programu Sally, takže jej budete pomáhať napredovať v štúdiu tým, že jej budete posielať prípady. Dúfame, že pomocou týchto študií, získame lepšiu predstavu o tom, ako rýchlo mačky reagujú, a kedy presne možno liečbu bezpečne ukončiť. Majitelia si budú musieť zaplatiť iba za remdesivir a GS-441524 na terapiu. Táto skupina má tiež záujem o liečbu prípadov interferónom-omega a meflochínom.

Väčšine prípadov FIP sa darí veľmi dobre pri liečbe GS-441524 alebo remdesivirom. Niels Pedersen zhromaždil úžasný zdroj pre veterinárnych lekárov, ktorí sa zaujímajú o manažment prípadov FIP – https://sockfip.org/dr – pedersen – research/ . Stránka uvádza aj niekoľko odporúčaní, ako sledovať mačky počas liečby. Nie som veľmi orientovaný na protokol, takže pre mňa sú kľúčové veci, ktoré treba sledovať, ako chuť do jedla, postoj, úroveň aktivity a zmeny telesnej hmotnosti a kondície v priebehu času. Väčšina lekárov rada monitoruje hematológiu a biochémiu séra každý mesiac, aby sa zabezpečilo, že všetky merateľné abnormality sa zlepšujú, hoci to môže byť pre pacienta stresujúce a zvyšuje to náklady na liečbu. Kompromisom je odobranie niekoľkých kvapiek krvi na sledovanie PCV, celkového proteínu v plazme (TPP) pomocou refraktometrie a farby plazmy – tak sa dá určiť, či sa anémia zlepšuje, ikterus ustupuje a či sa znižuje koncentrácia gamaglobulínu, čo má za následok nižšie TPP.

Neznepokojujte sa prechodným zvýšením koncentrácií globulínu na začiatku liečby; keď sa absorbujú výpotky s vysokým obsahom bielkovín, do plazmy pacienta sa dostane veľa imunoglobínov. Tento jav môže byť bežný až do 8. týždňa liečby, ale vymizne do 12. týždňa.

Obrázok 9: MRI obrázok v priečnej rovine po kontraste s vážením T1. Poznámka: dilatácia laterálnych komôr s veľmi miernym zvýraznením ependymálnej výstelky (oranžové šípky). Obrázok s láskavým dovolením Christine Thomas.

A čo mačiatko s multifokálnym ochorením CNS, kde je FIP CNS najpravdepodobnejšou príčinou klinických príznakov? Tradičným prístupom je sérológia (na vylúčenie kryptokokózy a toxoplazmózy), dobrá anamnéza a test tiamínu na vylúčenie nedostatku vitamínu B1, potom MRI skeny (obrázok 9) a odber CSF na analýzu tekutín a multiplexnú neuro-qPCR analýzu ). Tento prístup je veľmi drahý a existuje aj isté riziko z anestézie a najmä odberu CSF. Zistili sme, že 3-5 dňová intravenózna alebo sc. liečba remdesivirom sa môže použiť ako terapeutická skúška u mačiek s pravdepodobnou CNS FIP a je cenovo výhodnou alternatívou k úplnému diagnostickému spracovaniu, ktoré môže stáť 3-5000$ alebo viac .

Podobne, ak je voľbou exploračná laparotómia, biopsia abnormálnych tkanív, histológia a imunohistochémia pre FIP antigén na diagnostiku suchej intraabdominálnej FIP oproti 3–5-dňovej liečbe s remdesivirom alebo GS-441524, môže sa zvážiť test s použitím lieku, čo je lepšia voľba z hľadiska pohody pacienta a znížených nákladov. U väčšiny mačiek s neefuzívnou FIP nastáva rýchle zlepšenie pomocou antivírusovej terapie, s normalizáciou horúčky, zlepšením chuti do jedla a lepším celkovým postojom v priebehu 2 až 3 dní. Ak pacient nereaguje na antivírusovú terapiu, potom je samozrejme rozumná exploračná laparotómia a biopsia reprezentatívnych orgánov, keďže hlavnými diferenciálnymi diagnózami sú lymfóm a lymfocytická cholangitída.

Toto je vecou osobného prístupu každého lekára. FNA na cytologické a niekedy imunohistochemické vyšetrenie alebo PCR je presvedčivou neinvazívnou možnosťou tam, kde je táto expertíza dostupná, ale niekedy nedá definitívnu odpoveď. Niektorí veterinári trvajú na diagnostike tkaniva a pozitívnej imunohistológii alebo PCR u každého pacienta, zatiaľ čo iní by radi „liečili liečiteľné“ pomocou 3–5-dňového nasadenia remdesiviru/GS-441524 a pristúpili k exploratívnej laparotómii, až keď neexistuje jednoznačná odpoveď na terapiu.

Je neuveriteľne uspokojujúce vidieť premenu mačiek a mačiatok, ktorým nie je dobre, na normálne a šťastné mačky. Je to naozaj niečo, čo vám ako lekárovi zdvihne náladu. Je to dobrá veda a dobrá veterinárna medicína!

Závery

V minulosti bola diagnóza FIP intelektuálnym cvičením, aby sme utrpenie mačky alebo mačiatka mohli ukončiť s istotou presnej diagnózy. Teraz, vďaka celoživotnmu štúdiu FIP Dr. Nielsa Pedersena, sme schopní úspešne liečiť možno 80 % alebo viac mačiek s FIP, ak má klient dostatok financií. Je príliš skoro predpovedať, či alebo koľko z nich sa bude neskôr opakovať.

Existuje potreba intenzívneho štúdia v diagnostike a manažmente prípadov, ale s vynaložením potrebného úsilia by dobrý praktický veterinár mal byť schopný spolupracovať s odhodlaným majiteľom na dosiahnutí klinického vyliečenia. Najdôležitejšie je neklásť príliš veľa prekážok do cesty oddaného majiteľa a podporovať ho počas 12-týždňového maratónskeho liečebného kurzu tým, že mu pomôžete nájsť najlepší spôsob liečby svojho pacienta. Môže to zahŕňať sedatívnu/analgetickú liečbu, ktorá pomôže mačke zlepšiť ovládateľnosť a predchádzať nepríjemným pocitom, keď klient privedie svoju mačku na kliniku denne na injekcie remdesiviru alebo prechod na tablety GS-441524, keď je stres z injekcií pre vlastníka príliš veľký. Je dôležité zvládnuť dlhú cestu a možno poskytnúť platobný plán, ktorý umožní odhodlaným klientom zlepšiť cenovú dostupnosť liečby.

Napokon, vplyv COVID-19 na výskum koronavírusov bol skutočne hlboký a vo vývoji je niekoľko veľmi sľubných liekov, ako napríklad molnupiravir od spoločnosti Merck a ďalší perorálny liek od spoločnosti Pfizer.

CELKOVÉ ZHRNUTIE

2-stupňový prístup k terapii

1.fáza – INDUKCIA

IV/SC injekcie Remdesiviru

  • Pre mačky s vlhkou FIP: 10-12 mg/kg remdesiviru subkutánnou injekciou (SCI) raz denne (SID) počas 2 týždňov
  • Pre mačky s postihnutím oka: 15 mg/kg SID remdesivir SCI počas 2 týždňov
  • Pre mačky s neurologickými príznakmi FIP a CNS: remdesivir 20 mg/kg SID počas 2 týždňov

2. fáza – KONSOLIDÁCIA

Po 2 týždňoch injekčného podávania remdesiviru prejdite na tablety GS-441524

  • Pre mačky s vlhkou FIP: 10-12 mg/kg GS-441524 perorálne SID počas 10 týždňov
  • Pre mačky s postihnutím oka: 15 mg/kg SID GS-441524 perorálne SID počas 10 týždňov
  • Pre mačky s neurologickými príznakmi FIP a CNS: GS-441524 10 mg/kg perorálne BID (20 mg/kg/deň) počas 10 týždňov

Literatúra

  1. Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Weerasekara, S.; Hua, D.H.; Groutas, W.C.; Chang, K.O.; Pedersen, N.C. Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathog. 2016, 12, e1005531.
  2. Pedersen, N.C.; Kim, Y.; Liu, H.; Galasiti Kankanamalage, A.C.; Eckstrand, C.; Groutas, W.C.; Bannasch, M.; Meadows, J.M.; Chang, K.O. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J. Feline Med. Surg. 2018, 20, 378–392.
  3. Murphy, B.G.; Perron, M.; Murakami, E.; Bauer, K.; Park, Y.; Eckstrand, C.; Liepnieks, M.; Pedersen, N.C. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet. Microbiol. 2018, 219, 226–233.
  4. Pedersen, N.C.; Perron, M.; Bannasch, M.; Montgomery, E.; Murakami,
    E.; Liepnieks, M.; Liu, H. Efficacy, and safety of the nucleoside analog GS441524 for treatment of cats with naturally occurring feline infectious peritonitis. J. Feline Med. Surg. 2019, 21, 271–281.
  5. Dickinson PJ, Bannasch M, Thomasy SM, et al. Antiviral treatment using the adenosine nucleoside analogue GS-441524 in cats with clinically diagnosed neurological feline infectious peritonitis. Journal of Veterinary Internal Medicine. 2020. doi: 10.1111/jvim.15780.
  6. Tasker S. Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests. Journal of Feline Medicine and Surgery.
    2018;20(3):228-243. doi:10.1177/1098612X18758592
  7. McDonagh, P.; Sheehy, P.A.; Norris, J.M. Identification, and characterisation of small molecule inhibitors of feline coronavirus replication. Vet. Microbiol. 2014, 174, 438–447.
  8. Yuan, S., Yin, X., Meng, X. et al. Clofazimine broadly inhibits coronaviruses including SARS-CoV-2. Nature (2021).
    https://doi.org/10.1038/s41586-021-03431-4
  9. https://sockfip.org/ – NAJLEPŠÍ zdroj na internete alebo kdekoľvek pre FIP.
Obrázok 10: Dve mačky so suchou FIP po úspešnej terapii. Ako mi nie tak dávno napísal jeden zanietený mladý veterinár v e-maile – „to je dôvod, prečo som robil vedu!“

NÁKLADY:

2 kg mačiatko s vlhkou FIP
4×100 mg vialky remdesiviru – 1000$
35×50 mg tabliet GS-441524 – 2100$
Manipulácia a GST – 30$ plus 310$ = 340$
Celkom 3440$, približne 290$ týždenne počas 12 týždňov

4 kg mačka so suchou FIP
7×100 mg vialiek remdesiviru – 1750$
70×50 mg tabliet GS-441524 – 4200$
Manipulácia a GST 30$ plus 600$
Celkom 6550$, asi 545$ týždenne počas 12 týždňov

Obrázok 11: Dvaja súrodenci, u ktorých sa vyvinula FIP a boli úspešne vyliečení remdesivirom a GS441524.
Prečítať “Liečba FIP subkutánnym remdesivirom nasledovaným perorálnymi tabletami GS-441524”

Dlhá história Beta-d-N4-hydroxycytidínu a jeho moderná aplikácia na liečbu Covid-19 u ľudí a FIP u mačiek.

Niels C. Pedersen DVM, PhD
Originálny článok: The long history of Beta-d-N4-hydroxycytidine and its modern application to treatment of Covid-19 in people and FIP in cats.

Beta-d-N4-hydroxycytidín je malá molekula (nukleozid), ktorá bola študovaná koncom 70. rokov v bývalom Sovietskom zväze ako súčasť výskumu biologických zbraní [2]. Weaponizácia chorôb, ako sú kiahne, bola celosvetovým postrachom, ale nebezpečenstvo použitia vírusu kiahní na tento účel bolo príliš veľké. Pravé kiahne boli zo sveta vykorenené, prakticky všetky zásoby zničené a ďalší výskum zakázaný. To viedlo USA a Sovietsky zväz k výskumu ďalších RNA vírusov ako biologických zbraní a antivirotík na obranu proti nim. Vírus venezuelskej konskej encefalomyelitídy (VEEV) bol jedným z prvých vírusov, u ktorého sa seriózne zvažovalo jeho využitie ako biologickej zbrane [3]. VEEV sa na ľudí prenáša uštipnutím komárom a spôsobuje vysokú horúčku, bolesti hlavy a encefalitídu s opuchmi, ktoré môžu byť smrteľné. Zistilo sa, že beta-d-N4-hydroxycytidín nielenže inhibuje replikáciu VEEV, ale aj širokú škálu alfavírusov vrátane eboly, chikungunya, chrípkového vírusu, norovírusu, vírusu bovinnej diarey, vírusu hepatitídy C a respiračného syncyciálneho vírusu. [3-8]. Prvé správy o inhibičnom účinku beta-d-N4-hydroxycytidínu na ľudský koronavírus NL63 pochádzajú z roku 2006 [9]. Nedávne štúdie potvrdili jeho inhibičný účinok na široké spektrum ľudských a zvieracích koronavírusov [8].

Dôležitá časť novšej histórie beta-d-N4-hydroxycytidínu je spojená s Emory Institute for Drug Development (EIDD) [1], kde dostal experimentálne označenie EIDD-1931. Významnú finančnú podporu na štúdium antivirotík proti alfavírusom v inštitúciách, ako je Emory, poskytovala americká vláda už od roku 2004 [10]. Agentúra na zníženie obranných hrozieb poskytla v roku 2014 inštitucionálnu podporu s cieľom nájsť antivírusovú zlúčeninu proti VEEV a iným alfakoronavírusom. „N4-Hydroxycytidín a jeho deriváty a antivírusové použitia“ boli zahrnuté v patentovej prihláške USA 2016/106050 A1 z roku 2016 [11]. Ďalšie financovanie v roku 2019 poskytol Národný ústav pre alergie a infekcie na partnerský výskum esterifikovaného prekurzora beta-d-N4-hydroxycytidínu (EIDD-2801) na liečbu chrípky [10]. Uvedeným zámerom chemických zmien EIDD-2801 bolo zvýšenie jeho orálnej biologickej dostupnosti, čo by v konečnom dôsledku umožnilo podávať beta-d-N4-hydroxycytidín ako pilulky a nie ako injekcie. V roku 2019/2020 došlo k zmene zamerania výskumu z chrípky na SARS-CoV-2 [2]. Komercializáciou EIDD-2801 bola poverená pobočka Emory s názvom Ridgeway Biotherapeutics, ktorá následne spolupracovala so spoločnosťou Merck na zdĺhavom a nákladnom procese schvaľovania FDA. Aktuálna verzia EIDD-2081 na testovanie v teréne dostala názov Molnupiravir.

Beta-d-N4-hydroxycytidín, účinná látka Molnupiraviru, existuje v dvoch formách ako tautoméry. V jednej forme sa chová ako cytidín s jednoduchou väzbou medzi uhlíkom a skupinou N-OH. Vo svojej ďalšej forme, ktorá napodobňuje uridín, má oxim s dvojitou väzbou medzi uhlíkom a skupinou N-OH. Za prítomnosti beta-d-N4-hydroxycytidínu ho vírusová RNA-dependentná RNA polymeráza číta ako uridín namiesto cytidínu a namiesto guanozínu vkladá adenozín. Prepínanie medzi formami spôsobuje nezhody počas transkripcie, čo má za následok početné mutácie vírusového genómu a zastavenie replikácie vírusu [8].

Snaha spoločnosti Merck o podmienečné a úplné schválenie Molnupariviru FDA pokračuje. Spoločnosť Merck vo svojom vyhlásení uviedla: [12] „V očakávaní výsledkov programu MOVe-OUT spoločnosť Merck vyrába Molnupiravir na vlastné riziko. Spoločnosť Merck očakáva, že do konca roku 2021 vyrobí 10 miliónov liečebných dávok, pričom v roku 2022 sa očakáva výroba ďalších. Merck sa zaväzuje poskytovať včasný prístup k lieku Molnupiravir na celom svete, ak bude autorizovaný alebo schválený, a plánuje zaviesť prístup k viacúrovňovým cenám na základe kritérií príjmu krajín Svetovej banky, ktoré budú odrážať relatívnu schopnosť krajín financovať svoju zdravotnú reakciu na pandémiu. V rámci svojho záväzku rozšíriť globálny prístup spoločnosť Merck už skôr oznámila, že uzavrela nevýhradné dobrovoľné licenčné zmluvy na Molnupiravir so zavedenými generickými výrobcami na urýchlenie dostupnosti Molnupiraviru vo viac ako 100 krajinách s nízkymi a strednými príjmami (LMIC) po schválení alebo núdzovom povolení miestnymi regulačnými agentúrami. “ Je nepravdepodobné, že by sa táto „veľkorysosť“ vzťahovala aj na použitie u zvierat.

Lieky na inhibíciu pôvodcu súčasnej pandémie Covid-19 boli v posledných dvoch rokoch predmetom urýchlených terénnych testov a jeden z nich, Remdesivir, bol schválený v rekordnom čase pre použitie u hospitalizovaných pacientov. V minulom roku bol Molnupiravir postúpený k podmienečnému schváleniu ako perorálny liek na domácu liečbu infekcie v počiatočnom štádiu [12]. Účinné zlúčeniny proti koronavírusu však boli vyvíjané už skôr pre inú bežnú a vážnu chorobu mačiek, mačaciu infekčnú peritonitídu (FIP). Tieto lieky zahŕňajú inhibítor proteázy (GC376) [13] a inhibítor RNA dependentnej RNA polymerázy (GS-441524), ktorý je aktívnou zložkou Remdesiviru [14]. Úspech antivírusových liekov pri liečbe FIP podnietil nedávnu štúdiu EIDD-1931 a EIDD-2801 pre ich schopnosti inhibovať FIPV v tkanivových kultúrach [15]. Účinná koncentrácia EC50 pre EIDD-1931 proti FIPV je 0,09 μM, EIDD-2801 0,4 μM a GS441524 0,66 μM [15]. Percento cytotoxicity pri 100 μM je 2.8, 3.8, respektíve 0. Preto sú EIDD-1931 a EIDD-2801 o niečo účinnejšie pri inhibícii vírusov, ale tiež cytotoxickejšie ako GS-441524. Tieto laboratórne štúdie naznačujú, že EIDD-1931 a EIDD-2801 sú vynikajúcimi kandidátmi na liečbu FIP.

Napriek tomu, že EIDD-1931 a EIDD-2801 sú veľkým prísľubom pre liečbu FIP, existuje niekoľko prekážok, kvôli ktorým v blízkej budúcnosti nebude legálne používanie týchto zlúčenín veľmi pravdepodobné. GS-441524, aktívna forma Remdesiviru a patentovaná spoločnosťou Gilead Sciences, bol skúmaný na použitie u mačiek s FIP krátko pred pandémiou Covid-19. Výskum FIP [14] preto podnietil potenciálne použitie Remdesiviru proti vírusu Ebola, a nie koronavírusom podobným SARS [14]. Aj keď boli tieto štúdie realizované v spolupráci s vedcami z Gilead Sciences, spoločnosť odmietla udeliť práva na GS-441524 na liečbu u zvierat, akonáhle bolo zrejmé, že existuje oveľa väčší trh s Covid-19 u ľudí [16]. Podobne moje pokusy za posledné 2-3 roky u Emory, Ridgeback Biotherapeutics a veterinárnej divízie spoločnosti Merck skúmať EIDD-1931 a EIDD2801 pre liečbu FIP u mačiek buď zostali bez odpovede, alebo boli zamietnuté, nepochybne z podobných dôvodov, prečo Gilead odmietol udeliť práva pre GS-441524. Veľká celosvetová potreba liečby FIP však rýchlo podporila neschválený trh s GS-441524 z Číny. Tá istá potreba liečiť FIP nedávno vyvolala záujem o Molnupiravir, tiež z Číny.

Situácia s EIDD-1931 vs. EIDD-2801/Molnupiravir a GS-441524 vs. Remdesivir vyvoláva otázku, prečo sa niektoré lieky pre účely marketingu prevádzajú na proliečivá [17]. Remdesivir bol údajne esterifikovaný, aby sa zvýšila antivírusová aktivita, aj keď štúdie na mačkách ukázali, že GS-441524 a Remdesivir mali podobnú vírusovú inhibičnú aktivitu v tkanivovej kultúre [18]. Zistilo sa však, že Remdesivir sa zle absorbuje orálnou cestou, a preto bol podmienenčne schválený iba pre injekčné použitie. EIDD-2801 bol vytvorený pre zvýšenie orálnej absorpcie EIDD-1931, aj keď predchádzajúci výskum ukázal, že EIDD-1931 je dobre absorbovaný orálne aj bez esterifikácie [6]. Motívy komercializácie Remdesiviru namiesto GS-441524 na humánne použitie boli vedecky spochybnené, pretože tento sa zdá byť v niekoľkých smeroch lepší bez ďalších úprav [17]. Prečo bol pre komercializáciu vybraný EIDD-2801, keď EIDD-1931 by bol lacnejší, 4-násobne účinnejší proti vírusom a o jednu tretinu menej toxický ako EIDD-2801 [15]? Sila patentových práv a dlhá životnosť patentov môžu v týchto rozhodnutiach predstavovať dôležitejšie faktory. [16,17,19].

Jedným z problémov pri liečbe FIP u mačiek sú hematookulárne a hematoencefalické bariéry, ktoré nadobúdajú veľký význam, keď choroba postihne oči a/alebo mozog [13, 14, 20]. Tento problém bol z veľkej časti prekonaný pri liečbe očných a neurologických foriem FIP pomocou GS-441524 postupným zvyšovaním dávkovania na zvýšenie hladín v krvi a tým aj koncentrácie liečiva v komorovom moku a/alebo v mozgu [20]. GC376, jedno z najúčinnejších antivirotík proti vírusu FIP v kultúre [17], nie je účinný proti okulárnej a neurologickej FIP kvôli neschopnosti dostať do týchto miest dostatok liečiva, aj keď sa dávka niekoľkonásobne zvyšuje[14]. Našťastie sa zdá, že EIDD-1931 môže dosiahnuť účinné hladiny v mozgu, ako to naznačujú štúdie na koňoch s infekciou VEEV [3]. Rezistencia na liečivá je ďalším problémom, ktorý sa teraz prejavuje u niektorých mačiek liečených GS-441524, najmä u jedincov s neurologickou formou FIP. Dlhé liečebné procedúry a ťažkosti s transportom dostatočného množstva liečiva do mozgu podporujú rozvoj liekovej rezistencie.

Zásadný význam má krátkodobý a dlhodobý toxický účinok kandidátskeho lieku na testovaného človeka alebo zviera. V bunkových kultúrach vykázal GS-441524 nižšiu toxicitu ako GC376, EIDD-1931 a EIDD-2801 [15]. Najdôležitejšia je však toxicita, ktorá sa prejavuje in vivo. GC376 patrí medzi lieky s najvyšším inhibičným účinkom na koronavírus [15], ale pri podávaní mladým mačiatkam spomaľuje vývoj dospelého chrupu [13]. Počas takmer troch rokov používania GS-441524 v teréne nebola pozorovaná žiadna vážna toxicita, čo odzrkadľuje úplnú absenciu cytotoxických účinkov in vitro pri koncentráciách až 400 µM [18]. EIDD-1931 a EIDD-2801 však vykazujú významnú cytoxicitu pri 100 µM [15]. Preto schopnosť EIDD-1931 vytvárať fatálne mutácie v RNA vyvoláva už nejaký čas množtvo otázok [8, 21, 22]. To bol hlavný dôvod, prečo sa aplikácia na liečbu chorôb stále odkladala. Súčasná odporúčaná doba liečby Covid-19 Molnupiravirom je však v počiatočnom štádiu liečby iba 5 dní [10]. Odporúčaná doba liečby FIP s GS-441524 je ale 12 týždňov [14], čo predstavuje oveľa dlhší čas pre manifestáciu toxicity. Preto bude dôležité dôkladné pozorovanie mačiek pri liečbe EIDD-1931 alebo EIDD-2801, či už ide o krátkodobé alebo dlhodobé účinky.

Všetky doterajšie antivírusové lieky viedli k rozvoju liekovej rezistencie prostredníctvom mutácií vo vírusovom genóme. Aj keď sa Remdesivir javí menej náchylný voči takýmto mutáciám v porovnaní s liekmi používaných pri vírusových ochoreniach, ako je HIV/AIDS, rezistencia je dobre zdokumentovaná [23–25]. Rezistencia voči GS-441524 u mačiek liečených na FIP bola pozorovaná s vyššou frekvenciou, najmä u mačiek s neurologickou FIP, kde je ťažšie dopraviť do mozgu dostatočné množstvo liečiva [13, 14, 20]. Rezistencia voči GS-441524 u mačiek bude tiež pravdepodobne väčším problémom, pretože mačky s FIP sa často liečia 12 týždňov alebo dlhšie, zatiaľ čo Remdesivir (a Molnupiravir) sa odporúčajú užívať iba päť dní počas počiatočného viremického štádia Covid-19 [16]. Problém rezistencie na liečivá je v liečbe HIV/AIDS efektívne zvládnutý použitím kokteilu rôznych liekov súčasne s rôznymi profilmi rezistencie. Mutanty rezistentné na jedno liečivo budú ostatné lieky okamžite inhibovať, čím sa zabráni ich pozitívnej selekcii pri liečbe. Inhibícia rezistencie je obzvlášť silná, ak tieto dva lieky útočia na rôzne proteíny zahrnuté v replikácii vírusu. Napríklad GC376 je inhibítor proteázy [13], zatiaľ čo GS-441524 pôsobí na RNA dependentnú RNA polymerázu [18]. GC376 však nie je tak dobre absorbovaný cez hematoencefalickú bariéru. Aj keď ešte neprebehol potrebný výskum, zdá sa, že medzi GS-441524 a Molnupiravirom nebude existovať žiadna skrížená rezistencia, a pri prechode hematoencefalickou bariérou je rovnako účinný ako GS-441524 [3]. To z Molnupiraviru (alebo 5-hyroxycytidínu) robí dôležitý príspevok pre budúcu liečbu FIP.

Ako sa dalo čakať, Molnupiravir bol nedávno testovaný na mačkách s FIP najmenej jedným čínskym predajcom GS-441524 a predbežné výsledky sú uvedené na webovej stránke FIP Warriors CZ/SK [26]. Terénne testy zahŕňali 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP pozorovaných na klinikách pre domáce zvieratá v USA, Veľkej Británii, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. 286 mačiek, ktoré sa zúčastnili štúdie, vrátane siedmich mačiek s okulárnou (n=2) a neurologickou (n=5) FIP, nedošlo k žiadnemu úhynu. Dvadsať osem z týchto mačiek bolo vyliečených po 4-6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky boli zdravé aj po 3-5 mesiacoch, čo je obdobie, počas ktorého by sa u neúspešne liečených mačiek očakávali relapsy. Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti Molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná v rukopisnej forme, predložená k recenznému konaniu a uverejnená. Tak či tak, Molnupiravir sa už teraz predáva majiteľom mačiek s FIP. Minimálne jeden ďalší veľký predajca GS-441524 má tiež záujem používať Molnupiravir na FIP, čo naznačuje dopyt po ďalších antivírusových liečivách pre mačky s FIP.

Bezpečné a účinné dávkovanie pre Molnupiravir u mačiek s FIP nebolo publikované. Minimálne jeden predajca z Číny však poskytol iste farmakokinetické dáta a dáta z terénnych testov Molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP v reklamnom letáku na výrobok s názvom Hero-2081 [26]. Tieto informácie však jasne neuvádzajú množstvo Molnupiraviru v jednej z ich „50 mg tabliet“ a skutočný dávkovací interval (q12h alebo q24h?). Našťastie odhadovanú počiatočnú dávku molnupiraviru pre mačky s FIP je možné získať z publikovaných štúdií o EIDD-1931 a EIDD-2801 in vitro na bunkových kultúrach [15] a laboratórnych a terénnych štúdií GS-441524 [14,18]. Molnupiravir (EIDD-2801) má EC50 0,4 uM/ul proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je asi 1,0 uM/ul [18]. Oba majú podobnú perorálnu absorpciu okolo 40 – 50 %, takže účinná subkutánna (SC) dávka pre Molnupiravir by bola približne polovica odporúčanej 4 mg/kg SC každých 24 hodín začiatočnej dávky pre GS441524 [14] alebo 2 mg/kg SC q24h. Dávka per-os (PO) by sa zdvojnásobila, aby sa zohľadnila menej účinná perorálna absorpcia na dávku 4 mg/kg PO každých 24 hodín. Odhadovanú počiatočnú perorálnu dávku molnupiraviru pre mačky s FIP je možné tiež vypočítať z dostupných údajov o liečbe Covid-19. Pacientom liečeným na Covid-19 sa podáva 200 mg molnupiraviru PO q12h počas 5 dní. Táto dávka bola evidentne vypočítaná z farmakokinetickej štúdie vykonanej na ľuďoch a ak priemerný človek váži 60-80 kg (70 kg), účinná inhibičná dávka je ~ 3,0 mg/kg PO q12h. Mačka má bazálny metabolický pomer 1,5 -krát vyšší ako človek a za predpokladu rovnakej orálnej absorpcie u ľudí aj mačiek by minimálna dávka pre mačky podľa tohto výpočtu bola 4,5 mg/kg PO každých 12 hodín. Za predpokladu, že molnupiravir prechádza cez hematookulárnu bariéru a hematoencefalickú bariéru rovnako efektívne ako GS-441524 [3,18], dávka by sa zvýšila ~1,5 a ~2,0-krát, aby sa umožnila adekvátna penetrácia do komorovej vody a mozgovomiechový mok pre mačky s okulárnou (~ 8 mg/kg PO, q12 h) alebo neurologickou FIP (~ 10 mg/kg PO, q12h). Liečba bude trvať 10-12 týždňov a monitorovanie odpovede na liečbu bude identické s GS-441524 [14, 20]. Tieto odporúčania sú založené na predpokladoch zo zverejnených informácií a budú potrebné ďalšie skúsenosti s Molnupiravirom v tejto oblasti. Nie je pravdepodobné, že Molnupiravir bude na liečbu FIP bezpečnejší a účinnejší ako GS-441524, ale tretie antivírusové liečivo môže byť mimoriadne užitočné pri prevencii rezistencie voči GS-441524 (ako kokteil antivirotík s rôznymi profilmi rezistencie) alebo pri liečbe mačiek, ktoré už nereagujú dobre na GS-441524. Veľkou neznámou je, či bude Molnupiravir bez dlhodobých toxických účinkov, pretože účinná látka N4-hydroxycytidín je mimoriadne účinný mutagén [21] a doba liečby FIP je oveľa dlhšia ako pri Covid-19 a existuje pravdepodobnosť väčších vedľajších účinkov.

Je škoda, že EIDD-1931 (N4-hydroxycytidín), účinnej látke Molnupiraviru, nebola pri liečbe mačiek FIP venovaná väčšia pozornosť ako Molnupiraviru. EIDD-1931 má 4-krát väčší inhibičný účinok proti vírusu ako Molnupiravir (EC50 0,09 oproti 0,4 μM) a percento cytotoxicity je o niečo nižšie (2,3% vs. 3,8% pri 100 μM) [15]. N4-hydroxycytidín je tiež účinne absorbovaný orálnou cestou [3], čo bolo pri vývoji EIDD-2801 (Molnupiravir) bagatelizované. Tento scenár je identický so scenárom GS-441524 vs. Remdesivir, pričom pre komercializáciu bol vybraný druhý z nich – Remdesivir, aj keď súčasný výskum naznačuje, že najlepším kandidátom by bol GS-441524[17].

Referencie

  1. Painter GR, Natchus MG, Cohen O, Holman W, Painter WP. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19 [published online ahead of print, 2021 Jun 18]. Curr Opin Virol. 2021;50:17-22. doi:10.1016/j.coviro.2021.06.003
  2. Halford B. An emerging antiviral takes aim at COVID-19. c&en topics. 2020. https://cen.acs.org/pharmaceuticals/drug-development/emerging-antiviral-takes-aim-COVID19/98/web/2020/05.
  3. Painter GR, Richard A. Bowend RA, Bluemling GR et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal Venezuelan equine encephalitis virus infection. Antiviral Res. 2019, 171:104597
  4. Costantini, V.P., Whitaker, T., Barclay, L., Lee, D., McBrayer, T.R., Schinazi, R.F., Vinje,J., 2012. Antiviral activity of nucleoside analogues against norovirus. Antivir. Ther.17 (6), 981–991. https://doi.org/10.3851/imp2229.
  5. Ehteshami, M., Tao, S., Zandi, K., Hsiao, H.M., Jiang, Y., Hammond, E., Amblard, F., Russell, O.O., Merits, A., Schinazi, R.F., 2017. Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of chikungunya virus. Antimicrob. Agents Chemother. 61 (4) e02395-02316. https://doi.org/10.1128/aac.02395-16.
  6. Stuyver, L.J., Whitaker, T., McBrayer, T.R., Hernandez-Santiago, B.I., Lostia, S., Tharnish, P.M., Ramesh, M., Chu, C.K., Jordan, R., Shi, J., Rachakonda, S., Watanabe, K.A., Otto, M.J., Schinazi, R.F., 2003. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob. Agents Chemother. 47 (1), 244–254.
  7. Yoon J., Toots M, Lee S, Lee ME, et al., 2018. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob. Agents Chemother. 2018, 62(8): https://doi.org/10.1128/aac.00766-18
  8. Urakova N, Kuznetsova V, Crossman DK, Sokratian A, Guthrie DB, Kolykhalov AA, et al. β-d-N4Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J Virol. 2018, 92:e01965–e01917. doi: 10.1128/JVI.01965-17.
  9. Pyrc, K., Bosch, B.J., Berkhout, B., Jebbink, M.F., Dijkman, R., Rottier, P., van der Hoek,L., 2006. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother. 2006, 50(6):2000–2008. https://doi.org/10.1128/aac.01598-05.
  10. Whitfill T. A likely new treatment for Covid-19 was made possible by government-funded innovation. STAT+. https://www.statnews.com/2021/10/05/government-funding-backed-molnupiravir-possible-newcovid-19-treatment/.
  11. Painter, G.R., Guthrie, D.B., Bluemling, G., Natchus, M.G. N4-Hydroxycytidine and Derivatives and Antiviral Uses Related Thereto. US Patent Application, 2016, 2016/106050 A1.
  12. Merck news release, October 1, 2021. https://www.merck.com/news/merck-and-ridgebacksinvestigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately-50percent-compared-to-placebo-for-patients-with-mild-or-moderat/.
  13. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018, 20(4):378-392.
  14. Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019, 21(4):271-281.
  15. Cook SE, Vogel H and D. Castillo D. A rational approach to identifying effective combined anticoronaviral therapies against feline coronavirus. 2021. bioRxiv 2020.07.09.195016; doi: https://doi.org/10.1101/2020.07.09.195016
  16. Zhang S. A Much-Hyped COVID-19 Drug Is Almost Identical to a Black-Market Cat Cure. May 8, 2020 Shutterstock / The Atlantic, https://www.theatlantic.com/science/archive/2020/05/remdesivir-cats/611341/.
  17. Yan VC, Muller FL. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Medicinal Chemistry Letters. 2020, 11 (7):1361-1366 DOI: 10.1021/acsmedchemlett.0c00316
  18. Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies.Vet Microbiol. 2018, 219:226-233.
  19. Common Dreams. Public citizen. Press release, August 4, 2020, https://www.commondreams.org/newswire/2020/08/04/public-citizen-scientists-gilead-and-federalscientists-have-neglected
  20. Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of Covid-Front. Vet. Sci. 2020, 23: https://doi.org/10.3389/fvets.2020.584673
  21. Zhou S, Hill CS, Sarkar S, et al., β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells. J Infect Dis. 2021, 224:415–419, https://doi.org/10.1093/infdis/jiab247.
  22. Cohen J, Piller C. Emails offer look into whistleblower charges of cronyism behind potential COVID-19 drug. ScienceInsider-Health. 2020, https://www.science.org/news/2020/05/emails-offer-look-whistleblowercharges-cronyism-behind-potential-covid-19-drug.
  23. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9. DOI:
    10.1128/mBio.00221-18.
  24. Szemiel AM, Merits A, Orton RJ, In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. Plos Path, 2021,https://doi.org/10.1371/journal.ppat.1009929 .
  25. Martinot M, Jary A, Fafi-Kremer S, et al., Emerging RNA-Dependent RNA Polymerase Mutation in a Remdesivir-Treated B-cell Immunodeficient Patient With Protracted Coronavirus Disease 2019, Clinical Infectious Diseases, 2020;, ciaa1474, https://doi.org/10.1093/cid/ciaa1474
  26. FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir) https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/
Prečítať “Dlhá história Beta-d-N4-hydroxycytidínu a jeho moderná aplikácia na liečbu Covid-19 u ľudí a FIP u mačiek.”

ZHRNUTIE LIEČBY FIP POMOCOU GS-441524 (Dr. Pedersen)

Pôvodný článok: SUMMARY OF GS-441524 TREATMENT FOR FIP
Niels C. Pedersen, DVM PhD, emeritný profesor,
Stredisko pre zdravie spoločenských zvierat, škola veterinárneho lekárstva, UC Davis

Na monitorovanie liečby používame rovnaké kritériá, aké sú opísané v klinickej štúdii publikovanej v JFMS (Journal of Feline Medicine and Surgery). Majitelia by mali v denných alebo týždenných intervaloch sledovať teplotu, váhu, aktivitu, chuť do jedla a klinické príznaky pôvodného ochorenia. Krvné testy – hematológia a biochémia (vrátane hodnôt sérových bielkovín – celkový proteín, albumín, globulín, pomer A:G) na začiatku liečby a potom každé 4 týždne. Je vždy užitočné, keď sa tieto hodnoty spolu s hmotnosťou aktualizujú vo forme grafu. Cieľom je mať zdravú, čulú a aktívnu mačku na konci 12 týždňov liečby a s normálnymi hodnotami krvných testov, najmä pokiaľ ide o pomery hematokritu, celkového proteínu, globulínu, albumínu a A: G. Výrazné zvýšenie hmotnosti je tiež dobrým znamením, a niektoré mladé alebo obzvlášť vychudnuté mačky môžu počas liečby viac ako zdvojnásobiť svoju váhu. Jedná sa samozrejme o idealizovanú liečbu, a treba počítať s tým, že bude pravdepodobne potrebné upraviť dávkovanie smerom nahor, ak je odpoveď pomalá, alebo ak sa počas liečby prejavia komplikácie, ako napríklad okulárne alebo neurologické postihnutie.

Pre stabilizáciu mačiek, ktoré sú kriticky choré v čase diagnózy, alebo počas prvých dní liečby GS-441524 (GS), môže byť potrebná podporná (symptomatická) starostlivosť. Abdominálny výpotok by sa nemal odsávať, pokiaľ neutláča hrudník a nezasahuje do dýchania, pretože sa rýchlo nahradí na úkor zvyšku tela. Hrudné výpotky sú však zvyčajne spojené s rôznym stupňom dyspnoe a mali by sa odstrániť. Hrudné výpotky sa vracajú oveľa pomalšie. Symptomatická starostlivosť tiež často zahŕňa tekutiny a elektrolyty na potlačenie dehydratácie, antibiotiká pri podozrení na sekundárnu bakteriálnu infekciu a protizápalové lieky (zvyčajne systémové kortikosteroidy) a zriedkavo krvnú transfúziu. U niektorých mačiek s postihnutím oka môžu byť potrebné aj lokálne lieky na potlačenie závažného zápalu a zvýšeného vnútroočného tlaku (glaukóm).

Kortikosteroidy, ako je prednizolón, by sa mali používať len počas prvých dní liečby GS a mali by sa vysadiť, keď dôjde k rýchlemu zlepšeniu zdravotného stavu. Dlhodobé používanie kortikosteroidov s GS sa dôrazne neodporúča, pretože môže maskovať príznaky zlepšenia spôsobené GS, najmä u mačiek s neurologickou FIP, nemá žiadnu liečebnú moc a môže interferovať s vývojom ochrannej imunitnej odpovede na vírus FIP. Je možné, že táto imunitná odpoveď hrá hlavnú úlohu v konečnom vyliečení. Ak sú mačky na chronickej liečbe steroidmi, nie je potrebné znižovať dávku, pretože neexistuje dôkaz, že by sa u mačiek vyskytla závažná atrofia nadobličiek, ku ktorej dochádza u ľudí pri dlhodobej liečbe steroidmi. Mnohí majitelia, poradcovia pre liečbu GS a veterinári budú používať rôzne propagované doplnky na zlepšenie zdravia pečene, obličiek alebo imunitného systému, ako aj vitamíny ako B12. Tieto látky nemajú preukázanú účinnosť a považujem ich za vyhodené peniaze.

Liečba injekčnou formou GS, ktorá je najbežnejšia, sa môže tiež skomplikovať vredmi/léziami v mieste vpichu. Liečba je ťažká pre majiteľov aj pre mačky, pretože injekcie môžu byť bolestivé. U niektorých mačiek, najmä u tých s neurologickým postihnutím, nastáva problém s vývojom čiastočnej liekovej rezistencie, ktorá si vyžaduje zvyšovanie dávky. Reakcia na liečbu je zvyčajne do 24-72 hodín a väčšina mačiek sa vráti do normálu, alebo sa blíži k normálu v priebehu 2-4 týždňov, čo je dobré znamenie. Predpokladáme, že miera úspešnosti liečby FIP s GS-441424 je viac ako 80%, s ohľadom na zlyhanie liečby v dôsledku nesprávnej diagnózy FIP, neprimerané dávkovanie, komplikácie zdravotného stavu a rezistenciu na lieky. Mladé mačky sa liečia ľahšie a majú vyššiu mieru vyliečenia, ako mačky staršie 7 rokov. Mačky s vlhkou alebo suchou FIP, s nekomplikovanými neurologickými alebo očnými symptómami sa liečia ľahšie, ako mačky s neurologickou FIP.

Počiatočná dávka pre mačky s vlhkou alebo suchou FIP bez známok očného alebo neurologického ochorenia, je 4-6 mg/kg denne počas 12 týždňov, pričom u mladších mačiek a vlhkej FIP je tendencia smerovať k dolnej hranici a suché prípady k hornej hranici. Mačky s očnými léziami a bez neurologických príznakov začínajú s dávkou 8 mg/kg denne počas 12 týždňov. Mačky s neurologickými príznakmi začínajú na dennej dávke 10 mg/kg po dobu 12 týždňov. Ak sa u mačiek s vlhkou alebo suchou FIP na začiatku objavia očné alebo neurologické príznaky, prechádzajú na príslušné očné alebo neurologické dávky. Existuje orálna forma GS dostupná najmenej z dvoch zdrojov z Číny (Spark, Mutian), ale nepoužívam ju, takže nepoznám porovnateľné dávkovanie. Neodporúčam to však, pokiaľ injekčná dávka stúpne nad 10 mg/kg denne, pretože účinnosť orálnej absorpcie pri týchto vysokých dávkach klesá.

Odporúčam dávkovanie upraviť týždennou kontrolou hmotnosti. Prírastok hmotnosti môže byť u mnohých z týchto mačiek obrovský, a to buď preto, že sú na začiatku tak vychudnuté, alebo rastú, prípadne oboje. Ak dôjde k úbytku hmotnosti na začiatku liečby, zostávam na pôvodnom dávkovaní a neznižujem ho. Neschopnosť naberať váhu počas liečby sa považuje za zlé znamenie. Nezvyšujeme dávku, pokiaľ na to nie sú závažné dôvody, ako napríklad zhoršenie stavu, alebo sa nezlepšujú výsledky krvných testov, pomalé zlepšenie, slabá úroveň aktivity, obnovenie pôvodných klinických príznakov, alebo zmena formy ochorenia zahrňujúca aj očné alebo neurologické príznaky. Tu prichádza na rad zdravý úsudok, pretože sa nechcete zaseknúť na jednej hodnote krvi, ktorá nie je celkom bežná, ale nemá vplyv na celkový zdravotný stav mačky. Napríklad globulín môže byť stále trochu vysoký, ale ďalšie dôležité hodnoty krvných testov a zdravotný stav sú veľmi dobré. Ak existuje dobrý dôvod na zvýšenie dávky, malo by to byť vždy od +2 do +5 mg/kg denne a minimálne po dobu 4 týždňov. Ak tieto 4 týždne spôsobia predĺženie 12-týždňového trvania liečby, je to kvôli tejto úprave dávky. Dá sa očakávať pozitívna reakcia na akékoľvek zvýšenie dávky, a pokiaľ nevidíte zlepšenie, znamená to, že dávka stále nie je dostatočne vysoká, objavuje sa rezistencia na lieky, máte zlú značku GS, mačka nemá FIP , alebo existujú iné choroby, ktoré liečbu ovplyvňujú.

Jedným z najťažších rozhodnutí je určiť, kedy ukončiť liečbu. Hoci niektoré mačky, často mladšie s vlhkou FIP, môžu byť vyliečené už za 8 týždňov, a možno aj skôr, zvyčajná doba trvania liečby je 12 týždňov. Niektoré mačky môžu dokonca vyžadovať úpravu dávkovania a dlhšie obdobia liečby. Kritické krvné hodnoty, ako je hematokrit, hladina celkového proteínu, albumínu a globulínu a celkový počet bielych krviniek a absolútny počet lymfocytov sa zvyčajne u liečených mačiek normalizujú po 8-10 týždňoch, kedy často dochádza k neočakávanému zvýšeniu úrovne aktivity. Predpokladá sa, ale nie sú na to ešte dôkazy, že po 8-10 týždňov sa u mačky objaví vlastná imunita voči infekcii. Toto je situácia, ktorá sa vyskytuje pri liečbe hepatitídy C u ľudí, čo je tiež chronická infekcia spôsobená RNA vírusom, ktorá si často vyžaduje až 12 alebo viac týždňov antivírusovej liečby.

Nanešťastie neexistuje jednoduchý test, ktorý by určil, kedy došlo k vyliečeniu, a strach z relapsu často vedie majiteľov, liečebných poradcov a veterinárov k predĺženiu liečby nad hranicu 84 dní. Strach z relapsov tiež spôsobí, že ľudia zapojení do rozhodovacieho procesu budú príliš opatrní, pokiaľ ide o jednu hodnotu krvi, ktorá je trochu abnormálna (napr. mierne vysoký globulín alebo mierne nízky pomer A:G), alebo výsledky konečného ultrazvuku naznačujúce podozrivo zväčšené lymfatické uzliny, malé množstvo tekutiny v brušnej dutine, alebo nejasné nepravidelnosti v orgánoch, ako sú obličky, slezina, pankreas alebo črevá. Je potrebné pamätať na to, že do normálneho rozsahu krvných hodnôt síce spadá väčšina zvierat, ale inak sú to krivky v tvare zvona, a že sa nájde pár výnimočných pacientov, ktorí budú mať hodnoty na okraji týchto kriviek. Diagnóza podľa ultrazvuku musí vziať do úvahy stupeň patológie, ktorá sa môže vyskytnúť v brušnej dutine postihnutou FIP, ako napríklad jazvy alebo niektoré následky vo forme zmien orgánov u úspešne liečených mačiek. V situáciách, keď také otázky vyvstávajú, je lepšie pozrieť sa podrobnejšie na celkový obraz, a nielen na jednu malú časť. Najdôležitejším výsledkom liečby je návrat k normálnemu zdraviu, ktorý má dve zložky – vonkajšie príznaky zdravia a vnútorné príznaky zdravia. Medzi vonkajšie príznaky zdravia patrí návrat k normálnej úrovni aktivity, chuť k jedlu, primerané zvýšenie hmotnosti alebo rast a kvalita srsti. Posledne menované sú pre mačku často jednými z najlepších meradiel zdravia. Vnútorné príznaky zdravia sa prejavujú návratom určitých kritických hodnôt k normálu na základe periodického sledovania úplného krvného obrazu a biochémie. Najdôležitejšie hodnoty v krvnom obraze sú hematokrit a relatívny a absolútny celkový počet bielych krviniek, neutrofilov a lymfocytov. Najdôležitejšie hodnoty v biochémii (alebo sérovej elektroforéze) sú hladiny celkového proteínu, globulínu, albumínu a pomer A: G. Bilirubín je u mačiek často zvýšený pri efúznej FIP a môže byť užitočný pri monitorovaní závažnosti a trvania zápalu. V hematologických a biochemických paneloch existuje veľa ďalších hodnôt a nie je nič neobvyklé, že niektoré z nich sú o niečo vyššie alebo nižšie ako normálne, a je lepšie tieto hodnoty ignorovať, pokiaľ nie sú výrazne zvýšené a nie sú spojené s klinickými príznakmi – napríklad vysoká urea a kreatinín, ktoré sú tiež spojené so zvýšenou spotrebou vody, nadmerným močením a abnormalitami v analýze moči. Počet krvných doštičiek strojovo je u mačiek notoricky nízky v dôsledku traumy z odberu krvi a zhlukovania krvných doštičiek, a mal by sa vždy overiť manuálnym vyšetrením krvných náterov. Konečné rozhodnutie o ukončení alebo predĺžení liečby, keď sa stretnete s nejasnými pochybnosťami o rôznych testovacích postupoch, by malo vždy vychádzať z vonkajších prejavov zdravia viac, ako z ktoréhokoľvek jednotlivého výsledku testu.

Rôzne FIP skupiny prišli s rôznymi modifikáciami liečby FIP. Niektoré skupiny budú od začiatku liečiť mimoriadne vysokou dávkou GS namiesto toho, aby dávku zvyšovali iba vtedy, keď je to indikované, alebo v posledných dvoch týždňov navýšia dávkovanie GS, alebo o ďalšie dva týždne pretiahnu liečbu s vyššou dávkou GS v nádeji, že môžu skrátiť dobu trvania liečby, či znížiť pravdepodobnosť relapsu. Niektorí obhajujú použitie interferónu omega alebo nešpecifických imunostimulantov na ďalšiu stimuláciu imunitného systému, a niektorí používajú rôzne ďalšie modifikácie. Neexistuje žiadny dôkaz, že modifikácia liečby extra vysokou dávkou zlepší rýchlosť vyliečenia. Podobne interferón omega a nešpecifické imunostimulanty nemajú žiadne preukázané priaznivé účinky pri FIP, keď sa podávajú ako jediná liečba alebo ako doplnky ku GS. Objavuje sa aj prax pridávania ďalšieho antivírusového lieku, inhibítora vírusovej proteázy GC376, k liečbe GS u mačiek, u ktorých sa vyvíja rezistencia na GS, ale táto možnosť ešte vyžaduje výskum. Nakoniec je bežné, že majitelia, liečebné skupiny a veterinárni lekári pridávajú mnohé doplnky, toniká alebo injekcie (napr. B12) na zvýšenie hladín v krvi alebo na prevenciu ochorenia pečene alebo obličiek. Takéto doplnky sú zriedka potrebné u mačiek s čistou chorobou FIP.

Relapsy FIP počas 12-týždňového pozorovacieho obdobia po liečbe sa vyskytujú, a neexistuje jednoduchý krvný test na predpoveď, či došlo k vyliečeniu, alebo je možný relaps. Relapsy zvyčajne zahŕňajú infekcie, ktoré prenikli do centrálneho nervového systému (mozog, chrbtica, oči) počas liečby vlhkej alebo suchej FIP, ktorá nebola sprevádzaná neurologickými alebo okulárnymi príznakmi. Dávka GS-441524 používaná na liečbu týchto foriem FIP je často nedostatočná na účinné prekonanie hematoencefalickej alebo hematookulárnej beriéry. Hematoencefalická bariéra je nepriestupnejšia ako hematookulárna bariéra, čo vysvetľuje, prečo sa lézie očí dajú liečiť ľahšie ako infekcie mozgu alebo chrbtice. Relapsy, ktoré sa vyskytnú v období po liečbe, a ktoré zahŕňajú oči, mozog alebo chrbticu sa zvyčajne liečia najmenej 8 týždňov pri začiatočnej dennej dávke najmenej o 5 mg / kg vyššej, ako je dávka použitá počas primárnej liečby (napr. 10, 12, 15 mg/kg denne). Odporúča sa nepoužívať perorálne formy GS, ak dávka presahuje 10 mg/kg injekčnej formy denne, pretože pri vysokých perorálnych koncentráciách je znížená účinnosť absorpcie v čreve. U mačiek, ktoré sa nedajú vyliečiť z infekcie pri dávkach až 15 mg/kg denne, sa pravdepodobne vyvinula rôzna miera rezistenice voči GS-441524. Čiastočná rezistencia môže umožniť udržanie príznakov ochorenia pod kontrolou, ale nie vyliečenie, zatiaľ čo celková rezistencia sa prejavuje rôznou závažnosťou klinických príznakov počas liečby.

V čase diagnostiky môže existovať rezistencia na GS-441524, čo je však neobvyklé. Skôr sa objavuje počas liečby, a na začiatku je často čiastočná a vedie k potrebe vyššieho dávkovania. U niektorých mačiek sa môže stať úplnou. Rezistencia je najväčším problémom u mačiek s neurologickým ochorením, najmä u tých, ktoré majú neurologické príznaky, alebo sa u nich vyvine mozgová infekcia počas liečby, alebo počas relapsu po tom, čo sa liečba javila ako úspešná. Mnoho mačiek s čiastočnou rezistenciou na lieky môže byť liečené na príznaky choroby, ale relaps sa objaví hneď po ukončení liečby. Mačky sa „liečili“ na FIP už viac ako rok bez vyliečenia, ale nakoniec sa rezistencia zhoršuje, alebo majiteľovi dôjdu peniaze.

Liečba GS-441524 vykazuje žiadne, alebo len minimálne systémové vedľajšie účinky. Môže spôsobiť mierne poškodenie obličiek u niektorých mačiek, ale nemala by viesť k zlyhaniu obličiek. Systémové liekové reakcie typu vaskulitídy sa pozorovali u niekoľkých mačiek a možno ich zameniť s reakciami v mieste vpichu. Tieto liekové reakcie sú však v miestach, kde sa nepodávajú injekcie, a často sa stratia samé, alebo dobre reagujú na krátkodobú nízku dávku steroidov. Hlavným vedľajším účinkom liečby GS je bolesť v miestach vpichu, ktorá sa líši od mačky k mačke a podľa schopností osoby, ktorá injekcie aplikuje (zvyčajne majiteľ). Vredy/lézie v mieste vpichu sú u niektorých mačiek problém, a zvyčajne k nim dôjde, keď sa miesto vpichu nestrieda (nezdržujte sa medzi ramenami) a nepodáva sa do svalových a nervových vrstiev pod podkožím. Odporúčam zvoliť miesta začínajúce jeden palec za lopatkami, dole od chrbta po 1 až 2 palce pred chvostovou časťou a jednu tretinu až polovicu cesty dole k hrudníku a bruchu. Mnoho ľudí používa gabapentín pred injekciami na zmiernenie bolesti. Vredy v mieste vpichu sa zbavia okolitých chlpov a jemne sa čistia 4 alebo viackrát denne sterilnými vatovými tyčinkami namočenými v zriedenom roztoku peroxidu vodíka pre domácnosť v pomere 1:5. Zvyčajne nevyžadujú žiadne zložitejšie ošetrenie a vyliečia sa asi za 2 týždne.

Dúfame, že čoskoro bude k dispozícii legálna forma GS-441524. Liečivo s názvom Remdesivir je najväčšou súčasnou nádejou, pretože Remdesivir sa pri intravenóznom podaní ľuďom, myšiam, primátom a mačkám okamžite rozkladá na GS. Remdesivir dostal plné schválenie americkej FDA, a podobné schválenie bude pravdepodobne nasledovať aj v ďalších krajinách. Ak to tak bude, môže ho predpisovať akýkoľvek humánny lekár s licenciou a veterinári. Použitie Remdesiviru v USA sa však stále obmedzuje na konkrétnu podskupinu pacientov s Covid-19 a len za kontrolovaných podmienok a s pokračujúcim zberom údajov. Kým nebudú zrušené všetky obmedzenia, nebude ľahko dostupný ani pre ľudské použitie. Nemám skúsenosti s liečbou mačiek Remdesivirom namiesto GS-441524. Skupiny v Austrálii a niektorých ázijských krajinách však začínajú Remdesivir používať a hlásia rovnaké výsledky ako s GS-441524. Dávkovanie Remdesiviru na molárnom základe je teoreticky rovnaké ako GS-441524. Voľná ​​báza GS-441524 má molekulovú hmotnosť 291,3 g/M, zatiaľ čo Remdesivir má 602,6 g/M. Preto na získanie 1 mg GS-441524 by bolo potrebné dvakrát viac Remdesiviru (602,6/291,3=2,07). Rozpúšťadlo pre Remdesivir sa výrazne líši od rozpúšťadla používaného pre GS-441524 a je určené na IV použitie u ľudí. Nie je známe, ako sa bude zriedený Remdesivir správať pri subkutánnej aplikácii počas 12 alebo viac týždňov dlhej liečbe. U ľudí sa pri Remdesivire pozorovali mierne príznaky hepatotoxicity a nefrotoxicity. GS-441524 spôsobuje miernu a neprogresívnu renálnu toxicitu u mačiek, ale bez zjavnej pečeňovej toxicity. Nie je isté, či renálna toxicita pozorovaná u ľudí, ktorým bol podávaný Remdesivir, je spôsobená jeho aktívnou zložkou (t.j. GS-441524) alebo chemickými prísadami určenými na zvýšenie antivírusovej aktivity. O schválenie GC376 pre mačky (a ľudí) sa snaží spoločnosť Anivive, ale bude to trvať ešte dva alebo viac rokov. GC376 je inhibítor vírusovej proteázy a pôsobí odlišne ako GS-441524, ktorý inhibuje rané štádium replikácie vírusovej RNA. Preto je nepravdepodobné, že bude mať významný synergický vírusový inhibičný účinok, bude ale oveľa dôležitejší pri inhibícii liekovej rezistencie, keď sa použije v kombinovanej terapii (ako napríklad kombinovaná antivírusová terapia pre HIV/AIDS).

Prečítať “ZHRNUTIE LIEČBY FIP POMOCOU GS-441524 (Dr. Pedersen)”

sk_SKSK