Rôzne otázky často sa vyskytujúce počas antivírusovej liečby FIP a následnej starostlivosti

23.3.2022
NC. Pedersen, DVM PhD
Pôvodný článok: Miscellaneous questions frequently arising during antiviral drug treatment for FIP and aftercare

Počas liečby FIP sa často objavuje niekoľko otázok. Predtým, ako sa začneme venovať týmto otázkam, je dôležité zmieniť samotnú liečbu FIP. Ukázalo sa, že liečebné účinky majú len antivirotiká, ktoré sú zamerané na špecifické vírusové proteíny a inhibujú replikáciu vírusu FIP. V súčasnosti medzi ne patria nukleozidové analógy a inhibítory replikácie RNA GS-441524 (a príbuzné proliečivo Remdesivir), Molnupiravir (EIDD-2801) a inhibítor vírusovej proteázy GC376. Správna aplikácia týchto liekov viedla k vyliečeniu všetkých foriem FIP vo viac ako 90 % s minimálnymi vedľajšími účinkami. Väčšina liečby sa dokončí bez komplikácií. Často sa však objavujú určité otázky, ktoré sú predmetom tohto článku.  

Upozornil som na problémy spojené s nežiaducim sexuálnym správaním u intaktných samíc a samcov liečených špecifickými antivirotikami. Otázky často prichádzajú z krajín, kde sa kastrácia buď odkladá na neskoršie obdobie života, alebo nie je bežnou praxou. Obávajú sa, že stres z kastračných zákrokov a vakcín môže ovplyvniť výsledok liečby antivirotikami. Domnievam sa, že takéto obavy sú prehnané. Ak je mačka v liečbe a v remisii alebo sa považuje za vyliečenú, je v poriadku ju sterilizovať alebo kastrovať, ale najlepšie čo najmenej stresujúcim spôsobom. Mačky sa dajú kastrovať a sterilizovať rýchlo a účinne a vrátiť do svojich domovov v ten istý deň (kastrácie) alebo v priebehu jedného dňa (sterilizácie) s minimom predoperačnej, operačnej a pooperačnej liečby liekmi a obmedzením (napr. klietky, E-obojky). Takéto operácie budú pre mačky (a majiteľov, čo sa potom odrazí na ich mačkách) menej stresujúce ako ich sexuálne správanie. 

Taktiež nie som zástancom hormonálnej liečby na prevenciu nežiaduceho sexuálneho správania samcov alebo samíc a mám pocit, že účinná kastrácia a sterilizácia budú z dlhodobého hľadiska menej stresujúce ako takéto preventívne opatrenia. Preto ak je potrebné trvalo zmeniť toto správanie, je vhodnejšia chirurgická kastrácia ako chemická.  

Zdá sa, že niektorí majitelia si chcú ponechať vyliečené mačky intaktné (nekastrované), aby ich neskôr mohli použiť na rozmnožovanie. Vieme, že FIP má genetické aj environmentálne zložky, čo viedlo k odporúčaniu, aby sa čistokrvné mačky, ktoré plodia mačiatka s FIP, nepoužívali na chov. O to viac by to malo platiť pre mačky, ktoré boli vyliečené z FIP.  

Čo sa týka vakcín, mnohí už vedia, že nie som veľkým fanúšikom vakcín pre mačky po dosiahnutí dospelosti a prvých ročných posilňovacích vakcín, pretože mám pocit, že imunita je dlhodobá. Taktiež si myslím, že vakcíny proti besnote nie je možné rutinne používať u mačiek, či už z hľadiska zdravia verejnosti alebo mačiek. Bez ohľadu na to akceptujem, že tieto názory nie sú všeobecne prijímané a že zákony v niekoľkých štátoch vyžadujú očkovanie mačiek proti besnote, v niekoľkých sa očkovanie nevyžaduje a v iných sa odporúča, ale nevyžaduje. U žiadnej z našich vyliečených mačiek som nezaznamenal následky rutinného očkovania. Nie je však niečím, čo by som odporúčal pre mačky, ktoré podstupujú liečbu. Imunitný systém týchto mačiek má na starosti iné veci ako reagovať na vakcíny.  

Aké sú indikácie pre iné lieky ako špecifické antivirotiká na liečbu FIP? V priebehu počiatočného ochorenia môže byť potrebná podporná (symptomatická) liečba, aby sa mačky udržali nažive dostatočne dlho na to, aby antivirotiká začali účinkovať. Lieky často používané v tomto počiatočnom štádiu zvyčajne zahŕňajú antibiotiká (doxycyklín/klindamycín), analgetiká (opioidy, gabapentín), protizápalové lieky (kortikosteroidy, NSAIDS), imunostimulanciá (interferóny, nešpecifické imunostimulanciá), lieky proti záchvatom a tekutiny. Snažil som sa vyhýbať nadmernému používaniu týchto liekov s výnimkou dočasného použitia a len v prípade, že je to silne opodstatnené, najmä u ťažko chorých mačiek počas prvých dní. Najdôležitejším cieľom liečby FIP je zastaviť replikáciu vírusu v makrofágoch, čím sa okamžite zastaví produkcia početných zápalových a imunosupresívnych cytokínov, ktoré spôsobujú príznaky FIP. Hoci niektoré lieky, ako sú kortikosteroidy (prednizolón) alebo NSAID (meloxikam), môžu inhibovať zápalové cytokíny a spôsobiť klinické zlepšenie, nie sú liečivé. Môžu tiež maskovať priaznivé účinky liečby GS, ktoré sú často monitorované, aby sa posúdil účinok a priebeh liečby. Odpoveď na liečbu antivirotikami sa používa aj na diagnostické účely. Jediné lieky, ktoré úplne potlačia tieto škodlivé cytokíny a vyliečia FIP, sú antivirotiká, ako napríklad GS-441524, molnupiravir alebo GC376 a príbuzné zlúčeniny. Tieto antivirotiká spôsobia v priebehu 24-48 hodín dramatické zlepšenie horúčky, aktivity, chuti do jedla atď. Toto zlepšenie bude oveľa väčšie ako akékoľvek zlepšenie dosiahnuté inými liekmi. Preto, ak nie je opodstatnené použitie iných liekov, mali by sa vysadiť hneď, ako dôjde k stabilnému zlepšeniu príznakov FIP. 

Takisto neverím mnohým doplnkom, o ktorých sa tvrdí, že liečia alebo zabraňujú problémom s pečeňou, obličkami, imunitným systémom alebo inými orgánmi. Tieto doplnky sú drahé a nie je dokázané, že sú účinné v tom, čo tvrdia. Injekcie B12 liečia len nedostatok B12, ktorý je zriedkavý, a nie anémiu pri FIP. To isté platí aj pre ostatné vitamíny. To platí aj pre širokú škálu výživových doplnkov a špeciálnych diét pre mačky mnohých typov. V žiadnom z týchto doplnkov nie je žiadna podstatná zložka, ktorú by nemohli poskytnúť dobre otestované komerčné značky krmív pre mačky. Existuje aj možnosť, že niektoré doplnky narušujú vstrebávanie perorálnych antivirotík.  

Ako by sa mali monitorovať mačky po ukončení liečby a v období pozorovania po liečbe? Z technického hľadiska nie sú potrebné ďalšie krvné testy, najmä ak sa počas tohto obdobia pokračuje v bežnom hodnotení zdravotného stavu, ako je hmotnosť, chuť do jedla a teplota.  Krvné testy počas tohto obdobia nezmenia výsledok a môžu len zvýšiť náklady na liečbu a zvýšiť stres majiteľa. Je však bežné, že úspešne liečené mačky sa počas 12-týždňového pozorovania po liečbe rutinne testujú na krv, zvyčajne každé 4 týždne, ale niekedy aj častejšie. V niektorých prípadoch sa v rutinnom testovaní krvi pokračuje aj po uplynutí 12 týždňov po liečbe, a to aj z obavy z možného relapsu alebo recidívy. Relapsy alebo nové infekcie po 12-týždňovom období pozorovania sú zriedkavé a predchádzajú im vonkajšie príznaky ochorenia, ako je úbytok hmotnosti, letargia, nechutenstvo, nekvalitná srsť a horúčka, ktoré by boli najlepšími indikátormi pre vyšetrenie krvi. Panely krvných testov tiež obsahujú mnoho hodnôt a nie je nezvyčajné, že jedna alebo viac hodnôt je abnormálnych aj u zdravých mačiek.  Je potrebné dbať na to, aby sa takéto abnormality neinterpretovali prehnane a neviedli k nadmerným obavám alebo dodatočnému testovaniu v snahe určiť ich význam. Napríklad mierne až stredne vysoké zvýšenie jedného z troch pečeňových enzýmov u zdravej mačky má oveľa menší význam ako u inej mačky s príznakmi choroby. Prečítať “Rôzne otázky často sa vyskytujúce počas antivírusovej liečby FIP a následnej starostlivosti”

História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu

Niels C. Pedersen
Center for Companion Animal Health, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA, 95616, USA
Pôvodný článok: History of Feline infectious Peritonitis 1963-2022 – First description to Successful Treatment
17.4.2022

Abstrakt

Tento článok pojednáva o vývoji poznatkov o mačacej infekčnej peritonitíde (FIP) od jej rozpoznania v roku 1963 až po súčasnosť a bol pripravený s cieľom informovať veterinárnych lekárov, záchrancov a opatrovateľov mačiek, zamestnancov útulkov a milovníkov mačiek. Stručne sa spomína pôvodca mačacieho koronavírusu a jeho vzťah k všadeprítomnému a minimálne patogénnemu črevnému koronavírusu mačkovitých šeliem, epizootológia, patogenéza, patológia, klinické príznaky a diagnostika. Hlavný dôraz sa kladie na rizikové faktory ovplyvňujúce výskyt FIP a úlohu moderných antivirotík pri úspešnej liečbe.

Úvod

Obrázok 1. Fotografia autora a Dr. Jean Holzworthovej (1915-2007) z roku 1991. Dr. Holzworthová bola najlepším mačacím veterinárnym lekárom, akého autor poznal, a bola zodpovedná za prvú správu o FIP ako špecifickom ochorení. Celú svoju kariéru strávila v Angell Memorial Animal Hospital v Bostone.

Mačacia infekčná peritonitída (FIP) bola opísaná ako špecifické ochorenie v roku 1963 veterinármi v Angell Memorial Animal Hospital v Bostone (Holzworth 1963) (obr. 1). Patologické záznamy z tejto inštitúcie a Štátnej univerzity v Ohiu nedokázali identifikovať skoršie prípady (Wolfe a Griesemer 1966), hoci čoskoro boli identické prípady rozpoznané na celom svete. Prvotné patologické opisy sa týkali difúzneho zápalu tkanív vystielajúcich brušnú dutinu a brušné orgány s rozsiahlym výtokom zápalovej tekutiny, podľa ktorého bolo ochorenie nakoniec pomenované (Wolfe a Griesemer 1966, 1971) (obr. 2,3). Druhá a menej častá klinická forma FIP, ktorá sa prejavuje menej difúznymi a viac rozšírenými granulomatóznymi léziami, ktoré zahŕňajú orgánový parenchým, bola prvýkrát opísaná v roku 1972 (Montali a Strandberg 1972) (obr. 3,4). Prítomnosť zápalových výpotkov v telesnej dutine pri bežnej forme a absencia výpotkov pri menej bežnej forme viedla k pomenovaniu vlhká (výpotková, neparenchymatózna) a suchá (nevýpotková, parenchymatózna) FIP.

Zdá sa, že prevalencia FIP sa zvýšila počas panzootického ochorenia spôsobeného vírusom mačacej leukémie (FeLV) v 60. – 80. rokoch 20. storočia, keď sa zistilo, že mnohé prípady FIP boli spojené s FeLV (Cotter et al., 1973; Pedersen 1976a). Následné zvládnutie infekcie FeLV u vlastnených mačiek pomocou rýchleho testovania a vakcinácie prinieslo nárast počtu prípadov FIP. Nedávny záujem o chov/ záchranu spolu s účinnou liečbou však viedol k zvýšenému povedomiu o ochorení a jeho diagnostike.

Obrázok 2. Hrubý nekroptický vzhľad brušnej dutiny mačky s akútnym nástupom vlhkej FIP. Brucho je vyplnené niekoľkými stovkami ml žltej viskóznej tekutiny, omentum je začervenané, edematózne a stiahnuté a na povrchu sleziny a okrajoch pečene sú viditeľné fibrínové nánosy (šípky). Na slezine je vidieť vlákno fibrínu
Obrázok 3. Vzhľad otvoreného brucha pri pitve mačky, ktorá uhynula na chronickú formu efuzívnej FIP. Brucho je vyplnené viskóznym, žlto sfarbeným exsudátom a omentum je zhrubnuté a stiahnuté. Hlavné lézie sú v pečeni s početnými štruktúrami podobnými plakom (pyogranulómy) na obale. Viac ohraničené lézie (granulómy), tiež orientované na serózny povrch, vyzerajú mäsitejšie a sú vyvýšené nad povrch. Tieto lézie zasahujú aj do spodného pečeňového parenchýmu a sú typickejšie pre suché FIP. Toto je príklad prípadu FIP, ktorý prechádza medzi vlhkou a suchou formou (šípka).
Obrázok 4A – Hrubý prierez obličkami dvoch mačiek so suchou formou FIP. Lézie sú povrchovo orientované a zasahujú do základného parenchýmu.
Obrázok 4B – lézie suchej formy FIP v orgánoch, ako sú obličky, slepé črevo, hrubé črevo a črevné lymfatické uzliny (obr. 5), boli hrubo zamenené s lymfómom obličiek.
Obrázok 5. Hrubé zväčšenie ileo-cekálno-kolických lymfatických uzlín u mačky so suchou FIP.

Etiologický faktor

Prvé pokusy neumožnili identifikovať pôvodcu FIP, ale potvrdili jej infekčnú povahu (Wolfe a Griesemer 1966). Vírusová etiológia bola stanovená v roku 1968 pomocou ultrafiltrátov infekčného materiálu (Zook a kol., 1968). Príčinný vírus bol následne identifikovaný ako koronavírus (Ward 1970), ktorý je úzko príbuzný s črevnými koronavírusmi psov a ošípaných (Pedersen et al., 1978).

Zmätok nastal, keď bol z výkalov zdravých mačiek izolovaný mačací enterický koronavírus (FECV), ktorý sa ukázal ako nerozoznateľný od vírusu mačacej infekčnej peritonitídy (FIPV) (Pedersen a kol., 1981). Na rozdiel od vírusu FIPV, ktorý ľahko vyvolal FIP u laboratórnych mačiek, experimentálne infekcie vírusom FECV boli zväčša asymptomatické. Vzťah týchto dvoch vírusov sa objasnil, keď sa zistilo, že FIPV sú mutantmi FECV, ktoré vznikajú v tele každej mačky s FIP (Vennema et al., 1995; Poland et al., 1996).

FECV je všadeprítomný v populáciách mačiek na celom svete a prvýkrát sa vylučuje vo výkaloch približne od 9. – 10. týždňa života, čo sa zhoduje so stratou materskej imunity (Pedersen a kol., 2008;). Infekcia prebieha fekálno-orálnou cestou a je zameraná na črevný epitel a primárne príznaky enteritídy sú mierne alebo nevýrazné (Pedersen et al., 2008; Vogel et al., 2010). K následnému vylučovaniu do stolice dochádza z hrubého čreva a zvyčajne prestane po niekoľkých týždňoch alebo mesiacoch (Herrewegh et al.,1997; Pedersen et al., 2008; Vogel et al., 2010). Imunita je krátkodobá a opakované infekcie sú bežné (Pedersen et al., 2008; Pearson et al., 2016). Časom sa nakoniec vyvinie silnejšia imunita a u mačiek starších ako 3 roky je menej pravdepodobné, že budú vylučovať infekciu výkalmi (Addie et al., 2003). FECV neustále podlieha genetickému driftu do lokálne a regionálne identifikovateľných kladov (Herrewegh et al.,1997; Pedersen et al., 2009).

FECV a FIPV sú klasifikované ako biotypy poddruhu koronavírusu mačiek (FCoV). Genómy biotypov FECV a FIPV sú na > 98 % príbuzné, avšak s jedinečným tropizmom hostiteľských buniek a patogenitou (Chang et al., 2012; Pedersen et al., 2009). FECV infikujú zrelý črevný epitel, zatiaľ čo FIPV strácajú črevný tropizmus a získavajú schopnosť replikovať sa v monocytoch/makrofágoch. Publikované názvy FECV alebo FIPV sa tu budú používať, keď sa bude hovoriť o aspektoch ochorenia špecifických pre každý biotyp, zatiaľ čo termín FCoV sa bude používať, keď sa bude hovoriť o znakoch spoločných pre oba biotypy.

Na zmene biotypu FECV na FIPV sa podieľajú tri typy mutácií. Prvý typ, ktorý je jedinečný pre každú mačku s FIP (Poland et al., 1996), pozostáva z nahromadenia missense a nonsense mutácií v c-konci pomocného 3c génu, ktoré často vedú k skráteným produktom 3c génu (Pedersen et al., 2012; Vennema et al., 1995). Druhý typ mutácií pozostáva z dvoch špecifických jednonukleotidových polymorfizmov vo fúznom peptide génu S, pričom jedna alebo druhá forma je spoločná pre > 95 % FIPV a chýba u FECV (Chang et al., 2012). Tretí typ mutácií, ktorý je jedinečný pre každý izolát FIPV a nenachádza sa u FECV, sa vyskytuje v motíve štiepenia furínu medzi doménou viažucou receptor (S1) a fúznou doménou (S2) hrotového génu (S) a v jeho okolí (Licitra et al., 2013). Tieto mutácie majú rôzny vplyv na štiepnu aktivitu furínu. Spoločne a zatiaľ neurčeným spôsobom sú zodpovedné za posun tropizmu hostiteľskej bunky z enterocytu na makrofág a za hlbokú zmenu formy ochorenia.

FCoV, a teda aj FECV a FIPV, existujú v dvoch sérotypoch identifikovaných podľa protilátok proti vírusovému neutralizačnému epitopu na géne S (Herrewegh et al., 1998; Terada et al., 2014). FCoV sérotypu I sú identifikované v sérach mačiek a prevládajú vo väčšine krajín. FCoV sérotypu II sú výsledkom rekombinácie s časťou S génu koronavírusu psov (Herrewegh a kol., 1998; Terada a kol., 2014) a identifikujú sa pomocou protilátok proti koronavírusu psov. FIPV sérotypu II sa ľahko kultivujú v tkanivových kultúrach, zatiaľ čo FIPV sérotypu I sa ťažko prispôsobujú rastu in vitro. FECV sérotypu I a II neboli pestované v bežných bunkových kultúrach (Tekes et al., 2020).

FIPV sa nachádzajú výlučne v aktivovaných monocytoch a makrofágoch v postihnutých tkanivách a výpotkoch a nevylučujú sa do vonkajšieho prostredia. Preto prenos FIPV z mačky na mačku (horizontálny) nie je hlavným spôsobom šírenia. FIP sa skôr riadi vzorom základnej enzootickej infekcie FECV, so sporadickými prípadmi a príležitostnými malými výskytmi ochorenia (Foley et al., 1997). Tieto zhluky prípadov sa môžu mylne považovať za epizootie. Jediná správa o epizootickom výskyte FIP bola spojená s jediným vírusom sérotypu II, ktorý sa zrejme vyvinul v útulku, v ktorom boli umiestnené psy aj mačky (Wang a kol., 2013). Horizontálny prenos sa v tomto prípade riadil skôr epizootickým ako enzootickým modelom ochorenia, pričom infekcia sa rýchlo rozšírila na mačky všetkých vekových kategórií a v úzkom kontakte s indexovým prípadom (Wang et al., 2013).

Nízky výskyt prípadov FIP v populácii naznačuje, že mutácie FIPV vznikajú zriedkavo. Štúdie zahŕňajúce infekciu FECV u imunokompromitovaných mačiek infikovaných FIV a FeLV však naznačujú, že mutanty FIP môžu byť bežné, ale spôsobujú ochorenie len za určitých okolností. Devätnásť mačiek infikovaných vírusom imunitnej nedostatočnosti mačiek (FIV) počas 6 rokov a kontrolná skupina 20 súrodencov, ktorí neboli infikovaní vírusom FIV, boli orálne infikované vírusom FECV (Poland et al., 1996). Mačky v oboch skupinách zostali asymptomatické počas dvoch mesiacov, keď sa u dvoch mačiek v skupine infikovanej FIV vyvinula FIP. V druhej štúdii bolo 26 mladých mačiek s enzootickou infekciou FECV a z chovateľskej kolónie bez anamnézy FIP kontaktne vystavených nosičom FeLV (Pedersen a kol., 1977). U dvoch mačiatok v skupine sa následne vyvinula FIP 2 – 10 týždňov po tom, ako sa stali viremickými FeLV. Zostáva otázka, ako dlho môžu vírusy FIPV prežívať v tele, kým sa vylúčia? Podľa jednej z teórií pretrvávajú v tele určitý čas a patologickými sa stanú len vtedy, ak je voči nim narušená imunita (Healey a kol., 2022). Túto teóriu podporuje spôsob, akým sa vyvíja imunita voči FeLV. Väčšina mačiek po dosiahnutí veku mačiatka odolá vírusu FeLV a vyvinie si pevnú a trvalú imunitu, k čomu však dochádza v priebehu niekoľkých týždňov, počas ktorých vírus pretrváva v subklinickom alebo latentnom stave (Pedersen a kol., 1982; Rojko a kol., 1982). Metylprednizolón podávaný počas tohto obdobia, ale nie po ňom, zruší vyvíjajúcu sa imunitu a vedie k stavu pretrvávajúcej virémie.

Epizootológia

Epizootiológia je štúdium výskytu, rozšírenia a možnej kontroly chorôb zvierat a vplyvu faktorov prostredia, hostiteľa a pôvodcu. FIP je označovaná za jednu z najdôležitejších infekčných príčin úmrtí mačiek, hoci neexistujú presné údaje o prevalencii. Odhaduje sa, že 0,3 – 1,4 % úmrtí mačiek prezentovaných veterinárnym inštitúciám súvisí s FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Riemer et al., 2016) a v niektorých útulkoch a chovných staniciach až 3,6 – 7,8 % (Cave et al., 2002). FIP sa opisuje aj ako ochorenie prostredia s hustejším výskytom viacerých mačiek. Tri štvrtiny prípadov FIP v aktuálne prebiehajúcej liečebnej štúdii pochádzali z terénu prostredníctvom dočasných opatrovateľov/záchranných organizácií a útulkov pre mačky, 14 % z chovných staníc a len 11 % z domácností.1

Štúdie založené na prípadoch pozorovaných v akademických inštitúciách preukázali vplyv veku a pohlavia na výskyt FIP (Rohrbach et al., 2001; Pesteanu-Somogyi et al., 2006; Pedersen 1976a; Worthing et al., 2012; Riemer et al., 2016). Tri štvrtiny prípadov v týchto kohortách sa vyskytli u mačiek mladších ako 3 roky a len málo prípadov po 7. roku života. Potvrdila to aj aktuálna a prebiehajúca terénna štúdia z Českej republiky a Slovenska, v ktorej sa zistilo, že viac ako 80 % prípadov FIP sa vyskytlo u mačiek vo veku do 3 rokov a len 5 % u mačiek starších ako 7 rokov (obr. 6).1 Skoršie inštitucionálne štúdie sa líšili, pokiaľ ide o vplyv pohlavia, ale náznaky naznačovali, že kocúri sú o niečo náchylnejší na FIP ako mačky. Potvrdili to aj súčasné údaje z terénu, ktoré ukazujú pomer samcov a samíc 1,3:1,1. Nie je jasné, či kastrácia ovplyvňuje výskyt FIP, pričom niektoré správy naznačujú, že môže zvyšovať náchylnosť (Riemer a kol., 2016), zatiaľ čo iné neuvádzajú taký jasný vplyv.1

Obrázok 6. Vek viac ako 607 mačiek z Českej republiky a Slovenska v čase diagnostikovania a liečby FIP.1 Tridsať percent infekcií bolo zaznamenaných u mačiek vo veku šesť mesiacov alebo mladších, 50 % vo veku jedného roka a 85 % vo veku troch rokov alebo mladších.

Na zvýšenom výskyte FIP sa podieľajú ďalšie environmentálne a vírusové rizikové faktory, ale ich význam si vyžaduje znalosť výskytu ochorenia v prípade ich absencie. Možnú východiskovú úroveň mohla poskytnúť štúdia enzootickej infekcie FECV, ktorá bola nepoznane prítomná mnoho rokov v dobre spravovanej špecifickej chovateľskej kolónii bez patogénov (Hickman a kol., 1995). Táto kolónia bola udržiavaná v prísnej karanténe bez iných infekcií a úroveň výživy a chovu bola vysoká. Táto kolónia vyprodukovala stovky mačiatok každý rok, kým bol diagnostikovaný prvý prípad FIP. Takéto pozorovania naznačujú, že FIP môže byť zriedkavým javom pri absencii rizikových faktorov.

Význam premiestnenia do nového domova ako rizikového faktora FIP sa doceňuje až v súčasnosti. Chovatelia plemenných mačiek, z ktorých mnohí nezaznamenali žiadne prípady FIP vo svojich chovoch, majú najväčšie obavy z oznámenia, že u jedného z ich mačiatok sa krátko po odchode do nového domova vyskytla FIP. Nedávna štúdia zistila, že viac ako polovica mačiek s FIP zažila v priebehu týždňov pred ochorením zmenu prostredia, pobyt v útulku alebo odchyt .1 Mačky sú známe tým, že skrývajú vonkajšie príznaky stresu, aj keď trpia vážnymi vnútornými chorobnými následkami. Aj také jednoduché postupy ako zmena klietky potlačia imunitu a reaktivujú latentné vylučovanie herpes vírusu a príznaky ochorenia u mačiek (Gaskell a Povey, 1977). Stresové situácie, dokonca aj tie, ktoré sa zdajú byť menej závažné, môžu spôsobiť zníženie hladiny lymfocytov a “chorobné správanie” (Stella a kol., 2013).

Na prevalencii FIP v populácii sa môžu podieľať aj rozdiely v genetickej výbave enzootických kmeňov FCoV. Predpokladá sa, že FIPV sérotypu II sú virulentnejšie ako sérotyp I a je pravdepodobnejšie, že sa prenášajú z mačky na mačku (Lin et al., 2009; Wang et al., 2013). Je tiež možné, že určité klady FECV sú náchylnejšie na mutáciu na FIPV, čo by sa malo preštudovať. Autor tiež pozoroval neprimerane vysoký podiel mačiek s neurologickou FIP v niektorých regiónoch, čo naznačuje, že genetické determinanty v určitých kmeňoch FCoV môžu byť neurotropnejšie.

S náchylnosťou na FIP sa spájajú imunodeficiencie spojené s retrovírusmi. Až polovica prípadov FIP počas vrcholu panzootického ochorenia FeLV bola perzistentne infikovaná FeLV (Cotter et al., 1973; Pedersen 1976a; Hardy 1981). FeLV infekcia spôsobuje potlačenie T-bunkovej imunity, čo môže inhibovať ochrannú imunitnú odpoveď na FIP. Význam infekcie FeLV pre výskyt FIP sa výrazne znížil od 80. rokov 20. storočia, keď odstránenie nosičov a vakcinácia vytlačili FeLV späť do prírody, kde sú expozície menej závažné a imunita je obvyklým výsledkom. Chronická infekcia vírusom mačacej imunodeficiencie (FIV) sa tiež ukázala ako rizikový faktor pre FIP u mačiek infikovaných FECV v experimentálnych podmienkach (Poland et al., 1996). V jednej nedávnej terénnej štúdii bola infekcia FeLV rozpoznaná u 2 % a FIV u 1 % mačiek liečených na FIP.1

Výskyt FIP u čistokrvných mačiek je údajne vyšší ako u mačiek z náhodných chovov, pričom niektoré plemená sa zdajú byť náchylnejšie ako iné (Pesteanu-Somogyi et al., 2006; Worthing et al., Genetická predispozícia na FIP sa skúmala v niekoľkých chovoch perzských mačiek a odhaduje sa, že predstavuje polovicu rizika ochorenia (Foley et al., 1997). niektoré plemená, ako napríklad birman, sú náchylnejšie na vznik suchej ako mokrej FIP (Golovko et al., 2013). Pokusy o identifikáciu špecifických génov spojených s náchylnosťou na FIP u birmských mačiek zahŕňali niekoľko génov súvisiacich s imunitou, ale žiadny z nich nedosiahol požadovanú významnosť (Golovko a kol., 2013). Najväčšia štúdia genetickej náchylnosti na FIP ukázala, že je extrémne polymorfná a ako hlavný rizikový faktor sa v nej uvádza príbuzenská plemenitba (Pedersen et al., 2016). Špecifické polymorfizmy v niekoľkých génoch boli tiež spojené s vysokou úrovňou vylučovania FECV medzi niekoľkými plemennými plemenami mačiek (Bubenikova et al., 2020).

U samíc sa môže FIP, zvyčajne vlhká forma, vyvinúť počas gravidity alebo v perinatálnom období. Tento jav pripomína potlačenie imunity u gravidných žien a predispozíciu na určité infekcie (Mor a Cardenas 2010). Nie je jasné, či sa subklinická FIP aktivuje v dôsledku gravidity alebo zvýšenou vnímavosťou na novú infekciu. Infekcia matky na začiatku gravidity vedie k úmrtiu plodu a resorpcii, zatiaľ čo neskoršie infekcie často vedú k potratu (obr. 7). Mačiatka sa môžu narodiť aj zdravé, ale v perinatálnom období sa u nich vyvinie choroba a uhynú. Niektoré mláďatá sa rodia nenakazené vďaka účinnosti placentárnej bariéry medzi matkou a plodom alebo vďaka pomoci antivírusovej liečby (obr. 8).

Obrázok 7. Potratené mačiatka od matky, u ktorej sa v neskoršom štádiu gravidity vyvinula vlhká FIP. Potrat bol prvým príznakom FIP, po ktorom rýchlo nasledovali klasické príznaky abdominálnej mokrej FIP. Matka bola úspešne vyliečená z FIP pomocou antivirotika GS-441524.
Obrázok 8. U tejto matky sa 3 týždne po začiatku gravidity objavili príznaky vlhkej brušnej FIP a bola úspešne vyliečená pomocou GS-441524. Následne priviedla na svet vrh štyroch mačiatok cisárskym rezom, z ktorých jedno uhynulo a tri prežili a vyrastali zdravé. Liečba sa podávala počas zvyšných 6 týždňov gravidity a pokračovala 6 týždňov, počas ktorých boli mačiatka úspešne dojčené. GS-441524 nemal žiadne zjavné vedľajšie účinky na matku alebo mačiatka.

Možný nárast počtu prípadov FIP bol pozorovaný u mačiek starších ako 10 rokov v štúdiách, ktoré sa uskutočnili pred 50 rokmi (Pedersen 1976a). O niečo viac ako 3 % prípadov FIP v nedávnej štúdii sa vyskytlo u mačiek vo veku 10 rokov a viac a 1,5 % u mačiek vo veku 12 rokov a viac (obr. 6).1 Výskyt FIP u starších jedincov často zahŕňa dva rôzne scenáre. Prvý scenár zahŕňa aj vystavenie sa vylučovaniu výkalov FECV, ale jedinečným spôsobom. Je bežné, že staré mačky sa párujú ešte ako mačiatka a žijú spolu v relatívnej izolácii nevystavené FECV po mnoho rokov. Jedna mačka z páru uhynie, zostane sama a do domácnosti sa privedie oveľa mladšia spoločníčka získaná zo záchrannej organizácie, útulku alebo chovateľskej stanice, u ktorej je vysoká pravdepodobnosť, že vylučuje FECV. Staršie mačky sú tiež náchylné na tie isté rizikové faktory FIP ako mladšie mačky, ale aj na ďalšie faktory spojené so starnutím. Prvým z nich je vplyv starnutia na imunitný systém, pričom najdôslednejším je zhoršenie bunkovej imunitnej funkcie (Day 2010). Medzi ďalšie rizikové faktory spojené so starými mačkami patria oslabujúce a potenciálne imunosupresívne účinky ochorení, ako je rakovina, a chronické ochorenia obličiek, pečene, ústnej dutiny a čriev. Niektoré ochorenia starých mačiek môžu byť zamenené za FIP alebo komplikovať liečbu FIP, ak sú prítomné súčasne.

Medzi ďalšie rizikové faktory, ktoré je potrebné ďalej skúmať, patrí strata materskej systémovej imunity oddelením pri narodení, skoré odstavenie a strata laktogénnej imunity, podvýživa, bežné infekčné ochorenia mačiatka, skorá kastrácia, očkovanie, vrodené srdcové chyby a dokonca aj požiar v útulku (Drechsler a kol.), 2011; Healey et al., 2022; Pedersen 2009, Pedersen et al. 2019).1 Najdôležitejším pozitívnym rizikovým faktorom však zostáva prítomnosť FECV v populácii (Addie et al., 1995). Prevalencia FIP v niekoľkých chovoch perzských mačiek súvisela v jednej štúdii aj s podielom mačiek, ktoré v danom čase vylučujú FECV, a s podielom týchto mačiek, ktoré sú chronickými vylučovateľmi (Foley a kol., 1997). Význam vystavenia FECV podporuje potrebu nájsť spôsoby, ako buď zabrániť infekcii, alebo znížiť jej závažnosť. Jedným z prvých krokov je lepšie pochopenie imunity FECV (Pearson et al., 2019).

Patogenéza

Prvým rozhraním medzi FECV a imunitným systémom sú lymfatické tkanivá čreva (Malbon et al., 2019, 2020). Hoci následné udalosti vedúce k FIP nie sú úplne objasnené, je možné špekulovať na základe toho, čo je už známe o infekciách FECV a FIPV, iných makrofágovo-tropických infekciách a vírusovej imunite vo všeobecnosti. Častice a proteíny FECV sa počas črevnej infekcie dostanú do miestnych lymfatických tkanív a spracujú sa fagocytujúcimi bunkami najprv na peptidy a nakoniec na aminokyseliny. Niektoré z týchto peptidov budú po usporiadaní na povrchu buniek rozpoznané ako cudzie, čo vyvolá vrodenú (prirodzenú alebo nešpecifickú) a adaptívnu (získanú alebo špecifickú) imunitnú odpoveď (Pearson et al., 2016). FECV tiež prechádzajú mutáciou na FIPV v rovnakom čase a u rovnakého typu buniek. Niektoré z týchto mutácií umožnia vírusu replikovať sa v týchto alebo blízko príbuzných bunkách špecifickej monocytovej/makrofágovej línie.

Zdá sa, že hostiteľskou bunkou pre FIPV je špecifická trieda aktivovaných monocytov, ktoré sa nachádzajú okolo venúl na povrchu črevných a hrudných orgánov, mezentéria, omenta, uveálneho traktu, mening, cievovky a ependymu mozgu a miechy a voľne vo výpotkoch. Tieto bunky patria do triedy aktivovaných (M1) (Watanabe a kol., 2018) a podobajú sa subpopulácii malých peritoneálnych makrofágov opísanej u myší (Cassado a kol., 2015). Tento typ buniek vzniká z cirkulujúcich monocytov pochádzajúcich z kostnej drene, ktoré sa rýchlo mobilizujú z krvi v reakcii na infekčné alebo zápalové podnety. V okolí krvných ciev v sietnici postihnutej FIP bola opísaná rovnako vyzerajúca populácia aktivovaných monocytov (Ziolkowska et al., 2017). Tieto bunky sa farbili na kalprotektín, čo poukazuje na ich krvný pôvod. Hoci infekcia FIPV prebieha spočiatku v menších aktivovaných monocytoch, replikácia vírusu je najintenzívnejšia vo veľkých, vakuolizovaných, terminálne diferencovaných makrofágoch (Watanabe a kol., 2018). Vírus uvoľnený z týchto buniek rýchlo infikuje aktivované monocyty produkované v kostnej dreni a stiahnuté do daného miesta z krvného obehu.

Bunkový receptor, ktorý FECV využívajú na infikovanie črevných epitelových buniek, ešte nebol určený. Bunkový receptor, ktorý FIPV používajú na infikovanie aktivovaných monocytov, tiež nie je známy. RNA pre konvenčné receptory koronavírusov, ako je aminopeptidáza N (APN), angiotenzín konvertujúci enzým 2 (ACE2) a CD209L (L-SIGN), neboli v infikovaných peritoneálnych bunkách mačiek s experimentálnou FIP upregulované a CD209 (DC-SIGN) bol výrazne nedostatočne exprimovaný (Watanabe et al., 2018). Alternatívna cesta infekcie aktivovaných monocytov môže zahŕňať imunitnú komplexáciu vírusu a vstup do buniek fagocytózou (Dewerchin et al., 2008, 2014; Van Hamme et al., 2008). Aktivované monocyty v léziách sa silne pozitívne farbia na antigén FIPV, IgG a komplement (Pedersen, 2009) a mRNA pre FcγRIIIA (receptor CD16A/ADCC) je v infikovaných bunkách výrazne zvýšená (Watanabe et al., 2018), čo podporuje infekciu prostredníctvom imunitného komplexovania a alternatívnych receptorov súvisiacich s fagocytózou.

Makrofágové patogény sú intracelulárne a eliminácia infikovaných buniek prebieha prostredníctvom usmrcovania sprostredkovaného lymfocytmi. Prvou obrannou líniou sú nešpecifické lymfocyty, a ak zlyhajú, nasleduje adaptívna imunitná odpoveď na FIPV prostredníctvom špecifických T-lymfocytov. Ak sa nepodarí zadržať a eliminovať infikované aktivované monocyty a makrofágy, môžu sa lokálne šíriť v brušnej dutine, pravdepodobne z lymfatických uzlín v oblasti dolného čreva a miesta replikácie FECV. Šírenie lokálne a do vzdialených miest prostredníctvom krvného obehu sa uskutočňuje infikovanými monocytovými bunkami (Kipar a kol., 2005).

FIP sa vyskytuje v dvoch základných formách, vlhkej (efuzívna, neparenchymatózna) (obrázky 2 a 3 )alebo suchej (neefuzívna, parenchymatózna) (obrázky 4 a 5), pričom vlhká FIP predstavuje 80 % prípadov.1 Termín “vlhká” sa vzťahuje na charakteristický výpotok tekutiny v bruchu alebo hrudníku (Wolfe a Griesemer 1966, 1971). V léziách vlhkej FIP dominuje zápal pripomínajúci hypersenzitivitu okamžitého alebo Arthusovho typu (Pedersen a Boyle, 1980), zatiaľ čo lézie suchej FIP pripomínajú hypersenzitívne reakcie oneskoreného typu (Montali a Strandberg 1972; Pedersen 2009). Vlhké a suché formy FIP preto odrážajú konkurenčné vplyvy protilátkami a bunkami sprostredkovanej imunity a súvisiacich cytokínových dráh (Malbon a kol., 2020, Pedersen 2009). Predpokladá sa, že imunita voči bunkám infikovaným FIPV, ktorá je normou, zahŕňa silné reakcie sprostredkované bunkami (Kamal et al. 2019). Predpokladá sa, že k suchej FIP dochádza vtedy, keď je bunkami sprostredkovaná imunita čiastočne účinná pri potláčaní infekcie, a k vlhkej FIP vtedy, keď je bunková imunita neúčinná a prevládajú humorálne imunitné reakcie.

FIP sa považuje za jedinečnú medzi makrofágnymi infekciami, pretože je vírusová, ale suchá forma má mnoho spoločných klinických a patogénnych znakov s ochoreniami mačiek spôsobenými systémovými mykobakteriálnymi (Gunn-Moore et al., 2012) a plesňovými infekciami (Lloret et al., 2013). Podobnosti v patogenéze existujú aj medzi vlhkou FIP a vírusovými infekciami zosilnenými protilátkami, ako sú horúčka Dengue a syndróm hemoragického šoku Dengue (Pedersen a Boyle 1980; Rothman a kol., 1999, Weiss a Scott 1981).

Predpokladá sa, že reakcie hostiteľa výlučne určujú výsledok infekcie FIPV a výsledné formy ochorenia. Avšak makrofágovo-tropné patogény si vyvinuli vlastné jedinečné obranné mechanizmy proti hostiteľovi (Leseigneur et al., 2020). Jedným z mechanizmov je oddialenie programovanej bunkovej smrti (apoptózy). Oneskorená apoptóza umožňuje trvalú mikrobiálnu replikáciu a prípadné uvoľnenie väčšieho množstva infekčných agensov, ako bolo opísané aj v prípade makrofágov infikovaných FIPV (Watanabe et al., 2018). FIPV môže tiež kontrolovať rozpoznávanie a ničenie infikovaných aktivovaných monocytov špecifickými alebo nešpecifickými T-bunkami. Cieľom bunkového povrchu pre T-bunky, ktoré zabíjajú infikované bunky, sú pravdepodobne proteíny (antigény) FIPV exprimované na hlavných histokompatibilných receptoroch I. triedy (MHC-I). Na FIPV-pozitívnych bunkách odobratých z tkanív FIP alebo výpotkov sa však nezistila povrchová expresia vírusových antigénov receptormi MHC-I (Cornelissen a kol., 2007). DC-Sign bol navrhnutý ako receptor pre FIPV (Regan a Whitaker, 2008), ale RNA pre DC-Sign je výrazne nedostatočne exprimovaná infikovanými peritoneálnymi bunkami, zatiaľ čo RNA pre Fc (MHC-II) receptory je výrazne nadmerne exprimovaná a RNA pre MHC-I je znížená (Watanabe a kol., 2018). To naznačuje, že normálny spôsob infekcie hostiteľských buniek môže byť zmenený FIPV tak, aby uprednostňoval infekciu fagocytózou namiesto väzby na špecifické vírusové receptory na povrchu buniek, fúzie s bunkovou membránou a internalizácie.

Patológia

Podrobné opisy hrubých a mikroskopických lézií pri vlhkej forme FIP po prvýkrát popísali Wolfe a Griesemer (1966, 1971). Ochorenie je charakterizované vaskulitídou, ktorá zahŕňa venuly v tkanivách vystielajúcich brušnú alebo hrudnú dutinu, povrch orgánov a podporných tkanív, ako sú mezentérium, omentum a mediastinum. Zápalový proces vedie k výpotkom v brušnej alebo hrudnej dutine až do objemu jedného litra alebo viac (obr. 2, 3). Základnou léziou je pyogranulóm, ktorý pozostáva z fokálneho nahromadenia aktivovaných monocytárnych buniek v rôznych štádiách diferenciácie, popretkávaných nedegenerovanými neutrofilmi a riedkym množstvom lymfocytov. Pyogranulómy sú povrchovo orientované a hrubo a mikroskopicky sa javia ako jednotlivé a koalescenčné plaky (obr. 2).

Antigén FIPV sa imunohistochemicky (IHC) pozoruje len v aktivovaných monocytoch v léziách a vo výpotkoch (Litster et al., 2013). Veľké vakuolizované terminálne diferencované makrofágy sú obzvlášť bohaté na vírus (Watanabe et al., 2018), čo pripomína lepromatóznu formu malomocenstva (deSousa et al., 2017). Lymfatické uzliny lokalizované v blízkosti miest zápalu sú hyperplastické a zväčšené.

Vzťah suchej a vlhkej FIP bol prvýkrát opísaný v roku 1972 v správe o prípadoch neznámej etiológie s podobnou patológiou (Montali a Strandberg 1972). Ako uvádzajú autori, “tento patologický syndróm bol charakterizovaný granulomatóznym zápalom v rôznych orgánoch, ale hlavne postihoval obličky, viscerálne lymfatické uzliny, pľúca, pečeň, oči a leptomeningy”. Tkanivové extrakty týchto lézií vyvolali vlhkú FIP u laboratórnych mačiek, čím sa potvrdilo, že vlhkú a suchú FIP spôsobuje ten istý pôvodca.

Hrubá a mikroskopická patológia suchej FIP sa podobá patológii iných makrofágovo-tropických infekcií, ako je systémová blastomykóza mačiek, histoplazmóza, kokcidioidomykóza (Lloret et al., 2013), tuberkulóza a lepra (Gunn-Moore et al., 2012). Lézie suchej FIP zahŕňajú najmä brušné orgány (obr. 5, 6) a v hrudnej dutine sú zriedkavé (Montali a Strandberg 1972; Pedersen 2009). Lézie sú menej rozšírené a fokálne ako pri vlhkej FIP, s tendenciou rozširovať sa zo seróznych povrchov do parenchýmu základných orgánov (obr. 5, 6). Cieľom imunitnej odpovede hostiteľa sú malé agregáty infikovaných monocytárnych buniek spojené s venulami, podobne ako pyogranulómy pri vlhkej FIP, ale obklopené hustými akumuláciami lymfocytov a plazmatických buniek a variabilnou fibrózou. Floridná hyperémia, edém a mikrohemorágia spojené s vlhkou FIP väčšinou chýbajú, preto chýbajú významné výpotky v telesných dutinách. Reakcia hostiteľa na ložiská infekcie dáva léziám hrubý vzhľad podobný nádoru (obr. 5, 6). Infikované aktivované monocyty v centrálnom ohnisku infekcie sú menej husté a obsahujú nižšie hladiny vírusu ako pri vlhkej forme (Pedersen 2009;), čo je vlastnosť tuberkuloidnej formy lepry (de Sousa et al., 2017). Lézie na niektorých miestach, napríklad na stene hrubého čreva, môžu vyvolávať hustú okolitú zónu fibrózy, ktorá pripomína klasické granulómy tuberkulózy. Prechodné formy existujú aj medzi vlhkými a suchými formami v malej časti prípadov a väčšinou sú rozpoznateľné pri pitve (obr. 3).

Okulárna a neurologická FIP sa klasifikujú ako formy suchej FIP (Montali a Strandberg 1972). Avšak patológia v uveálnom trakte a sietnici oka a v ependýme a meningách mozgu a miechy predstavuje medzistupeň medzi vlhkou a suchou FIP (Fankhauser a Fatzer 1977; Peiffer a Wilcock 1991). Možno to vysvetliť účinkom hematookulárnej a hematoencefalickej bariéry pri ochrane týchto oblastí pred systémovými imunitnými reakciami.

Klinické charakteristiky FIP

Päť najčastejších príznakov u mačiek s FIP, bez ohľadu na klinickú formu a frekvenciu výskytu, sú letargia, nechutenstvo, zväčšené brušné lymfatické uzliny, úbytok hmotnosti, horúčka a zhoršujúca sa srsť.1 Tieto príznaky sa môžu objaviť rýchlo, v priebehu týždňa, alebo môžu existovať mnoho týždňov a dokonca mesiacov pred stanovením diagnózy. Priebeh ochorenia býva rýchlejší u mačiek s vlhkou FIP ako so suchou FIP a spomalenie rastu je bežné u mladých mačiek, najmä u tých s chronickejším ochorením. U 20 % mačiek s horúčkou ako hlavným príznakom sa nakoniec diagnostikuje FIP (Spencer et al., 2017).

Vlhká forma FIP sa vyskytuje približne v 80 % prípadov, častejšie u mladších mačiek a býva závažnejšia a rýchlejšie progredujúca ako suchá forma. Abdominálny výpotok (ascites) je štyrikrát častejší ako pleurálny výpotok, pričom častými príznakmi sú abdominálna distenzia (obr. 9) a dyspnoe. Pyrexia a žltačka sú častejšími príznakmi u mačiek s vlhkou ako so suchou formou FIP (Tasker, 2018).

Obrázok 9.  Dospelá dlhosrstá mačka s chronickou brušnou vlhkou FIP. Mačka bola v prijateľnom zdravotnom stave okrem mierneho úbytku hmotnosti, letargie, zhoršenia kvality srsti a občasnej nízkej horúčky. Abdominálna distenzia nebola po určitú dobu zaznamenaná a brušná tekutina obsahovala relatívne nízky počet bielkovín a bielych krviniek.
Obrázok 9. Mladá mačka, ktorá sa prezentovala rýchlym nástupom vysokej horúčky, nechutenstvom, distenziou brucha a brušnou tekutinou s vysokým obsahom bielkovín a bielych krviniek.

Väčšina mačiek so suchou FIP má pri prezentácii príznaky ochorenia obmedzené na brucho a/alebo hrudník. Najčastejšími klinickými príznakmi suchej FIP sú hmatné alebo ultrazvukom identifikovateľné masy v obličkách (obr. 4), slepom čreve, hrubom čreve, pečeni a pridružených lymfatických uzlinách (obr. 5). Lézie suchej FIP zvyčajne šetria hrudnú dutinu a zriedkavo sa vyskytujú v koži, nosových priechodoch, osrdcovníku a semenníkoch ako súčasť širšieho systémového ochorenia.

Neurologické a očné ochorenia sú jedinými alebo sekundárnymi znakmi 10 % všetkých prípadov FIP a 10-krát častejšie sa spájajú so suchou ako s vlhkou FIP (Pedersen 2009). Neurologické a očné formy FIP boli klasifikované ako formy suchej FIP, ale možno by bolo vhodnejšie klasifikovať ich ako odlišné formy FIP vyplývajúce z modifikujúcich účinkov hematookulárnej a hematoencefalickej bariéry, za ktorou sa vyskytujú. Tieto bariéry majú silný vplyv na povahu ochorenia očí a centrálneho nervového systému (CNS) a na odpoveď na antivírusovú liečbu.

Klinické príznaky neurologickej FIP sa týkajú mozgu aj miechy a zahŕňajú zadnú slabosť a ataxiu, generalizovanú nekoordinovanosť, záchvaty, mentálnu otupenosť, anizokóriu a rôzne stupne fekálnej a/alebo močovej inkontinencie (Foley et al., 1998; Dickinson et al., 2020) (obr. 10). Extrémny intrakraniálny tlak môže viesť k náhlej herniácii mozočku a mozgového kmeňa do miechového kanála a syndrómu spinálneho šoku. Medzi prodromálne príznaky patrí nutkavé olizovanie stien alebo podlahy, konzumácia steliva, mimovoľné svalové zášklby a neochota alebo neschopnosť vyskočiť na vysoké miesta. Postihnutie očí môže predchádzať alebo sprevádzať neurologické ochorenie. Neurologická FIP je častým javom pri liečbe antivirotikami, buď sa objavuje počas liečby non-CNS foriem FIP, alebo ako prejav relapsu ochorenia po ukončení liečby (Pedersen et al., 2018, 2019; Dickinson et al., 2020).

Obrázok 10. Mladá mačka so suchou FIP a neurologickým postihnutím. Mačka je letargická, vychudnutá a s biednou srsťou. Srsť v perineálnej oblasti je mokrá a zafarbená od močovej inkontinencie.
Obrázok 11. Zafarbenie dúhovky pravého oka tejto mačky bolo prvým príznakom uveitídy spojenej s FIP. V prednej komore je mierne zahmlenie a na vnútornej strane rohovky sú usadeniny fibrínu bohaté na červené krvinky. Zreničky sú tiež nerovnaké (anizokória).
Obrázok 12. Mladá mačka s okulárnou FIP, ktorá sa na pravom oku prejavila ako predná uveitída so sekundárnym glaukómom spôsobujúcim zväčšenie gule. Dúhovka zmenila farbu v dôsledku zápalu, cievy na báze dúhovky sú prekrvené a na zadnej strane rohovky je zákal vodného moku a zápalové produkty. Vnútroočný tlak je zvyčajne nízky pri nekomplikovanej uveitíde, ale zvýšený u mačiek s glaukómom.
Obrázok 13. Táto mladá mačka mala prednú uveitídu, ale jej terapia FIP pomocou GS-441524 bola oneskorená, čo umožnilo vznik glaukómu na oboch očiach. Liečba odstránila základnú uveitídu a výrazne zlepšila vonkajší zdravotný stav, ale sekundárny glaukóm a slepota pretrvali.

Postihnutie očí je zvyčajne zjavné a potvrdí sa pri oftalmoskopickom vyšetrení prednej a zadnej komory. Okulárna FIP v rôznej miere postihuje dúhovku, ciliárne telieska, sietnicu a disk zrakového nervu (Peiffer a Wilcock, 1991; Ziółkowska a kol., 2017; Andrew, 2000). Najčasnejším príznakom je často jednostranná zmena farby dúhovky (obr. 11). Predná komora sa môže javiť zakalená a môže vykazovať vysoké hladiny bielkovín a vodný zákal pri lome svetla. Do prednej komory sa vyplavujú zápalové produkty vo forme aktivovaných makrofágov, červených krviniek, fibrínových značiek a malých krvných zrazenín. Tento materiál často priľne na zadnú stranu rohovky ako keratické precipitáty (obr. 12). Ochorenie môže zasiahnuť aj sietnicu v tapetálnych a netapetálnych oblastiach a viesť k odlúpeniu sietnice. Vnútroočný tlak je zvyčajne nízky, okrem prípadov komplikovaných postihnutím ciliárneho telesa a glaukómom (obr. 12, 13).

Diagnostika FIP

Signalizácia, environmentálna anamnéza, klinické príznaky a nálezy pri fyzikálnom vyšetrení často poukazujú na FIP (Tasker, 2018). Dôkladné fyzikálne vyšetrenie by malo zahŕňať telesnú hmotnosť a teplotu, stav srsti a tela, manuálnu palpáciu brucha a brušných orgánov, hrubé zhodnotenie srdcovej a pľúcnej funkcie a zbežné vyšetrenie očí a neurologického systému. Silné podozrenie na výpotok v brušnej alebo hrudnej dutine môže byť dôvodom na konfirmačnú aspiráciu a dokonca aj na in-house analýzu kvapaliny ako súčasti úvodnéeho vyšetrenia.

Abnormality v kompletnom krvnom obraze (CBC) a základnom biochemickom paneli séra sú dôležitými faktormi pri diagnostike FIP (Tasker, 2018; Felten a Hartmann, 2019) a monitorovaní liečby antivirotikami (Pedersen a kol., 2018, 2019; Jones a kol., 2021; Krentz a kol., 2021) (obr. 14). Celkový počet leukocytov je u mačiek s vlhkou FIP s najväčšou pravdepodobnosťou vysoký, ale pri ťažkom zápale sa môže vyskytnúť i nízky počet. Vysoký počet leukocytov sa často spája s neutrofíliou, lymfopéniou a eozinopéniou. Mierna až stredne ťažká neregeneratívna anémia sa tiež často pozoruje pri vlhkej aj suchej FIP. Celkové bielkoviny sú zvyčajne zvýšené v dôsledku zvýšených hladín globulínu, zatiaľ čo hodnoty albumínu bývajú nízke (obr. 14). Výsledkom je pomer A:G, ktorý je často nižší ako 0,5 – 0,6 a považuje sa za jeden z najkonzistentnejších ukazovateľov FIP. Nízky pomer A:G sa však môže vyskytnúť v situáciách, keď sú albumín aj globulín v referenčnom intervale alebo pri iných ochoreniach. Preto by pomer A:G nemal byť jediným ukazovateľom FIP a mal by sa vždy hodnotiť v kontexte s inými ukazovateľmi FIP (Tasker, 2018; Felten a Hartmann, 2019). Hodnoty sérových bielkovín získané z väčšiny sérových chemických panelov sú zvyčajne dostatočné. Elektroforéza sérových bielkovín môže poskytnúť ďalšie informácie, najmä ak sú hodnoty bielkovín z chemického vyšetrenia séra sporné (Stranieri a kol., 2017).

Obrázok 14. Kompletný krvný obraz (CBC) (a) mladej mačky s akútnou vlhkou abdominálnou FIP. Hoci počet leukocytov nebol zvýšený, bola zistená relatívna, ale nie absolútna neutrofília, relatívna a absolútna lymfopénia, relatívna a absolútna eozinopénia a neresponzívna anémia, na ktorú poukazujú nízke červené krvinky, hematokrit a hemoglobín s normálnym počtom retikulocytov.
Obrázok 14. Biochemické vyšetrenie séra (b) mladej mačky s akútnou vlhkou abdominálnou FIP. Relevantné hodnoty v chemickom paneli séra boli zvýšený celkový proteín, nízky albumín, vysoký globulín, nízky pomer albumín/globulín (A:G) a zvýšený celkový a priamy bilirubín. Pečeňové enzýmy boli normálne s výnimkou mierne zvýšenej hodnoty AST a BUN a kreatinín sú normálne, čo poukazuje na neprítomnosť významného ochorenia pečene alebo obličiek. Hodnoty globulínu nie sú vždy uvedené, ale primeraný odhad sa dá vypočítať odpočítaním hladiny albumínu od celkovej bielkoviny.

Prílišné spoliehanie sa na abnormality v CBC a sérovej biochémii môže viesť k diagnostickej neistote, ak chýbajú, a to aj napriek tomu, že žiadna hodnota testu nie je konzistentne abnormálna vo všetkých prípadoch FIP (Tasker, 2018)1. Najväčšie rozdiely sú medzi klinickou formou ochorenia, pričom leukocytóza a lymfopénia sú častejšie u mačiek s vlhkou ako so suchou FIP (Riemer et al., 2016). Hyperbilirubinémia je častá u mačiek s FIP, ale hlavne u mačiek s vlhkou FIP (Tasker, 2018). Autor tiež zistil, že mnohé mačky s primárnou neurologickou FIP vykazujú menšie alebo žiadne krvné abnormality. Hodnoty krvných testov pri FIP sa tiež v jednotlivých štúdiách líšia (Tasker, 2018).

Kompletná analýza výpotku je dôležitá na diagnostikovanie vlhkej FIP a na vylúčenie iných potenciálnych príčin hromadenia tekutiny (Dempsey a Ewing, 2011). Zahŕňa farbu (číra alebo žltá), viskozitu (riedka alebo viskózna), prítomnosť precipitátov, schopnosť vytvoriť čiastočnú zrazeninu pri odstátí, obsah bielkovín, počet leukocytov a diferenciál. Charakter tekutiny sa môže líšiť v závislosti od trvania ochorenia a jeho závažnosti. Výpotky u mačiek so závažnejšími príznakmi ochorenia mávajú zvyčajne hodnoty bielkovín blízke sérovým hodnotám, sú viskóznejšie, obsahujú väčší počet leukocytov, sú viac žlto sfarbené a majú väčšiu schopnosť vytvárať čiastočné zrazeniny pri odstátí. Chronické výpotky majú tendenciu byť menej zápalového charakteru, s nižšími hodnotami bielkovín a leukocytov, menej viskózne a čírejšie. Tieto hodnoty sa dajú na väčšine kliník stanoviť priamo na mieste. Faktor zrážanlivosti sa určuje porovnaním tekutiny odobratej v sére a v antikoagulačných skúmavkách po státí. Farbu a viskozitu možno odhadnúť približne a hladinu bielkovín odhadnúť pomocou ručného refraktometra na stanovenie celkového obsahu pevných látok. Bunky sa z tekutiny peletujú a analyzujú na preparáte s rýchle farbeným sklíčkom pomocou svetelnej mikroskopie a odhaduje sa počet a diferenciál leukocytov. Bunky zahŕňajú neseptické neutrofily, malé a stredne veľké mononukleárne bunky a veľké vakuolizované makrofágy (obr. 15).  Je dôležité poznamenať, že výpotky sa môžu vyskytnúť pri rôznych ochoreniach, ako je srdcové zlyhanie, rakovina, hypoproteinémia a bakteriálne infekcie. Výpotky pri týchto iných ochoreniach majú zvyčajne odlišné identifikačné znaky.

Obrázok 15. Farbený náter peritoneálnych buniek centrifugovaných z brušnej tekutiny mačky s vlhkou FIP a vyšetrených na rýchlo zafarbenom sklíčku svetelnou mikroskopiou. Prevládajúce bunky sú veľké silne vakuolizované makrofágy, menšie diferencujúce sa aktivované monocyty a neutrofily. Najväčšia koncentrácia vírusových častíc je v intracytoplazmatických vakuolách makrofágov (šípky).
Obrázok 16. Pozitívny výsledok Rivaltovej skúšky. Malá vzorka brušnej alebo hrudnej tekutiny sa opatrne nakvapká do malého pohára naplneného zriedenou kyselinou octovou (8 ml destilovanej vody a 1 kvapka koncentrovanej kyseliny octovej). Zápalové bielkoviny sa takmer okamžite zrazia a klesnú na dno (pozitívne). Menej zápalové tekutiny vytvoria difúzne zrazeniny (otázne) alebo voľne difundujú v roztoku (negatívne).

Na diagnostikovanie FIP ako príčiny výpotku sa často používa pozitívna Rivaltova skúška na brušnej alebo hrudnej tekutine a negatívna skúška ju skôr vylučuje (Fischer et al., 2010) ( obr. 16). Test však môže byť pozitívny pri zápalových výpotkoch inej príčiny a negatívny u niektorých mačiek s FIP. Preto je Rivaltova skúška najviac nápomocná v kombinácii s inými klinickými nálezmi FIP a nemala by nahrádzať dôkladnú analýzu tekutiny (Felten a Hartmann, 2019).

Hladiny celkového a priameho bilirubínu v sére sú často zvýšené, najmä u mačiek s vlhkou FIP (obr. 14), a môžu byť spojené so žltačkou a bilirubinúriou. Hyperbilirubinémia pri FIP nie je spôsobená ochorením pečene (Tasker, 2018), ale skôr vaskulitídou, mikrohemorágiou, hemolýzou a deštrukciou poškodených červených krviniek makrofágmi lokálne a v pečeni. Uvoľnený hemoglobín sa nakoniec metabolizuje na bilirubín, ktorý sa potom konjuguje v hepatocytoch a vylučuje sa močom. Pre vylučovanie bilirubínu je nevyhnutná glukuronidácia a genetické poruchy ovplyvňujúce glukuronidáciu u ľudí bránia jeho vylučovaniu (Kalakonda a kol., 2021). Mačky ako druh majú nedostatok enzýmov potrebných na glukuronidáciu, čo sťažuje vylučovanie látok, ako je bilirubín (Court a Greenblatt 2000).

Hoci FIP môže postihnúť obličky a pečeň, nie je natoľko závažná, aby spôsobila významnú stratu funkcie obličiek alebo pečene. Avšak sérové testy na dusík močoviny v krvi (BUN) a kreatinín ako indikátory ochorenia obličiek a alanínaminotransferázy (ALT), alkalickej fosfatázy (ALP) a gama glutamyltransferázy (GGT) ako indikátory ochorenia pečene sú u mačiek s FIP často mierne zvýšené, najmä u mačiek s akútnejším a závažnejším ochorením (obr. 14). Mierne abnormálne hodnoty testov by sa preto nemali interpretovať prehnane, ak nie sú prítomné iné klinické príznaky ochorenia pečene alebo obličiek, zatiaľ čo ich výrazné zvýšenie by malo poukazovať na možnosť súbežných a prípadne predisponujúcich ochorení týchto orgánov.

Sérum sa môže testovať aj na ďalšie markery systémového zápalu, ako sú zvýšené hladiny alfa-1-kyslého glykoproteínu (AGP) (Paltrinieri et al., 2007) a mačacieho sérového amyloidu A (fSAA) (Yuki et al., 2020). Môžu sa tiež ukázať ako užitočné pri monitorovaní odpovede na liečbu antivirotikami (Krentz et al., 2021).

Rádiografia môže byť užitočná pri identifikácii hrudných a brušných výpotkov. Ultrazvuk brucha môže odhaliť menšie množstvo výpotku, identifikovať zväčšené mezenterické a ileo-cekálno-kolické lymfatické uzliny, zhrubnutie steny hrubého čreva a lézie v orgánoch, ako sú obličky, pečeň a slezina (Lewis a O’Brien 2010). Môže byť užitočná aj pri vyšetrovaní hrudníka na prítomnosť lézií a pomôcť pri aspiračnom vyšetrení ihlou alebo biopsii.

Hodnota titrov protilátok proti FCoV sa od prvej správy spred takmer 50 rokov znížila (Pedersen 1976b). Referenčný test protilátok využíva nepriame fluorescenčné farbenie protilátok (IFA) Titre IFA ≥ 1:3200 u mačiek s FIP sú vyššie ako u väčšiny mačiek vystavených FECV (1:25 – 1:400). Novšie testy často využívajú postupy ELISA na rýchle interné alebo laboratórne testovanie, ale sú skôr kvalitatívne ako kvantitatívne. Titre protilátok IFA sa počas úspešnej liečby antivirotikami u mnohých mačiek znižujú, ale u iných zostávajú vysoké (Dickinson et al., 2020; Krentz et al., 2021). Sekvenčné titre môžu ukázať postupný nárast titrov v priebehu vývoja FIP (Pedersen et al., 1977), ale predchádzajúce vzorky séra sú k dispozícii na porovnanie iba zriedka. Podobne ako väčšina testov, ani hladiny protilátok FCoV by sa nemali používať ako jediné kritérium na diagnostikovanie alebo vylúčenie FIP (Felten a Hartmann, 2019) alebo na hodnotenie úspešnosti liečby (Krentz a kol., 2021).

Reverzná transkriptázová polymerázová reťazová reakcia (RT-PCR) je základným prostriedkom na identifikáciu FCoV RNA v zápalových výpotkoch, tekutinách alebo postihnutých tkanivách (Felten a Hartmann, 2019). RNA akcesorického génu 7b je prítomná v najvyššej miere v tkanivách, tekutinách alebo výpotkoch infikovaných FECV alebo FIPV, čo z nej robí najcitlivejší cieľ na detekciu nízkych hladín vírusu (Gut a kol., 1999). RT-PCR pre mutácie FIPV S génu sa často používa vo vzorkách, ktoré sú pozitívne na 7b RNA, aby bola špecifická pre FIPV (Felten a kol., 2017). Iné štúdie naznačujú, že testy RT-PCR na mutácie génu S špecifické pre FIPV majú podobnú špecifickosť pre FIP, ale za cenu výraznej straty citlivosti (Barker a kol., 2017). Zníženie citlivosti súvisí so zvýšením počtu falošne negatívnych výsledkov. Falošne negatívne testy RT-PCR sa vyskytujú aj vo vzorkách, ktoré neobsahujú dostatočné množstvo infikovaných makrofágov alebo u mačiek s veľmi nízkymi hladinami vírusu. Falošne negatívne výsledky sú obzvlášť časté pri testovaní plnej krvi.

Imunohistochémia (IHC) detekuje nukleokapsidový proteín koronavírusu mačiek vo formalínom fixovaných tkanivách s vysokou citlivosťou a špecifickosťou, ale nie je taká populárna ako RT-PCR (Litster et al., 2013; Ziółkowska et al., 2019). Vzorky na IHC musia obsahovať intaktné infikované makrofágy (obr. 17), čo si vyžaduje starostlivé oddelenie buniek z výpotkov a ich umiestnenie na podložné sklíčka, alebo choré tkanivá fixované vo formalíne a zaliate do parafínu, ktoré vykazujú lézie kompatibilné s FIP. Antigén koronavírusu v makrofágoch v rámci typickej lézie alebo tekutiny FIP sa pozoruje len pri FIP, čo dáva IHC vysokú úroveň špecifickosti.

Obrázok 17. Histologický rez zo zhrubnutého hrubého čreva mačky s črevnou formou FIP. Zhrubnutá stena obsahovala ložiská makrofágov (štvorcová plocha), ktoré sa imunoperoxidázou sfarbili pozitívne (hnedočerveno) na nukleokapsidový proteín FIPV.

Pre diagnostiku charakteristických zmien FIP je nevyhnutné dôkladné oftalmologické vyšetrenie (Pfeiffer a Wilcock 1991; Andrew, 2000). Vzorka vodného moku z prednej komory zapáleného oka môže byť užitočná aj pre cytologické vyšetrenie, PCR a IHC.

Neurologická FIP sa často diagnostikuje pomocou magnetickej rezonancie (MRI) so zvýraznením kontrastu a často je spojená s analýzou mozgovomiechového moku (CSF) (Crawford et al., 2017; Tasker, 2018; Dickinson et al., 2020). Ide však o nákladné postupy, ktoré nie sú vždy dostupné a nesú určité riziko pre mačku. MRI lézie zahŕňajú obštrukčný hydrocefalus, syringomyéliu a herniáciu foramen magnum s kontrastným zvýraznením meningov mozgu a miechy a ependymu tretej komory, mezencefalického akvaduktu a mozgového kmeňa. CSF vykazuje zvýšený počet bielkovín a buniek (neutrofily, lymfocyty, monocyty/makrofágy), a ak sú prítomné, môže byť spoľahlivým materiálom pre PCR alebo IHC vyšetrenie.

Neurologické a/alebo okulárne formy FIP sa často zamieňajú so systémovou toxoplazmózou mačiek a mnohé mačky s FIP sa empiricky liečia na toxoplazmózu ešte pred stanovením diagnózy FIP. Našťastie, dostupnosť účinnej liečby FIP túto prax obmedzila. Systémová toxoplazmóza je oveľa menej rozšírená ako FIP a sérologicky pozitívne bolo menej ako 1 % mačiek s FIP v jednej terénnej štúdii.1 Preto by sa testovanie alebo liečba na toxoplazmózu mali zvážiť až po adekvátnom diagnostikovaní FIP.

Antivírusová liečba ako diagnostický nástroj

Obrázok 18. Mačka s FIP na začiatku liečby liekom GS-441524 (a) a po 1 týždni (b). Odpoveď je rýchla, horúčka vymizne do 24-48 hodín a do 1-2 týždňov sa výrazne zlepší celkový zdravotný stav. Tento typ odpovede sa často používa na potvrdenie diagnózy FIP.

Bežne sa vyskytujú situácie, keď klinické nálezy poukazujú na FIP, ale pochybnosti pretrvávajú. Vtedy je na výber vykonanie viacerých diagnostických testov, ktoré ale nemusia viesť k definitívnejšej diagnóze. Alternatívnym diagnostickým prístupom je liečba vhodným antivirotikom počas 1 – 2 týždňov v správnej dávke pre suspektnú formu FIP.2 Liečba často prinesie klinické zlepšenie už za 24 – 48 hodín a to sa rýchlo stupňuje počas nasledujúcich 2 týždňov a celkovej podanej liečbe (obr. 18). Žiadna reakcia na testovaciu liečbu a/alebo zhoršenie zdravotného stavu by naznačovali potrebu ďalšieho vyšetrenia príčiny (príčin) zlého zdravotného stavu.

Liečba FIP

Pred rokom 2017 neexistoval liek na FIP a liečba bola zameraná najmä na zmiernenie príznakov ochorenia (Izes et al., 2020). Takáto podporná liečba bola zameraná na udržiavanie dobrej výživy, kontrolu zápalu (kortikosteroidy), zmenu imunitných reakcií (interferóny, cyklofosfamid, chlorambucil) a inhibíciu kľúčových cytokínových reakcií (pentoxifylín a iné inhibítory TNF-alfa). Bežne sa používali aj výživové doplnky, ktoré mali pomáhať špecifickým funkciám orgánov, ako napríklad jeden (Polyprenyl Imunostimulant), ktorý mal zlepšiť imunitu a predĺžiť prežívanie u mačiek so suchou, ale nie vlhkou FIP (Legendre et al., 2017). Vplyv dobrej podpornej starostlivosti na prežívanie nebolo možné určiť, pretože väčšina mačiek bola eutanizovaná po stanovení diagnózy alebo v priebehu niekoľkých dní či týždňov. Miera prežitia aj pri najľahších formách suchej FIP a najtrvalejšej liečbe v jednej štúdii bola len 13 % po 200 dňoch a 6 % po 300 dňoch (Legendre et al., 2017).

Mnohé komerčne dostupné lieky a zlúčeniny inhibujú infekciu alebo replikáciu FIPV in vitro, pričom niektoré z nich sú lieky, o ktorých je známe, že inhibujú špecifické proteíny vírusu HIV alebo hepatitídy C, zatiaľ čo iné fungujú tak, že inhibujú normálne bunkové procesy, ktoré si vírus uzurpuje pre svoj vlastný životný cyklus (Hsieh et al., 2010; Izes et al., 2020; Delaplace et al., 2021). Medzi tieto rôzne lieky a látky patria cyklosporín a príbuzné imunofilíny, niekoľko nukleozidov a inhibítorov proteáz, inhibítory vioporínu, pyridínové N-oxidové deriváty, chlorochín a príbuzné zlúčeniny, ivermektín, niekoľko rastlinných lektínov, inhibítory ubikvitínu, itrakonazol a niekoľko antibiotík. Koncentrácie potrebné na inhibíciu replikácie vírusu in vitro sa však často blížia k toxickým hodnotám pre bunky. Bolo tiež ťažké preniesť priaznivé závery in vitro na zvieratá a štúdie na chorých mačkách nasledovali len zriedka. Ribavarín inhibuje replikáciu FIPV in vitro, ale nebol účinný ako liečba experimentálnej FIP (Weiss et al., 1993). Účinnosť chlorochínu sa testovala u laboratórnych mačiek infikovaných FIPV, ale klinické výsledky u liečených mačiek boli len o niečo lepšie ako u neliečených a preukázala sa hepatotoxicita (Takano et al., 2013). U 3-mesačného mačiatka s hrudnou vlhkou FIP liečeného itrakonazolom a prednizolónom sa vyvinula neurologická FIP a po 38 dňoch liečby bolo eutanazinované (Kameshima et al., 2020). Meflochín tiež inhiboval replikáciu FIPV v nízkych koncentráciách v kultivovaných mačacích bunkách bez cytotoxických účinkov a predbežné farmakokinetické štúdie u mačiek sa zdali byť priaznivé (Yu et al., 2020), ale dôkazy o jeho bezpečnosti a účinnosti v klinických štúdiách na mačkách s FIP ešte neboli publikované.

Prelom v liečbe FIP nastal v rokoch 2016-2019, keď sa objavili správy o antivirotických liekoch, ktoré sa zameriavajú na špecifické proteíny FIPV nevyhnutné pre replikáciu. Prvým z týchto liekov bol GC376, inhibítor hlavnej proteázy (Mpro ) FIPV (Kim et al., 2016; Pedersen et al., 2018). Inhibítory proteáz zabraňujú tvorbe jednotlivých vírusových proteínov tým, že inhibujú ich štiepenie z polyproteínových prekurzorov. GC376 dokázal vyliečiť všetky experimentálne infikované mačky a 7 z 21 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP, ale bol menej účinný pre mačky s okulárnymi alebo neurologickými príznakmi (Pedersen et al., 2018). Druhým z týchto liekov bol GS-441514, aktívna časť proliečiva remdesivir (Gilead Sciences; Murphy et al., 2018; Pedersen et al., 2019). GS-441524 je adenozínový nukleozidový analóg, ktorý blokuje replikáciu FIPV vložením bezvýznamného adenozínu do vyvíjajúcej sa vírusovej RNA. GS-441524 dokázal vyliečiť aj všetky experimentálne infikované mačky (Murphy et al., 2018) a 25/31 mačiek s prirodzene sa vyskytujúcou vlhkou a suchou FIP (Pedersen et al., 2019). Ukázalo sa, že pri vyššom dávkovaní bol účinný aj u niekoľkých mačiek s okulárnou a neurologickou FIP (Pedersen et al., 2019) a v súčasnosti je liekom prvej voľby pre mačky s neurologickou FIP (Dickinson et al., 2020). GS-441524 za posledné tri roky vyliečil tisíce mačiek s FIP z celého sveta s celkovou mierou vyliečenia tesne nad 90 % (Jones et al., 2021).1

Hoci schopnosť liekov GC376 a GS-441524 liečiť mačky je známa už niekoľko rokov, ani jeden z nich nie je v súčasnosti legálne dostupný vo väčšine krajín. Práva na liek GC376 zakúpila spoločnosť Anivive, ale zatiaľ nebol uvedený na trh.3 Potenciálne konflikty s vývojom remdesiviru pre liečbu COVID-19 u ľudí viedli spoločnosť Gilead Sciences k zadržaniu práv na GS-441524 pre použitie u zvierat, čo podnietilo vytvorenie neschváleného zdroja pre GS-441524 z Číny (Jones a kol, 2021).1,2,4 Remdesivir sa v tele rýchlo metabolizuje na GS-441524 a v niektorých krajinách bol povolený na liečbu FIP.2 GS-441524 sa môže podávať aj perorálne vo vyšších dávkach a v súčasnosti sa v praxi bežne používa (Krentz et al., 2021).1

Účinnosť liekov ako GC376 a GS-441524 na FIP mačiek, ktorých používanie predchádzalo pandémii COVID-19, uznali výskumníci skúmajúci príbuzné inhibítory SARS-CoV 2 (Yan et al., 2020; Vuong et al., 2021). Remdesivir, injekčný liek uvádzaný na trh pod názvom veklury (Gilead), sa celosvetovo používal na zníženie úmrtnosti na COVID-19 (Beigel et al., 2020). GC373, aktívna forma proliečiva GC376, prešla jednoduchými úpravami na zvýšenie účinnosti a perorálnej biologickej dostupnosti (Vuong et al., 2021). Liek príbuzný lieku GC373, nirmatrelvir, bol úspešne testovaný proti raným infekciám COVID-19 a bol schválený pre liečbu raného COVID-19 a predávaný pod názvom paxlovid (Pfizer). Paxlovid pozostáva z dvoch liekov, nirmatreviru a inhibítora HIV proteázy ritonaviru. Ritonavir nie je významným inhibítorom SARS-CoV 2,ale údajne predlžuje polčas rozpau inhibítorov Mpro, keď sa používa v kombinácii (Vuong a kol., 2020). Nirmatrelvir a paxlovid neboli v súčasnosti testované u mačiek s FIP, ale na základe skúseností s úzko súvisiacim liekom GC376 môžu byť v budúcnosti dôležitou perorálnou liečbou niektorých foriem FIP.

Na liečbu viacerých infekcií spôsobených RNA vírusmi u ľudí a zvierat sa skúmali ďalšie dva nukleozidové analógy EIDD-1931 a EIDD-2801 (Painter et al., 2021). EIDD-1931 je experimentálne označenie pre beta-D-N4-hydroxycytidín, zlúčeninu široko skúmanú od 70. rokov 20. storočia. Beta-D-N4-hydroxycytidín sa metabolizuje na ribonukleozidový analóg, ktorý sa inkorporuje do RNA namiesto cytidínu a vedie k fatálnym mutáciám v reťazci vírusovej RNA.  Zlúčenina je inhibítorom širokého spektra ľudských a živočíšnych RNA vírusov vrátane všetkých známych koronavírusov. EIDD-1931 bol modifikovaný na zvýšenie perorálnej absorpcie a nazvaný EIDD-2801 (molnupiravir) (Painter et al., 2021). Molnupiravir sa v tele deesterifikuje na svoju účinnú zložku, beta-D-N4-hyroxycytidín. Preto sú EIDD-1931 a molnupiravir analogické GS-441524 a remdesiviru. Molnupiravir sa predáva na domácu liečbu primárneho COVID-19 pod názvami Lagevrio (Merck, USA) alebo Molnulup (Lupin, India).

EIDD-1931 aj EIDD-2801 sa ukázali ako účinné pri inhibícii FIPV v tkanivovej kultúre (Cook et al., 2021) a EIDD-2801 sa v súčasnosti používa na liečbu niektorých prípadov FIP v teréne.5,7 Účinná koncentrácia 50 % (EC50) pre EIDD-1931 proti FIPV je 0,09 µM, EIDD-2801 0,4 µM a GS-441524 0,66 µM (Cook et al., 2021). Percentuálna cytotoxicita pri 100 µM je pre tieto zlúčeniny 2,8, 3,8 a 0,0. EIDD-1931 a -2801 sú teda o niečo viac inhibičné voči vírusom, ale cytotoxickejšie ako GS-441524. Rezistencia na GS-441524 sa zaznamenala v niektorých prípadoch FIP (Pedersen et al., 2019) a na remdesivir u pacientov s COVID-19 (Painter et al., 2021), ale tieto izoláty zostávajú citlivé na molnupiravir (Sheahan et al., 2020). To sa môže ukázať ako užitočné v boji proti rezistencii na GS-441524 u mačiek a ľudí a pri vývoji liečby viacerými liekmi, aby sa zabránilo vzniku rezistencie.

Čo bude úplné schválenie liekov ako molnupiravir a paxlovid pre ľudí znamenať pre mačky? Úplné schválenie pre ľudí by malo veterinárnym lekárom vo väčšine krajín umožniť legálne obstarávať lieky schválené pre ľudí na priame použitie u zvierat za predpokladu, že sa dodržia usmernenia pre použitie u zvierat, ktoré nie sú určené na produkciu potravín.6 To si vyžaduje preformulovanie lieku vyrobeného pre ľudí a zakúpeného za cenu pre ľudí. Dúfajme, že antivirotiká podobné alebo identické s tými, ktoré sú schválené pre ľudí, budú licencované výlučne pre zvieratá a predávané za oveľa nižšiu cenu, ale to bude pravdepodobne trvať ešte roky.

Komerčné a politické otázky, ktoré obmedzujú súčasné používanie antivirotík, ako je GS-441524, pri ochoreniach zvierat, ako je FIP, sú pre súčasných majiteľov mačiek a mačacích podporných skupín, ktoré už obišli súčasný systém schvaľovania liekov a jeho dôraz pre prvoradé humánne potreby, nepodstatné (Jones et al., 2021; Krentz et al., 2021). Obhajcovia liečby FIP sa v súčasnosti nachádzajú po celom svete a často sa združujú pod rozšírenou značkou FIP Warriora. Členovia týchto skupín často pôsobia ako sprostredkovatelia medzi majiteľmi, veterinármi a dodávateľmi antivirotík a často poskytujú poradenstvo tým, ktorí nemôžu získať veterinárnu pomoc pri liečbe. Niektoré z týchto skupín, ako napríklad FIP Warriors Česká republika/Slovensko7, umiestnili svoje skúsenosti s liečbou FIP na internet, kde poskytujú veľmi potrebné informácie o súčasnej liečbe antivirotikami.

Aktuálna situácia liečby FIP

Súčasným liekom voľby na liečbu FIP je adenozínový nukleozidový analóg GS-441524, ktorý bol prvýkrát publikovaný vo vedeckej literatúre v experimentálnych podmienkach (Murphy et al., 2018) a neskôr proti prirodzene sa vyskytujúcemu ochoreniu (Pedersen et al., 2019). Hoci počiatočné experimentálne a terénne štúdie GS-441524 sa uskutočnili v rámci spolupráce medzi výskumníkmi spoločnosti Gilead Sciences a Kalifornskej univerzity v Davise, príbuznosť lieku Remdesivir s GS-441524 a začiatok pandémie COVID-19 v roku 2019 viedli spoločnosť Gilead Sciences k tomu, že nakoniec neposkytla práva na používanie lieku GS-441524 pre zvieratá s odôvodnením, že môže zasahovať do vývoja lieku Remdesivir na humánne použitie.4 Námietky voči tomuto rozhodnutiu boli vyjadrené priamo spoločnosti a na viacerých internetových fórach.4 Následný tlak zo strany majiteľov mačiek, skupín na záchranu mačiek a milovníkov mačiek spolu s oportunistickými čínskymi výrobcami liekov rýchlo vytvorili alternatívny neschválený zdroj lieku GS-441524, trh s ním a sieť na liečbu.4  Táto sieť do veľkej miery obišla veterinárov, z ktorých väčšina sa rozhodla počkať na legalizáciu lieku (Jones a kol., 2021). Výsledkom tohto vzťahu bol takmer bezproblémový prechod liečby FIP liekom GS-441524 z laboratória na rýchlo sa rozširujúcu celosvetovú sieť skupín, voľne zastrešených pod hlavičkou FIP Warriors (Jones a kol., 2021).4,7 

Predaj a používanie GS-441524 v praxi na liečbu FIP sa začalo takmer okamžite s prvým uverejnením výsledkov poľných pokusov (Pedersen et al., 2019) (obr. 19).

Obrázok 19.  Graf mesačného vývoja liečby mačiek z Českej republiky a Slovenska od augusta 2019. Tento graf pochádza z webovej stránky FIP Warrior CZ/SK.1 Tieto údaje odrážajú skúsenosti iných skupín FIP Warrior na celom svete. Od roku 2019, keď bola publikovaná prvá terénna štúdia GS-441524 (Pedersen et al. 2019), boli na celom svete úspešne liečené už tisíce mačiek na FIP. Zimné vrcholy ochorenia odrážajú neskorý jarný a letný nárast počtu narodených mačiatok a vysoký výskyt FIP, ktorý sa zvyčajne začína vo veku 3 až 6 mesiacov (obr. 6). Tento graf je z webovej stránky FIP Warrior CZ/SK.1
Obrázok 20. Hlavní účastníci podávania liečby GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Skutočnosť, že liek GS-441524 nie je legálne schválený na použitie u zvierat, zabránila mnohým veterinárnym lekárom uznať túto liečbu alebo sa na nej podieľať. Len 25 % mačiek v skupine liečenej CZ/SK dostalo veterinárnu podporu pri podávaní liečby (obr. 20), hoci sa na diagnostike ochorenia mohlo podieľať viac veterinárnych lekárov. Zaujímavé je, že toto číslo bolo vyššie ako 8,7 % liečených mačiek v USA, ktoré dostali veterinárnu starostlivosť (Jones et al., 2021). Účastníci CZ/SK štúdie a podobných skupín na celom svete však nie sú bez lekárskych skúseností, keďže mnohí z nich sa venujú dočasnej starostlivosti/záchrane a mali značné priame aj nepriame veterinárne skúsenosti s chorobami mačiek a ich liečbou a kastračnými programami.

Z prvých laboratórnych štúdií a výskumov čínskych výrobcov bolo známe, že GS-441524 sa môže absorbovať perorálnou cestou, aj keď s menšou účinnosťou (Kim et al. 2016).9 Prví predajcovia GS-441524 skúmali túto skutočnosť ďalej a zistili, že účinné hladiny v krvi možno dosiahnuť zvýšením množstva podaného perorálne v porovnaní s injekciou.8 Do perorálnych kapsúl alebo tabliet GS-441524 sa často pridávali doplnky s tvrdením, že zvyšujú absorpciu alebo majú aditívny terapeutický prínos (Krentz et al., 2011).  Väčšina hlavných predajcov injekčného lieku GS-441524 teraz ponúka perorálne verzie a perorálna liečba sa stáva čoraz populárnejšou buď ako jediná liečba, alebo v kombinácii s injekčným liekom GS-441524 (obrázok 21). Úspešnosť perorálnej liečby GS-441524 sa výrazne nelíši od injekčnej liečby GS-441524 (obrázok 22).

Obrázok 21. Porovnanie použitia perorálnych (tablety alebo kapsuly) a injekčných (subkutánnych) foriem GS-441524 na liečbu FIP u mačiek z Českej republiky a Slovenska. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 22. Pri perorálnom podávaní lieku GS-441524 v porovnaní so subkutánne podávaným GS nie je významný rozdiel v úspešnosti liečby, ale skutočné množstvo (mg) lieku podaného perorálne v každej dávke je až dvojnásobne vyššie ako množstvo obsiahnuté v rovnakej dávke injekčného GS. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Odporúčaná dávkovacia schéma pre GS-441524 na základe publikovaných údajov z terénnych štúdií (Pedersen et al., 2019) bola 4 mg/kg, subkutánne (SC), každý deň (q24h), t. j. 4 mg/kg, SC, q24h. Táto odporúčaná počiatočná dávka pre mačky s mokrou alebo suchou FIP bez očných alebo neurologických príznakov mala tendenciu sa v priebehu času zvyšovať na 6 mg/kg SC q24h (obr. 23). 8 mg/kg SC q24h je súčasné doporučené dávkovanie pre mačky s okulárnymi príznakmi a 10 alebo 12 mg/kg SC q24h pre mačky s neurologickými príznakmi.

Obrázok 23. Denná dávka lieku GS-441524, ktorá bola použitá na liečbu FIP u mačiek z Českej republiky a Slovenska. Bežná začiatočná dávka bola 6 mg/deň, pričom u niektorých mačiek boli potrebné vyššie dávky na základe odpovede na liečbu, formy ochorenia a výskytu recidív po tom, čo sa liečba zdala byť úspešná. Perorálne prípravky GS-441524 sú zvyčajne označené tak, aby zodpovedali dávkovaniu používanému pri injekčnom lieku, ale obsahujú až dvojnásobok označeného množstva. Tento graf je z webovej stránky FIP Warrior CZ/SK.1

Optimálne trvanie liečby, ako bolo stanovené v úvodnej klinickej štúdii, je 84 dní (Pedersen et al., 2019). V niektorých prípadoch akútnej vlhkej FIP u mladších mačiek sa dosiahlo vyliečenie za 6 – 8 týždňov, ale niektoré mačky potrebujú viac ako 84 dní. Ako je uvedené na obrázku 24,72 % mačiek sa liečilo 81 – 90 dní, 19 % dlhšie a len 9 % sa liečilo kratšie. Bohužiaľ, neexistuje jednoduchý a presný test na stanovenie momentu vyliečenia, a rozhodnutie o ukončení liečby je tak založené na úplnom návrate k zdraviu a normálnym hodnotám krvných testov. Mačky liečené oveľa dlhšie ako 100 dní boli zvyčajne tie, ktoré vyžadovali dávku GS vyššiu ako 12 mg/kg denne injekčne alebo ekvivalentnú perorálnu dávku, mačky, u ktorých došlo k recidíve ochorenia počas 12-týždňového obdobia pozorovania po ukončení liečby, mačky s neurologickým ochorením alebo mačky, ktoré sa stali rezistentné na GS-441524.   

Obrázok 24. Trvanie liečby liekom GS-141524 u 352 mačiek úspešne liečených na všetky formy FIP. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 25. Počiatočná liečba bola úspešná u 88,1 % mačiek a 6,2 % mačiek uhynulo alebo bolo utratených buď z dôvodu nedostatočnej odpovede na liečbu, finančných dôvodov alebo vedľajších účinkov liečby. U ďalších 5,7 % mačiek došlo po počiatočnej liečbe k recidíve a približne rovnaký počet mačiek sa po ďalšej liečbe buď vyliečil, alebo uhynul. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Úspešnosť liečby všetkých foriem FIP u mačiek z Českej republiky a Slovenska je 88,1 % pri prvej liečbe, ale keď sa zahrnú aj mačky, ktoré po prvej liečbe recidivovali a po druhej liečbe sa vyliečili (3,1 %), celková úspešnosť bola viac ako 91 % (obr. 25). Táto miera vyliečenia je totožná s mierou vyliečenia iných skupín bojovníkov proti FIP (Jones a kol., 2021). Úspešnosť liečby sa nelíši medzi mačkami s vlhkou alebo suchou FIP a bez očného alebo neurologického postihnutia (obr. 26). Miera vyliečenia u mačiek s očným a neurologickým postihnutím však bola nižšia, a to 80 % oproti 92 % u všetkých ostatných foriem FIP (obr. 26).

Obrázok 26.  Miera vyliečenia mačiek s vlhkou alebo suchou FIP bez okulárnych alebo neurologických príznakov a mačiek s okulárnym alebo neurologickým ochorením ako hlavným znakom ich ochorenia. Tento graf je z webovej stránky FIP Warriors CZ/SK.1
Obrázok 27.  Zdravotný stav mačiek rok po úspešnom ukončení liečby liekom GS-441524. Tento graf je z webovej stránky FIP Warriors CZ/SK.1

Mačky, ktoré boli úspešne liečené na FIP, boli sledované po dobu 4 až 5 rokov, ak zahrnieme prípady hlásené v prvých terénnych štúdiách. V tejto skupine prvých terénnych pokusov sa doteraz nevyskytli žiadne recidívy alebo opakované prípady FIP. K dispozícii sú údaje o ročnom prežívaní z oveľa väčšej populácie štúdie CZ/SK, ktoré ukazujú, že 90,5 % mačiek je rok po ukončení liečby stále zdravých (obr. 27). Iba 1,3 % týchto mačiek uhynulo z iných príčin ako FIP a 8,2 % kohorty je v súčasnosti v neznámom zdravotnom stave. Nízky podiel mačiek, ktoré uhynuli z neznámych príčin počas roka po liečbe, a ich pozitívna reakcia na liečbu naznačujú, že FIP bola diagnostikovaná správne.

EIDD-2801 (molnupiravir) sa práve teraz používa v teréne pre hlavnú liečbu a na liečbu mačiek s rezistenciou na GS-441524.5,7,9 EIDD-1931, aktívna forma EIDD-2081, sa musí podrobiť hlbšiemu výskumu, pretože sa na neho už nevzťahuje patentová ochrana a je tak ľahko schváliteľný pre použitie u zvierat, ak sa zistí, že je skutočne bezpečný a účinný.5 Bližšie preštudovať pre účely liečby FIP sa ešte musí aj Nirmatrelvir, perorálna forma GC373 a úzko príbuzná GC376.

Poďakovanie

Som zaviazaný Ladislavovi Mihokovi a jeho spolupracovníkom z “FIP Warriors Czech Republic/Slovakia” za to, že mi umožnili zdieľať údaje z ich webovej stránky. Táto webová stránka obsahuje najvýznamnejšiu, najdôkladnejšiu a najusporiadanejšiu zbierku údajov o liečbe FIP antivirotikami v súčasnosti. Webová stránka obsahuje aj užitočné informácie a rady o zahájení, vedení a monitorovaní aktuálnej liečby. Zbierka mačiek a údajov o nich je priebežne a pravidelne aktualizovaná a v čase písania tohto článku zahŕňala viac ako 600 mačiek s FIP.

Literatúra

  • Addie DD, Toth S, Murray GD, Jarrett O, 1995. Risk of feline infectious peritonitis in cats naturally infected with feline coronavirus. American Journal of Veterinary Research, 56, 429-34.
  • Addie DD, Schaap IA, Nicolson L, Jarrett O, 2003. Persistence and transmission of natural type I feline coronavirus infection. Journal of General Virology 84, 2735–2744.
  • Andrew SE, 2000. Feline infectious peritonitis. Veterinary Clinics of North America and Small Animal Practice 30, 987-1000.
  • Barker EN, Stranieri A, Helps CR, Porter EL, Davison AD, Day MJ, Knowles T, Kipar A, Tasker S, 2017. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Veterinary Research 48, 60.
  • Beigel JH, Tomashek KM, Dodd LE, Mehta EK, Zingman BS, et al., 2020. Remdesivir for the Treatment of Covid-19 — Final Report. New England Journal of Medicine, 383, 1813-1826,
  • Bubenikova J, Vrabelova J, Stejskalova K, Futas J, Plasil M, Cerna P, Oppelt J, Lobova D, Molinkova D, Horin P, 2020. Candidate gene markers associated with fecal shedding of the feline enteric coronavirus (FECV). Pathogens 9, 958.
  • Cassado Ados A, D’Império Lima, Bortoluci KR., 2015. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Frontiers in Immunology 6, 225.
  •  Cave TA, Thompson H, Reid SW, Hodgson DR, Addie DD, 2002. Kitten mortality in the United Kingdom: a retrospective analysis of 274 histopathological examinations (1986 to 2000). Veterinary Record 151, 497–501.
  • Chang H-W, Egberink HF, Halpin R, Spiro DJ, Rottier PJM, 2012. Spike protein fusion peptide and feline coronavirus virulence. Emerging Infectious Diseases 18, 1089–1095.
  •  Cook SE, Vogel H, Castillo D, Olsen M, Pedersen N, Murphy BG, 2021. Investigation of monotherapy and combined anticoronaviral therapies against feline coronavirus serotype II in vitro. Journal of Feline Medicine and Surgery. doi: 10.1177/1098612X211048647. Epub ahead of print. PMID: 34676775.
  • Cornelissen E, Dewerchin HL, Van Hamme E, Nauwynck HJ, 2007. Absence of surface expression of feline infectious peritonitis virus (FIPV) antigens on infected cells isolated from cats with FIP. Veterinary Microbiology. 121, 131-137,
  • Cotter SM, Gilmore CE, Rollins C. 1973, Multiple cases of feline leukemia and feline infectious peritonitis in a household. Journal of the American Veterinary Medical Association 162, 1054–1058.
  • Court MH., Greenblatt DJ. 2000, Molecular genetic basis for deficient acetaminophen glucuronidation by cats: UGT1A6 is a pseudogene, and evidence for reduced diversity of expressed hepatic UGT1A isoforms Pharmacogenetics, 10, 355-369
  • Crawford AH, Stoll AL, Sanchez-Masian D, Shea A, Michaels J, Fraser AR, Beltran E, 2017. clinicopathologic features and magnetic resonance imaging findings in 24 cats with histopathologically confirmed neurologic feline infectious peritonitis. Journal of Veterinary Internal Medicine 31, 1477-1486.
  • Day MJ, 2010. Ageing, immunosenescence and inflammageing in the dog and cat. Journal of Comparative Pathology 142 Suppl 1, S60-69.
  • Delaplace M, Huet H, Gambino A, Le Poder S, 2021. Feline coronavirus antivirals: A review. Pathogens 10, 1150. doi: 10.3390/pathogens10091150.
  • Dempsey SM, Ewing PJ, 2011. A Review of the Pathophysiology, Classification, and Analysis of Canine and Feline Cavitary Effusions. Journal of the American Animal Hospital Association 47, 1–11.
  • de Sousa JR, Sotto MN, Simões Quaresma JA, 2017. Leprosy as a complex infection: Breakdown of the Th1 and Th2 immune paradigm in the immunopathogenesis of the disease. Frontiers in Immunology 8,1635.
  • Dewerchin HL, Cornelissen E, Van Hamme E, Smits K, Verhasselt B, Nauwynck HJ, 2008. Surface-expressed viral proteins in feline infectious peritonitis virus-infected monocytes are internalized through a clathrin- and caveolae-independent pathway. Journal of General Virology 89, 2731-2740
  • Dewerchin HL, Desmarets LM, Noppe Y, Nauwynck HJ, 2014. Myosins 1 and 6, myosin light chain kinase, actin and microtubules cooperate during antibody-mediated internalisation and trafficking of membrane-expressed viral antigens in feline infectious peritonitis virus infected monocytes. Veterinary Research 45, 17.
  • Dickinson PJ, Bannasch M, Thomasy SM, Murthy VD, Vernau KM, Liepnieks M, Montgomery E, Knickelbein KE, Murphy B, Pedersen NC, 2020. Antiviral treatment using the adenosine nucleoside analogue GS‐441524 in cats with clinically diagnosed neurological feline infectious peritonitis. Journal of Veterinary Internal Medicine 34, 1587–1593.
  • Drechsler Y, Alcaraz A, Bossong FJ, Collisson EW, Diniz PP, 2011. Feline coronavirus in multicat environments. Veterinary Clinics North America and Small Animal Practice41, 1133-1169.
  • Fankauser R, Fatzer R, 1997. Meningitis and chorioependymitis granulomatosa der Katze. Mögliche beziehungen zur felinen infectiösen peritonitis (FIP). Klientierpraxis 22, 19–22.
  • Felten S, Leutenegger CM, Balzer HJ, Pantchev N, Matiasek K, Wess G, Egberink H, Hartmann K, 2017. Sensitivity and specificity of a real-time reverse transcriptase polymerase chain reaction detecting feline coronavirus mutations in effusion and serum/plasma of cats to diagnose feline infectious peritonitis. BMC Veterinary Research 13, 228.
  •  Felten S, Hartmann K, 2019. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 11, 1068.
  • Fischer Y, Sauter-Louis C, Hartmann K, 2012. Diagnostic accuracy of the Rivalta test for feline infectious peritonitis. Veterinary Clinical Pathology 41, 558-67.
  • Foley JE, Poland A, Carlson J, Pedersen NC, 1997. Risk factors for feline infectious peritonitis among cats in multiple-cat environments with endemic feline enteric coronavirus. Journal of the American Veterinary Medicine Association 210, 1313-1318.
  • Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC, 1998. Diagnostic features of clinical neurologic feline infectious peritonitis. Journal of Veterinary Internal 12, 415–423.
  • Gaskell RM, Povey RC, 1977. Experimental induction of feline viral rhinotracheitis virus re-excretion in FVR-recovered cats. Veterinary Record 100, 128–133.
  • Golovko L, Lyons LA, Liu H, Sørensen A, Wehnert S, Pedersen NC, 2013. Genetic susceptibility to feline infectious peritonitis in Birman cats. Virus Research 175, 58-63.
  • Gunn-Moore DA, Gaunt C, Shaw DJ, 2012. Incidence of mycobacterial infections in cats in great britain: estimate from feline tissue samples submitted to diagnostic laboratories. Transboundary and Emerging Diseases. 60, 338-344.
  • Gut, M, Leutenegger, CM, Huder, JB, Pedersen NC, H, 1999. One-tube fluorogenic reverse transcription-polymerase chain reaction for the quantitation of feline coronaviruses. Journal of Virological Methods 77, 37–46.
  • Hardy WD Jr, 1981. Feline leukemia virus non-neoplastic diseases. Journal of the American Animal Hospital Association 17, 941-949.
  • Healey EA, Andre NM, Miller AD, Whitaker GR, Berliner EA, 2022. Outbreak of feline infectious peritonitis (FIP) in shelter-housed cats: Molecular analysis of the feline coronavirus S1/S2 cleavage site consistent with a ‘circulating virulent-avirulent theory’ of FIP pathogenesis. Journal of Feline Medicine and Surgery Open Reports 8, 20551169221074226.
  • Herrewegh AAPM, Mähler M, Hedrich HJ, Haagmans BL, Egberink HF, Horzinek MC, Rottier PJM, de Groot RJ, 1997. Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology 234, 349–363.
  • Herrewegh AA, Smeenk I, Horzinek MC, Rottier PJ, de Groot RJ, 1998. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. Journal of Virology 72, 4508–4514.
  • Hickman MA, Morris JG, Rogers QR, Pedersen NC, 1995. Elimination of feline coronavirus infection from a large experimental specific pathogen-free cat breeding colony by serologic testing and isolation, Feline Practice 23, 96–102.
  • Hsieh L-E, Lin C-N, Su B-L, Jan T-R, Chen C-M, Wang C-H, Lin D-S, Lin C-T, Chueh L-L. 2010. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Research 88, 25–30.
  • Holzworth J, 1963. Some important disorders of cats. Cornell Veterinarian 53, 157–160.
  • Izes AM, Yu J, Norris JM, Govendir M, 2020. Current status on treatment options for feline infectious peritonitis and SARS-CoV-2 positive cats. Veterinary Quarterly
    40, 322–330.
  • Jones S, Novicoff W, Nadeau J, Evans S, 2021. Unlicensed GS-441524-like antiviral therapy can be effective for at-home treatment of feline infectious peritonitis. Animals 11, 2257.
  • Kalakonda A, Jenkins BA, John S. Physiology, Bilirubin. [Updated 2021 Sep 16]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470290/
  • Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE, 2019. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV). BMC Veterinary Research 15,165.
  • Kameshima S, Kimura Y, Doki T, Takano T, Park CH, Itoh N, 2020. Clinical efficacy of combination therapy of itraconazole and prednisolone for treating effusive feline infectious peritonitis. Journal of Veterinary Medical Science 82, 1492-1496.
  • Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC, 2016. Reversal of the progression of fatal coronavirus Infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathogens 12:e1005531.
  • Kipar A, May H, Menger S, Weber M, Leukert W, Reinacher M, 2005. Morphologic features, and development of granulomatous vasculitis in feline infectious peritonitis. Veterinary Pathology 42, 321–330.
  • Krentz D., Zenger K., Alberer M., Felten S., Bergmann M, Dorsch R., Matiasek, K., Kolberg, L., Hofmann-Lehmann, R., Meli, M.L., et al., 2021. Curing cats with feline infectious peritonitis with an oral multi-component drug containing GS-441524. Viruses 13, 2228.
  • Legendre AM, Kuritz T, Galyon G, Baylor VM, Heidel RE, 2017. Polyprenyl immunostimulant treatment of cats with presumptive non-effusive feline infectious peritonitis in a field study. Frontiers in Veterinary Science 4, 7.
  • Leseigneur C, Lê-Bury P, Pizarro-Cerdá J, Dussurget O, 2020. Emerging Evasion Mechanisms of Macrophage Defenses by Pathogenic Bacteria. Frontiers in Cellular and Infection Microbiology, 10, 538.
  • Lewis KM, O’Brien RT, 2010. Abdominal ultrasonographic findings associated with feline infectious peritonitis: a retrospective review of 16 cases. Journal of the American Animal Hospital Association. 46, 152-60.
  • Licitra BN, Millet JK, Regan AD, Hamilton BS, Rinaldi VD, Duhamel GE, Whittaker GR, 2013. Mutation in spike protein cleavage site and pathogenesis of feline coronavirus. Emerging Infectious Diseases 19, 1066–1073.
  • Lin CN, Su BL, Wang CH, Hsieh MW, Chueh TJ, Chueh LL, 2009. Genetic diversity and correlation with feline infectious peritonitis of feline coronavirus type I and II: A 5-year study in Taiwan. Veterinary Microbiology 136, 233-239.
  • Litster AL. Pogranichniy R, Lin TL, 2013. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis. Veterinary Journal 198, 362-366.
  • Lloret A, Hartmann K, Pennisi MG, Ferrer L, Addie D, Belák S, Boucraut-Baralon C, Egberink H, Frymus T, Gruffydd-Jones T, et al., 2013. Rare systemic mycoses in cats: blastomycosis, histoplasmosis and coccidioidomycosis: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery 15, 624-627.
  • Longstaff L, Porter E, Crossley VJ, Hayhow SE, Helps CR, Tasker S, 2017. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis. Journal of Feline Medicine and Surgery 19, 240–245.
  • Mahase E. 2021. Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports. BMJ 375, n2422.
  • Malbon AJ, Meli ML, Barker EN, Davidson AD, Tasker S, Kipar A, 2019. inflammatory mediators in the mesenteric lymph nodes, site of a possible intermediate phase in the immune response to feline coronavirus and the pathogenesis of feline infectious peritonitis? Journal of Comparative Pathology 166, 69-86.
  • Malbon AJ, Russo G, Burgener C, Barker EN, Meli ML, Tasker S, Kipar A, 2020. the effect of natural feline coronavirus infection on the host immune response: A whole-transcriptome analysis of the mesenteric lymph nodes in cats with and without feline infectious peritonitis. Pathogens 7, 524.
  • Montali RJ, Strandberg JD, 1972. Extraperitoneal lesions in feline infectious peritonitis. Veterinary Pathology 9, 109–121.
  • Mor G, Cardenas I, 2010. The immune system in pregnancy: A unique complexity. American Journal of Reproductive Immunology 63, 425-433.
  • Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC, 2018. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology 219, 226-233.
  • Painter WP, Holman W, Bush JA, Almazedi F, Malik H, Eraut NCJE, Morin MJ, Szewczyk LJ, Painter GR, 2021. Human safety, tolerability, and pharmacokinetics of molnupiravir, a novel broad-spectrum oral antiviral agent with activity against SARS-CoV-2. Antimicrobial Agents and Chemotherapeutics 65:e02428-20.
  • Paltrinieri S, Giordano A, Tranquillo V, Guazzetti S, 2007. Critical assessment of the diagnostic value of feline α1-acid glycoprotein for feline infectious peritonitis using the likelihood ratios approach. Journal of Veterinary Diagnostic Investigation. 19, 266-272.
  • Pearson M, LaVoy A, Evans S, Vilander A, Webb C, Graham B, Musselman E, LeCureux J, VandeWoude S, Dean GA, 2019. Mucosal Immune Response to Feline Enteric Coronavirus Infection. Viruses 11, 906.
  • Pedersen NC, 1976a. Feline Infectious Peritonitis: Something Old, Something New. Feline Practice 6,42‑51.
  • Pedersen NC, 1976b. Serologic Studies of Naturally Occurring Feline Infectious
  •          peritonitis. American Journal of Veterinary Research 37, 1447‑1453.
  • Pedersen NC, 2009. A review of feline infectious peritonitis virus infection:1963-2008. Journal of Feline Medicine and Surgery 11, 225-258.
  • Pedersen NC, Boyle J, 1980. Immunologic Phenomena in the Effusive Form of Feline Infectious Peritonitis. American Journal of Veterinary Research 41:868‑876.
  • Pedersen NC, Ward J, Mengeling WL, 1978. Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Archives of Virology58, 45‑53.
  • Pedersen NC, Allen CE, Lyons LA, 2008. Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery 10, 529–541.
  • Pedersen NC, Theilen G, Keane MA, Fairbanks L, Mason T, Orser B, Che CH, Allison C, 1977. Studies of naturally transmitted feline leukemia virus infection. American Journal of Veterinary Research 38, 1523–1531.
  • Pedersen NC, Boyle JF, Floyd K, Fudge A, Barker J, 1981. An enteric coronavirus infection of cats and its relationship to feline infectious peritonitis. American Journal of Veterinary Research 42, 368-377.
  • Pedersen NC, Meric SM, Hoe E, Johnson L. Plucker S, Theilen GH, 1982. The clinical significance of latent feline leukemia virus infection. Feline Practice 14, 32‑48.
  • Pedersen NC, Black JW, Boyle JF, Evermann JF, McKeirnan AJ, Ott RL, 1984. Pathogenic differences between various feline coronavirus isolates. Advances in Experimental Medicine and Biology 173, 365–380.
  • Pedersen NC, Liu H, Dodd KA, Pesavento PA, 2009. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses1, 166-184.
  • Pedersen NC, Liu H, Durden M, Lyons LA, 2016. Natural resistance to experimental feline infectious peritonitis virus infection is decreased rather than increased by positive genetic selection. Veterinary Immunology and Immunopathology 171, 17-20.
  • Pedersen NC, Liu H, Scarlett J, Leutenegger CM, Golovko L, Kennedy H, Kamal FM, 2012. Feline infectious peritonitis: role of the feline coronavirus 3c gene in intestinal tropism and pathogenicity based upon isolates from resident and adopted shelter cats. Virus Research 165,17-28
  • Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO, 2018. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. Journal of Feline Medicine and Surgery 20, 378-392.
  • Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H, 2019. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery 21, 271-281.
  • Peiffer RL Jr, Wilcock BP, 1991. Histopathologic study of uveitis in cats: 139 cases (1978-1988). Journal of the American Veterinary Medical Association 198, 135–138.
  • Pesteanu-Somogyi LD, Radzai C, Pressler BM, 2006. Prevalence of feline infectious peritonitis in specific cat breeds. Journal of Feline Medicine and Surgery 8, 1–5.
  • Poland AM, Vennema H, Foley JE, Pedersen NC, 1996. Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with the feline enteric coronavirus. Journal of Clinical Microbiology 34, 3180-3184.
  • Regan A, Whitaker G, 2008. Utilization of DC-SIGN for entry of feline coronaviruses into host cells. Journal of Virology 82, 11992-11996.
  • Riemer F, Kuehner KA, Ritz S, Sauter-Louis C, Hartmann K, 2016. Clinical and laboratory features of cats with feline infectious peritonitis–a retrospective study of 231 confirmed cases (2000-2010). Journal of Feline Medicine and Surgery 18, 348–356.
  • Rohrbach BW, Legendre AM, Baldwin CA, Lein DH, Reed WM, Wilson RB, 2001. Epidemiology of feline infectious peritonitis among cats examined at veterinary medical teaching hospitals. Journal of the American Veterinary Medical Association 218, 1111–1115.
  • Rojko J, Hoover E, Quackenbush, S. Olsen RG, 1982. Reactivation of latent feline leukaemia virus infection. Nature 298, 385–388.
  • Rothman AL. Ennis FA, 1999. Immunopathogenesis of Dengue Hemorrhagic Fever. Virology 257, 1–6.
  • Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Aostini, ML, Leist, SR, Schäfer, A, Dinnon, KH 3rd., Stevens, LJ et al., 2020. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine. 12, eabb5883.
  • Spencer, SE, Knowles, T, Ramsey, IK. 2017. Pyrexia in cats. retrospective analysis of signalment, clinical investigations, diagnosis and influence of prior treatment in 106 referred cases. Journal of Feline Medicine and Surgery 19, 1123–1130.
  • Stella J, Croney C, Buffington T, 2013. Effects of stressors on the behavior and physiology of domestic cats. Applied Animal Behavior Science 143, 157-163.
  • Stranieri A, Giordano A, Bo S, Braghiroli C, Paltrnieri S, 2017. Frequency of electrophoretic changes consistent with feline infectious peritonitis in two different time periods (2004–2009 vs 2013–2014). Journal of Feline Medicine and Surgery 19, 880–887.
  • Takano T, Katoh Y, Doki T, Hohdatsu T, 2013. Effect of chloroquine on feline infectious peritonitis virus infection in vitro and in vivo. Antiviral Research. 99, 100–107.
  • Tasker S, 2018. Diagnosis of feline infectious peritonitis: Update on evidence supporting available tests. Journal of Feline Medicine and Surgery 20, 228–243.
  • Tekes G, Ehmann R, Boulant S, Stanifer ML, 2020. Development of feline ileum- and colon-derived organoids and their potential use to support feline coronavirus infection. Cells 9, 2085.
  • Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K, 2014. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9, e106534.
  • Van Hamme E, Dewerchin HL, Cornelissen E, Verhasselt B, Nauwynck HJ, 2008. Clathrin- and caveolae-independent entry of feline infectious peritonitis virus in monocytes depends on dynamin. Journal of General Virology 89, 2147–2156.
  • Vennema H, Poland A, Foley J, Pedersen NC, 1995. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243, 150-157.
  • Vogel L, Van der Lubben M, , Te Lintelo EG, Bekker CPJ, Geerts T, Schuif LS, Grinwis GCM, Egberink HF, Rottier PJM, 2010. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats. Veterinary Research 41, 71.
  • Vuong, W, Fischer C, Khan MB, van Belkum MJ, Lamer T, Willoughby, KD, Lu, J, Arutyenova, E, Joyce, MA, Saffran, HA et al., 2021. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. European Journal of Medicinal Chemistry, 222, 113584.
  • Wang YT, Su BL, Hsieh LE, Chueh LL, 2013. An outbreak of feline infectious peritonitis in a Taiwanese shelter: Epidemiologic and molecular evidence for horizontal transmission of a novel type II feline coronavirus. Veterinary Research, 44, 57.
  • Ward JM, 1970. Morphogenesis of a virus in cats with experimental feline infectious peritonitis. Virology 41, 191–194.
  • Watanabe R, Eckstrand C, Liu H, Pedersen NC, 2018. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Veterinary Research 49, 81.
  • Weiss RC, Scott FW, 1981. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comparative Immunology, Microbiology and Infectious Diseases 4, 175-189.
  • Weiss RC, Cox NR, Martinez ML, 1993. Evaluation of free or liposome-encapsulated ribavirin for antiviral therapy of experimentally induced feline infectious peritonitis. Research in Veterinary Science 55, 162e72.
  • Wolfe LG, Griesemer RA, 1966. Feline Infectious Peritonitis Path. Pathological Veterinaria 3, 255-270.
  • Wolfe, L.G., Griesemer, RA, 1971. Feline infectious peritonitis: review of gross and histopathologic lesions. Journal of the American Veterinary Medical Association 158, 987–993.
  • Worthing KA, Wigney DI, Dhand NK, Fawcett A, McDonagh P, Malik R, Norris JM, 2012. Risk factors for feline infectious peritonitis in Australian cats. Journal of Feline Medicine and Surgery 14, 405-412.
  • Yan VC, Muller FL, 2020. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Medicinal Chemistry Letters 11, 1361-1366
  • Yu J, Kimble B, Norris JM, Govendir M, 2020. Pharmacokinetic profile of oral administration of mefloquine to clinically normal cats: A preliminary in-vivo study of a potential treatment for feline infectious peritonitis (FIP). Animals 10, 1000.
  • Yuki M, Aoyama R, Nakagawa M, Hirano T, Naitoh E, Kainuma D, 2020. A Clinical Investigation on serum amyloid A concentration in client-owned healthy and diseased cats in a primary care animal hospital. Veterinary Sciences, 7, 45.
  • Ziółkowska N, Paździor-Czapula K, Lewczuk B, Mikulska-Skupień E, Przybylska-Gornowicz B, Kwiecińska K, Ziółkowski H, 2017. Feline infectious peritonitis: immunohistochemical features of ocular inflammation and the distribution of viral antigens in structures of the eye. Veterinary Pathology, 54, 933-940.
  • Zook BC, King NW, Robinson RL, McCombs HL, 1968. Ultrastructural evidence for the viral etiology of feline infectious peritonitis. Veterinary Pathology 5, 91–95.

Poznámky pod čiarou

  1. FIP Treatment – Czechia /Slovakia. Basic data, 2022. https://docs.google.com/spreadsheets/d/e/2PACX-1vRAnj_FV_fteWIW1HXsROLuJ7YY1-i_Sf81BCmM9JT9LbCT2mcnwD1rL9IBsLCTB1U59CcnalOGjFqq/pubhtml?gid=1340189982&single=true  (Accessed 4 April2022).
  2. Hughes D, Howard G, Malik R, 2021. Treatment of FIP in cats with Remdesivir. Clinical review, 2021. The Veterinarian. https://www.turramurravet.com.au/wp-content/uploads/2021/07/FIP-Article_The-Veterinarian.pdf (Accessed 5 March 2022).
  3. Anonymous. Thanks to Cats, One Promising Coronavirus Treatment is Already in Development-The GC376 story. 2021,  https://anivive.com/coronavirus (Accessed 4 April 2022)
  4. Zhang S (2020) A Much-Hyped COVID-19 Drug Is Almost Identical to a Black-Market Cat Cure. The Atlantic. https://www.theatlantic.com/science/archive/2020/05/remdesivir-cats/611341/ (Accessed 4 April 2022).
  5. Pedersen NC, 2021. The long history of Beta-d-N4-hydroxycytidine and its modern application to treatment of Covid-19 in people and FIP in cats. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Molnuparivir%20as%20a%20third%20antiviral%20drug%20for%20treatment%20of%20FIP%20v13_1.pdf  (Accessed 4 April 2022).
  6. American Veterinary Medical Association. Guidelines for veterinary prescription drugs. 2022. https://www.avma.org/resources-tools/avma-policies/guidelines-veterinary-prescription-drugs (Accessed 4 April 2022).
  7. FIP Warriors CZ/SK. https://www.fipwarriors.eu/en/ (accessed 15 April 2022).
  8. Pedersen NC, Jacque N, 2021. Treatment with oral formulations of GS-441524. https://sockfip.org/2021-treatment-with-oral-formulations-of-gs-441524/  (Accessed 11 December 2021).
  9. Pedersen NC, Jacque N. 2021.  Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524. https://ccah.vetmed.ucdavis.edu/sites/g/files/dgvnsk4586/files/inline-files/Approaches-to-drug-resistance-in-cats-treated-with-GS-441524-for-FIP-v3.pdf (Accessed 16 April 2022).
Prečítať “História mačacej infekčnej peritonitídy 1963-2022 – od prvej zmienky po úspešnú liečbu”

Štyri dekády Save Our Cats and Kittens a čo bude ďalej

Niels C. Pedersen, DVM, PhD
December 2021
Pôvodný článok: The history of Save Our Cats and Kittens over four decades and where we go from here

Niels C. Pedersen

Tí, ktorí sledujú moju kariéru, vedia, že okrem infekčných chorôb mačiek mám mnoho ďalších záujmov. Najviac ma však preslávila medicína mačiek a choroby, ktoré trápia prostredia s mnohopočetnými mačkami. Tento záujem o infekčné choroby sa začal v roku 1965 ako u študenta druhého ročníka veterinárnej medicíny, ale rozvinul sa po mojom nástupe na fakultu veterinárnej medicíny Kalifornskej univerzity v Davise v roku 1972. Mojím prvým zadaním bolo pomôcť vyhrať vojnu prezidenta Nixona proti rakovine. Táto vojna kládla dôraz na potenciálne vírusové príčiny rakoviny, najmä na retrovírusy a ľudské leukémie. To bol môj vstup späť do sveta vírusu leukémie mačiek (FeLV). Samozrejme, môj záujem sa sústredil viac na infekciu FeLV, ktorá sa týkala mačiek, než na akékoľvek uplatnenie v prípade rakoviny u ľudí. Rýchlo sa ukázalo, že infekcia FeLV je závažnou panzootickou (pandemickou) chorobou mačiek, ktorá sa v predchádzajúcich desaťročiach nebadane rozšírila z divokých na domáce mačky a v 60. a 70. rokoch 20. storočia bola zodpovedná za jednu tretinu úmrtnosti mačiek. Milovníci mačiek sa po objavení vírusu rýchlo zmobilizovali a začali zbierať peniaze na podporu výskumu FeLV. Pôvodnú organizáciu SOCK (Save Our Cats and Kittens – Zachráňte naše mačky a mačiatka) vytvorila skupina úžasných milovníkov mačiek pod vedením Vincea, Connie a Dorothy Campanileových a ich priateľov. SOCK it to leukemia sa stal mobilizujúcim pokrikom skupiny a ja som mal tú česť spojiť s nimi sily od ich začiatku až do konca. Dary od milovníkov mačiek bez podpory federálnych výskumných fondov umožnili väčšinu nášho výskumu infekcie FeLV na Kalifornskej univerzite v Davise. Tento výskum viedol k pochopeniu toho, ako sa FeLV stala pandémiou domácich mačiek, ako spôsobuje širokú škálu ochorení a ako by sa dala kontrolovať. FeLV infekcia domácich mačiek sa dostala pod kontrolu v 70. a 80. rokoch 20. storočia vďaka rýchlym diagnostickým testom a očkovaniu. Zvládnutie infekcie FeLV bolo jedným z vrcholov veterinárneho výskumu tohto obdobia a možno jedným z najdôležitejších prínosov modernej medicíny mačiek v 20. storočí. SOCK it to leukemia sa nakoniec vypracovala na organizáciu s viac ako 1 miliónom dolárov získaných na konečné zdolanie infekcie FeLV. Infekcia FeLV stále existuje v prírode, kde zostáva problémom pre malý počet mladých mačiek prichádzajúcich do náhradných/záchranných zariadení a útulkov z terénu.

V tom istom čase sa objavila ďalšia veľmi smrteľná choroba. V roku 1963 veterinári z nemocnice Angell Memorial Animal Hospital v Bostone prvýkrát zaznamenali mačací infekčný zápal pobrušnice (FIP). Neskôr sa zistilo, že úzko súvisí s infekciou FeLV, a dúfalo sa, že s kontrolou FeLV do veľkej miery vymizne. To sa nepotvrdilo a FIP čoskoro nahradila FeLV ako hlavnú infekčnú príčinu úmrtí mačiek. V dôsledku toho došlo k predaniu pochodne “SOCK it to leukemia” k “SOCK it to FIP”. To bol aj prirodzený vývoj môjho výskumu. FIP bola mojou prvou “láskou” od čias, keď som ako študent veterinárnej medicíny v roku 1965 pomáhal skúmať prvé prípady FIP na Kalifornskej univerzite v Davise. Môj záujem o FIP sa na krátky čas dostal na druhú koľaj v 80. rokoch 20. storočia, keď som sa venoval HIV/AIDS a následne som objavil vírus imunodeficiencie mačiek (FIV). FIP sa stala hlavným predmetom môjho výskumu počas posledných troch desaťročí.

Som rád, že som mal v týchto rokoch podporu SOCK FIP. Jedným z našich najväčších objavov na Kalifornskej univerzite v Davise bolo, ako neškodný a všadeprítomný mačací enterický koronavírus (FECV) nakoniec spôsobí také smrteľné ochorenie, akým je FIP. Naša teória, že vírus FIP vznikol vnútornou mutáciou vírusu FECV, sa najprv stretla s veľkým skepticizmom, ale teraz je všeobecne prijímaná. Teória vnútornej mutácie viedla k oveľa lepšiemu pochopeniu podmienok, za ktorých sa FIP vyskytuje, a spôsobu, akým vírus FIP vyvoláva ochorenie. Žiaľ, nikomu, vrátane nás, sa nepodarilo nájsť úspešnú vakcínu proti FIP. Tento neúspech viedol k môjmu záujmu o liečenie, a nie o prevenciu FIP pomocou moderných antivirotík, s ktorými som sa zoznámil počas pandémie HIV/AIDS. Vrcholom mojich takmer 50-ročných skúseností s FIP bol objav dvoch antivirotík, ktoré boli schopné vyliečiť FIP. Tisíce mačiek z celého sveta sa za posledné 3 roky vyliečili z FIP pomocou antivírusových liekov, ktoré boli skúmané na UC Davis. Naše objavy na UC Davis by neboli možné bez významnej dlhodobej finančnej a morálnej podpory SOCK FIP a majiteľov mačiek, ktorí nás finančne podporili.

Objavenie lieku na FIP opäť vedie k logickému ukončeniu SOCK FIP, rovnako ako víťazstvo nad infekciou FeLV ukončilo potrebu pôvodného SOCK. Hoci som na dôchodku, naďalej spolupracujem s majiteľmi mačiek a opatrovateľmi na tom, ako používať antivirotiká na liečbu FIP, a budem naďalej spolupracovať so SOCK FIP ako konzultant pre liečbu FIP a doživotný člen. Treba priznať, že v oblasti FIP je stále čo skúmať, hlavne v oblasti prevencie ochorenia. Dúfam, že sa tejto a ďalších oblastí výskumu FIP ujmú aj iní. Otázkou teraz je, ako môže SOCK čo najlepšie zlepšiť zdravie našich mačiek a mačiatok. SOCK FIP je v procese vyhodnocovania širšieho poslania ako len FIP. Toto poslanie môže, ale nemusí zahŕňať získavanie finančných prostriedkov na výskum a mohlo by mať viac informačný charakter. Uvítame návrhy, ako by sa dlhá história SOCK-u dala využiť na zlepšenie zdravia našich mačiek a mačiatok. Prečítať “Štyri dekády Save Our Cats and Kittens a čo bude ďalej”

Pôvod brušných alebo hrudných výpotkov u mačiek s vlhkou FIP a príčiny ich pretrvávania počas liečby

Niels C. Pedersen, DVM, PhD
Centrum pre zdravie spoločenských zvierat
Kalifornská univerzita, Davis
24.9.2021

Pôvodný článok: Origin of abdominal or thoracic effusions in cats with wet FIP and reasons for their persistence during treatment


Pôvod FIP výpotkov. Výpotky pri vlhkej FIP pochádzajú z malých ciev (venúl), ktoré lemujú povrch brušných a hrudných orgánov (viscerálne) a stien (parietálne), mezentéria/mediastína a omenta. Priestory okolo týchto ciev obsahujú špecifický typ makrofágov, ktoré pochádzajú z progenitorov monocytov, ktoré neustále recirkulujú medzi krvným obehom, intersticiálnymi priestormi okolo venúl, aferentnou lymfou, regionálnymi lymfatickými uzlinami a späť do krvného obehu. Ďalšie miesta tejto recirkulácie sa nachádzajú v meningách, ependyme mozgu a uveálnom trakte očí. Malá časť týchto monocytov sa vyvinie na nezrelé makrofágy (monocyt/makrofág) a nakoniec na rezidentné makrofágy. Makrofágy nepretržite vyhľadávajú infekcie.

FIPV vzniká mutáciou z mačacieho enterického koronavírusu (FECV) prítomného v lymfoidných tkanivách a lymfatických uzlinách v dolnej časti čreva. Mutácia mení bunkový tropizmus FECV z enterocytov na makrofágy peritoneálneho typu. Monocyty/makrofágy sa zdajú byť prvým typom buniek, ktoré sú infikované. Táto infekcia spôsobí, že viac monocytov opustí krvný obeh a začne sa ich premena na makrofágy, ktoré pokračujú v cykle infekcie [2]. Monocyty/makrofágy nepodliehajú programovanej bunkovej smrti, ako sa zvyčajne očakáva, ale pokračujú vo svojom dozrievaní na veľké makrofágy naložené vírusom. Tieto veľké makrofágy nakoniec podliehajú programovanej bunkovej smrti (apoptóze) a uvoľňujú veľké množstvo vírusu, ktorý potom infikuje nové monocyty/makrofágy [1]. Infikované monocyty/makrofágy a makrofágy produkujú niekoľko látok (cytokínov), ktoré sprostredkúvajú intenzitu zápalu (ochorenie) aj imunitu (rezistenciu) [1,2].

Zápal spojený s FIP vedie k trom typom zmien vo venulách. Prvým je strata integrity cievnej steny, mikrokrvácanie a únik plazmatického proteínu bohatého na aktivované faktory zrážania a aktivácie komplementu a ďalšie zápalové proteíny. Druhý typ poškodenia zahŕňa trombózu a zablokovanie prietoku krvi. Tretie poškodenie sa vyskytuje v chronickejších prípadoch a zahŕňa fibrózu (zjazvenie) okolo ciev. Variácie v týchto troch udalostiach určujú množstvo a zloženie výpotkov podľa štyroch Starlingových síl, ktoré určujú pohyb tekutín medzi krvným obehom a intersticiálnymi priestormi [3].

Klasický výpotok pri vlhkej FIP vzniká najmä v dôsledku akútneho poškodenia cievnych stien a úniku plazmy do intersticiálnych priestorov a nakoniec do telesných dutín. Proteín uniknutý do intersticiálnych priestorov priťahuje ďalšie tekutiny, čo sa môže zhoršiť zablokovaním venózneho prietoku krvi a zvýšením kapilárneho tlaku. Tento typ výpotku, známy ako exsudát, obsahuje aj vysoké hladiny proteínov, ktoré sa podieľajú na zápale, imunitných reakciách a zrážaní krvi.

Táto tekutina obsahuje aj veľký počet neutrofilov, makrofágov/monocytov, makrofágov, eozinofilov a nižší počet lymfocytov a červených krviniek. Tento klasický typ tekutiny má konzistenciu vaječného bielka a tvorí slabé zrazeniny obsahuje vysoké množstvo bilirubínu. Bilirubín nepochádza z ochorenia pečene, ale skôr z deštrukcie červených krviniek uniknutých do buniek intersticiálneho tkaniva a pohltených monocytmi/makrofágmi a makrofágmi. Červené krvinky sa rozkladajú a hemoglobín sa štiepi na hem a globín. Globín sa ďalej metabolizuje na biliverdín (zelenkastá farba) a nakoniec na bilirubín (žltkastá farba), ktorý sa potom vylučuje pečeňou. Mačky však majú nedostatok enzýmov používaných na konjugáciu, a preto sú neúčinné pri odstraňovaní bilirubínu z tela [4]. To vedie k hromadeniu bilirubínu v krvnom obehu a dáva výpotku žltý nádych. Čím tmavší je žltý odtieň, tým viac bilirubínu je vo výpotku, tým závažnejšia je iniciujúca zápalová reakcia a tým závažnejšia je výsledná bilirubinémia, bilirubinúria a žltačka.

Opačným extrémom klasického a akútnejšieho výpotku pri FIP sú výpotky vznikajúce prevažne pri chronických infekciách a blokáde venózneho prietoku krvi a následnom zvýšení kapilárneho tlaku. Vysoký kapilárny tlak vedie k výpotku, ktorý sa vzdialenejšie podobá intersticiálnej tekutine ako plazme, má nižší obsah bielkovín, je skôr vodnatý ako lepkavý, číry alebo mierne žlto sfarbený, nie je náchylný na zrážanie a má nižší počet akútnych zápalových buniek, ako sú neutrofily. Existujú aj výpotky FIP, ktoré sú medzi týmito extrémami, v závislosti od relatívneho stupňa akútneho zápalu a chronickej fibrózy. Tieto prechodné typy tekutín sa vo veterinárnej literatúre bežne označujú ako modifikovaný transsudát, čo je však nesprávne pomenovanie. Modifikovaný transsudát začína ako transsudát a mení sa, keď pretrváva a vyvoláva mierny zápal. Výpotky s nízkym obsahom bielkovín a buniek pri FIP vznikajú ako exsudáty a nie ako transsudáty a nezodpovedajú tomuto opisu. Správnejší termín je “modifikovaný exsudát” alebo “variantný exsudatívny výpotok”.

Ako dlho zvyčajne pretrvávajú výpotky u mačiek liečených liekom GS-441524 alebo GC376? Prítomnosť brušných výpotkov často vedie k veľkému roztiahnutiu brucha a potvrdí sa palpáciou, aspiráciou dutou ihlou, röntgenom alebo ultrazvukom. Mačky s hrudnými výpotkami sa najčastejšie prezentujú závažnou dýchavičnosťou a potvrdzujú sa rádiologickým vyšetrením a aspiráciou. Hrudné výpotky sa takmer vždy odstraňujú, aby sa zmiernila dýchavičnosť, a v porovnaní s brušnými výpotkami sa opakujú pomaly. Preto sa brušné výpotky zvyčajne neodstraňujú, pokiaľ nie sú masívne a nezasahujú do dýchania, pretože sa rýchlo nahradia. Opakovaná drenáž brušných výpotkov môže tiež vyčerpať bielkoviny a spôsobiť škodlivé zmeny v rovnováhe tekutín a elektrolytov u ťažko chorých mačiek.

Hrudné výpotky pri liečbe liekom GS-441524 miznú rýchlejšie, so zlepšením dýchania do 24-72 hodín a vymiznutím zvyčajne za menej ako 7 dní. Abdominálne výpotky sa zvyčajne výrazne zmenšia do 7-14 dní a vymiznú do 21-28 dní. Detekcia výpotkov, ktoré pretrvávajú po tomto čase, závisí od ich množstva a metódy detekcie. Malé množstvá pretrvávajúcej tekutiny sú zistiteľné len ultrazvukom.

Pretrvávanie výpotkov počas antivírusovej liečby alebo po nej. Existujú tri základné dôvody pretrvávania výpotkov. Prvým je pretrvávanie infekcie a z nej vyplývajúceho zápalu na určitej úrovni, čo môže byť spôsobené nevhodnou liečbou, zlým liekom alebo rezistenciou na liek. Neadekvátna liečba môže byť dôsledkom nesprávneho dávkovania zlého lieku alebo získania rezistencie vírusu na liek. Druhým dôvodom pretrvávania tekutín je chronické poškodenie venúl a zvýšený kapilárny tlak. Môže to byť spôsobené infekciou nízkeho stupňa alebo reziduálnou fibrózou z infekcie, ktorá bola odstránená. Tretím dôvodom perzistencie je existencia iných ochorení, ktoré sa tiež môžu prejavovať výpotkami. Patria k nim vrodené srdcové choroby, najmä kardiomyopatia, chronické ochorenie pečene (získané alebo vrodené), hypoproteinémia (získaná alebo vrodená) a rakovina. Vrodené ochorenia spôsobujúce výpotky sa častejšie vyskytujú u mladých mačiek, zatiaľ čo získané príčiny a rakovina sa častejšie diagnostikujú u starších mačiek.

Diagnostika a liečba pretrvávajúcich výpotkov. Predpokladom diagnózy a liečby je dôkladné vyšetrenie tekutiny, ako je opísané vyššie. Ak má tekutina zápalový alebo polozápalový charakter a bunkový pelet je pozitívny pomocou PCR alebo IHC, musí sa určiť dôvod pretrvávania infekcie. Bola antivírusová liečba správne vedená, bolo antivírusové liečivo aktívne a jeho koncentrácia správna, existovali dôkazy o získanej rezistencii na liečivo? Ak má tekutina zápalový charakter a PCR a IHC sú negatívne, aké iné ochorenia pripadajú do úvahy? Tekutiny s nízkym obsahom bielkovín a buniek, ktoré nenaznačujú prítomnosť zápalu a ktorých test PCR a IHC je negatívny, poukazujú na diagnózu reziduálnej fibrózy malých ciev a/alebo na iné prispievajúce príčiny, ako je ochorenie srdca, chronické ochorenie pečene, hypoproteinémia (ochorenie čriev alebo obličiek). Niektoré z porúch spôsobujúcich tento typ výpotku si môžu vyžadovať exploratívnu laparotómiu s dôkladnou prehliadkou brušných orgánov a selektívnou biopsiou na určenie pôvodu tekutiny. Liečba pretrvávajúcich výpotkov sa bude veľmi líšiť v závislosti od konečnej príčiny. Pretrvávajúce výpotky spôsobené reziduálnou fibrózou malých ciev u mačiek vyliečených z infekcie často ustúpia až po mnohých týždňoch alebo mesiacoch. Pretrvávajúce výtoky spôsobené úplne alebo čiastočne inými ochoreniami si vyžadujú liečbu zameranú na tieto ochorenia.

Identifikácia a charakteristika pretrvávajúcich výpotkov. Prítomnosť tekutiny po 4 týždňoch liečby GS je nepríjemná a zvyčajne sa zisťuje niekoľkými spôsobmi v závislosti od množstva tekutiny a jej lokalizácie. Veľké množstvo tekutiny sa zvyčajne zistí podľa stupňa roztiahnutia brucha, palpáciou, röntgenom a aspiráciou brucha, zatiaľ čo menšie množstvo tekutiny sa najlepšie zistí ultrazvukom. Pretrvávajúci pleurálny výpotok sa zvyčajne zisťuje pomocou röntgenových snímok alebo ultrazvuku. Celkovo je ultrazvuk najpresnejším prostriedkom na detekciu a semikvantitatívne stanovenie výpotkov v hrudnej a brušnej dutine. Ultrazvuk sa môže použiť aj v kombinácii s aspiráciou tenkou ihlou na odber malých a lokalizovaných množstiev tekutiny.

Druhým krokom pri skúmaní pretrvávajúcich výpotkov je ich analýza na základe farby, obsahu bielkovín, počtu bielych a červených krviniek a typov prítomných bielych krviniek. Tekutiny vzniknuté primárne zápalom budú mať hladinu bielkovín blízku alebo rovnakú ako plazma a veľký počet bielych krviniek (neutrofily, lymfocyty, monocyty/makrofágy a veľké vakuolizované makrofágy). Tekutiny vytvorené zvýšeným kapilárnym tlakom sa viac podobajú intersticiálnej tekutine s proteínmi bližšie k 2,0 g/dl a počtom buniek < 200. Na diagnostiku výpotkov spojených s FIP sa často používa Rivaltova skúška. Nie je to však špecifický test pre FIP, ale skôr pre výpotky zápalového charakteru. Zvyčajne je pozitívny pri výpotkoch s FIP, ktoré majú vysoký obsah bielkovín a buniek, ale často je negatívny pri výpotkoch s veľmi nízkym obsahom bielkovín a buniek. Výpotky, ktoré sú na pomedzí týchto dvoch typov výpotkov, budú testované buď pozitívne, alebo negatívne, v závislosti od toho, kde sa v spektre nachádzajú.

Tretím krokom je analýza výpotkov na prítomnosť vírusu FIP. Na to je zvyčajne potrebných 5 až 25 ml alebo viac tekutiny. Pri tekutinách s vyšším počtom bielkovín a buniek môže stačiť menšie množstvo, zatiaľ čo pri tekutinách s nízkym počtom bielkovín a buniek je potrebné väčšie množstvo. Čerstvo odobratá vzorka by sa mala centrifugovať a bunkový pelet analyzovať na prítomnosť vírusovej RNA metódou PCR alebo cytocentrifugovať na imunohistochemické vyšetrenie (IHC). Test PCR by mal byť na RNA FIPV 7b a nie na špecifické mutácie FIPV, pretože test na mutácie nemá dostatočnú citlivosť a neposkytuje žiadne výhody pre diagnostiku [5]. Vzorky, ktoré sú pozitívne na základe PCR alebo IHC, poskytujú definitívny dôkaz FIP. Avšak až 30 % vzoriek zo známych prípadov FIP môže mať falošne negatívny test buď z dôvodu nevhodnej vzorky a jej prípravy, alebo preto, že hladina RNA vírusu FIP je pod úrovňou detekcie. Taktiež platí, že čím je tekutina menej zápalová, tým sú hladiny vírusu nižšie. Preto je pravdepodobnejšie, že výpotky s nižšími hladinami bielkovín a bielych krviniek budú testované negatívne, pretože vírusová RNA je pod detekčným limitom testu.

Literatúra

[1] Watanabe R, Eckstrand C, Liu H, Pedersen NC. Characterization of peritoneal cells from cats with experimentally-induced feline infectious peritonitis (FIP) using RNA-seq. Vet Res. 2018 49(1):81. doi: 10.1186/s13567-018-0578-y.

[2]. Kipar A, Meli ML, Failing K, Euler T, Gomes-Keller MA, Schwartz D, Lutz H, Reinacher M. Natural feline coronavirus infection: differences in cytokine patterns in association with the outcome of infection. Vet Immunol Immunopathol. 2006 Aug 15;112(3-4):141-55. doi:10.1016/j.vetimm.2006.02.004. Epub

[3] Brandis K.  Starling’s Hypothesis, LibreTexts. https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Book%3A_Fluid_Physiology _(Brandis)/04%3A_Capillary_Fluid_Dynamics/4.02%3A_Starling%27s_Hypothesis

[4]. Court MH. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms. Vet Clin North Am Small Anim Pract. 2013;43(5):10391054. doi:10.1016/j.cvsm.2013.05.002

[5]. Barker, EN, Stranieri, A, Helps, CR. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Vet Res 2017; 48: 60. Prečítať “Pôvod brušných alebo hrudných výpotkov u mačiek s vlhkou FIP a príčiny ich pretrvávania počas liečby”

Alternatívna liečba mačiek s FIP a prirodzenou alebo získanou rezistenciou voči GS-441524

Niels C. Pedersen, Nicole Jacque, 3.11. 2021
Pôvodný článok: Alternative treatments for cats with FIP and natural or acquired resistance to GS-441524

Skratky:
SC – subcutaneous – podkožne
IV – intravenózne
IM – do svalu
PO – per os – perorálne
SID – raz denne
BID – 2x denne
q24h – raz za 24 hodín
q12h – raz za 12 hodín

Úvod

Rezistencia na antivirotiká je dobre zdokumentovaná v prípade chorôb, ako sú HIV/AIDS a hepatitída C. V niektorých prípadoch je táto rezistencia prítomná v infikujúcom víruse, ale častejšie je dôsledkom dlhodobej expozície lieku. Rezistencia na GC376 [1] a GS-441524 [2] bola zdokumentovaná aj u mačiek s prirodzene získanou FIP. Rezistencia sa vyvíja na základe mutácií v oblastiach vírusového genómu, ktoré obsahujú ciele pre antivírusové liečivo. Napríklad v proteáze (3CLpro) izolátu FIPV od mačky s rezistenciou na GC376 sa zistilo niekoľko zmien aminokyselín (N25S, A252S alebo K260N) [3]. Zistilo sa, že zmena N25S v 3CLpro spôsobuje 1,68-násobné zvýšenie 50 % inhibičnej koncentrácie GC376 v tkanivových kultúrach [3]. Rezistencia voči GC376, hoci bola rozpoznaná v počiatočných terénnych testoch, nebola doteraz opísaná. GC376 nie je tak populárny pri liečbe FIP a neodporúča sa pre mačky s okulárnou alebo neurologickou FIP [1].

Prirodzená rezistencia na GS-441524 bola pozorovaná u jednej z 31 mačiek liečených na prirodzene získanú FIP [2]. Jedna z 31 mačiek v pôvodnej terénnej štúdii GS-441524 sa tiež javila ako rezistentná, keďže hladiny vírusovej RNA sa počas celého obdobia liečby neznížili a príznaky ochorenia sa nezmiernili. Hoci sa tento vírus neštudoval, rezistencia na GS-5734 (Remdesivir), proliečivo GS-441524, bola vytvorená v tkanivovej kultúre pomocou aminokyselinových mutácií v RNA polymeráze a korektívnej exonukleáze [4].

Rezistencia voči GS-441524 bola potvrdená u časti mačiek, ktoré boli liečené na FIP pomocou GS-441524 za posledné 3 roky, najmä medzi mačkami s neurologickou FIP [5]. Rezistencia na GS441524 je zvyčajne čiastočná a vyššie dávky často vyliečia infekciu alebo výrazne znížia príznaky ochorenia počas trvania liečby. Zaujímavé je, že rezistencia na GS-441524 sa zisťuje aj u pacientov s Covid19 liečených Remdesivirom [12]. U imunokompromitovaného pacienta sa vyvinul zdĺhavý priebeh infekcie SARS-CoV-2. Liečba Remdesivirom spočiatku zmiernila príznaky a výrazne znížila hladiny vírusu, ale ochorenie sa vrátilo spolu s veľkým nárastom replikácie vírusu. Sekvenovaním celého genómu sa identifikovala mutácia E802D v nsp12 RNA-dependentnej RNA polymeráze, ktorá nebola prítomná vo vzorkách pred liečbou a spôsobovala 6-násobné zvýšenie rezistencie.

Aj keď už bola opísaná história molnupiraviru a jeho nedávne použitie na liečbu FIP [6], v súčasnosti nie sú k dispozícii žiadne štúdie, ktoré by dokumentovali prirodzenú alebo získanú rezistenciu na molnupiravir. Ukázalo sa, že molnupiravir funguje ako mutagén RNA vyvolávajúci viaceré defekty vo vírusovom genóme [7], zatiaľ čo remdesivir/GS-441524 je neobligátny terminátor reťazca RNA [8], čo naznačuje, že jeho profil rezistencie bude odlišný.

Prekonanie rezistencie voči GS-441524

Rezistenciu na lieky možno prekonať len dvomi spôsobmi: 1) postupným zvyšovaním dávky antivirotika, aby sa dosiahli hladiny liečiva v telesných tekutinách, ktoré presahujú úroveň rezistencie, alebo 2) použitím iného antivirotika, ktoré má iný mechanizmus rezistencie, buď samostatne, alebo v kombinácii. Doteraz sa volila prvá možnosť, ktorá sa v mnohých prípadoch ukázala ako účinná. Rezistencia na GS-441524 však môže byť úplná alebo taká vysoká, že zvyšovanie dávky už nie je účelné. V takýchto prípadoch sa čoraz viac využíva druhá možnosť. V súčasnosti dostupnými alternatívami k lieku GS-441524, aj keď stále z neschváleného trhu, sú GC376 a molnupiravir.

Režimy liečby antivírusovými liekmi pri rezistencii na GS-441524

GC376/GS-441524


Kombinovaný režim GS/GC sa osvedčil u mačiek liečených GS-441524 v dávkach až 40 mg/kg bez vyliečenia v dôsledku rezistencie na GS-441524. Je vhodnejšie zasiahnuť hneď, ako sa zistí rezistencia na GS-441524, čo umožní vyliečiť mačku skôr a s menšími finančnými nákladmi majiteľa.

Spoločnosť Rainman je súčasným dodávateľom GC376, ktorý sa dodáva v 4 ml injekčných vialkách s koncentráciou 53 mg/ml.

Dávkovanie GS/GC: Dávka GS (SC alebo PO ekvivalent) pri kombinovanej liečbe antivirotikami je rovnaká ako dávka potrebná na primeranú kontrolu príznakov ochorenia. Zvyčajne je to posledná dávka použitá pred ukončením liečby a vznikom relapsu. K tejto dávke GS-441524 sa pridáva GC376 v dávke 20 mg/kg SC q24h bez ohľadu na formu FIP. Toto je dostatočné pre väčšinu mačiek, vrátane mnohých mačiek s neuro FIP, ale niektoré budú potrebovať vyššie dávky. Ak sa nedosiahne remisia klinických príznakov alebo sú krvné testy znepokojujúce, dávka GC376 sa zvyšuje o 10 mg/kg až na 50 mg/kg SC q24h.

Dĺžka liečby: Odporúča sa osemtýždňová kombinovaná liečba GC/GS, ktorá sa pridáva k predchádzajúcej monoterapii GS. Niektoré mačky boli vyliečené pri 6 týždňoch kombinovanej liečby, ale recidíva je pravdepodobnejšia ako po 8 týždňoch.

Vedľajšie účinky: U väčšiny mačiek sa nevyskytujú žiadne závažné vedľajšie účinky. Približne jedna z piatich mačiek však môže pociťovať nevoľnosť alebo nepríjemné pocity na začiatku liečby a občas aj dlhšie. Zdá sa, že tieto vedľajšie účinky nie sú závislé od dávky a možno ich liečiť liekmi proti nevoľnosti, ako sú Cerenia, Ondansetron alebo Famotidín. Zdá sa, že u niektorých mačiek lepšie účinkoval ondansetrón.

Molnupiravir

Molnupiravir bol hlásený ako účinný v monoterapii mačiek s FIP najmenej jedným čínskym predajcom GS-441524 [9], ale nie sú žiadne správy o jeho použití u mačiek s rezistenciou na GS-441524. Je však nepravdepodobné, že by sa rezistencia na GS-441524 rozšírila aj na molnupiravir. Skutočnosť, že sa zistilo, že je účinný ako perorálny liek, ho robí atraktívnym aj pre samostatnú liečbu, keďže mnohé mačky s rezistenciou na GS-441524 trpeli injekciami veľmi dlhé obdobie.

Terénna štúdia molnupiraviru údajne pozostávala z 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP, ktoré boli vyšetrené na klinikách pre spoločenské zvieratá v USA, Spojenom kráľovstve, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. Medzi 286 mačkami, ktoré sa zúčastnili na skúške, nedošlo k žiadnemu úmrtiu, vrátane siedmich mačiek s očnou (n=2) a neurologickou (n=5) FIP. Dvadsaťosem z týchto mačiek bolo vyliečených po 4 – 6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky zostali zdravé o 3 – 5 mesiacov neskôr, čo je obdobie, počas ktorého by sa u mačiek, ktoré neboli úspešne vyliečené, očakávali recidívy. Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná vo forme rukopisu, predložená na recenzné konanie a publikovaná. Napriek tomu sa teraz predáva majiteľom mačiek s FIP. Minimálne jeden ďalší veľký predajca lieku GS-441524 má tiež záujem o používanie molnupiraviru na FIP, čo naznačuje dopyt po ďalšej liečbe mačiek s FIP antivirotikami.

Dávkovanie molnupiraviru: Bezpečné a účinné dávkovanie molnupiraviru u mačiek s FIP nebolo stanovené na základe dôkladne kontrolovaných a monitorovaných terénnych štúdií, aké boli vykonané napríklad pre GC376 [1] a GS-441524 [2]. Najmenej jeden predajca z Číny však vo svojom reklamnom letáku na produkt s názvom Hero-2801 [9] poskytol niektoré farmakokinetické údaje a údaje z terénnych testov Molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP. V týchto informáciách nie je jasne uvedené množstvo molnupiraviru v jednej z ich “50 mg tabliet” a skutočný dávkovací interval (q12h alebo q24h?). Dávka použitá v tejto štúdii sa tiež zdala byť príliš vysoká. Odhadovanú počiatočnú dávku molnupiraviru u mačiek s FIP možno našťastie získať z publikovaných štúdií o EIDD-1931 a EIDD-2801 [15] in vitro na bunkových kultúrach a laboratórnych a terénnych štúdií GS-441524 [14,18]. Molnupiravir (EIDD-2801) má EC50 0,4 uM/ul proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je približne 1,0 uM/ul [18]. Oba majú podobnú perorálnu absorpciu približne 40 – 50 %, takže účinná subkutánna (SC) dávka molnupiraviru by bola približne polovica odporúčanej začiatočnej dávky 4 mg/kg SC q24h pre GS441524 [14] alebo 2 mg/kg SC q24h. Perorálna (PO) dávka by sa zdvojnásobila, aby sa zohľadnila menej účinná perorálna absorpcia na dávku 4 mg/kg PO q24h. Odhadovanú počiatočná účinnú perorálnu dávku molnupiraviru u mačiek s FIP možno vypočítať aj z dostupných údajov o liečbe Covid-19. Pacientom liečeným Covidom-19 sa podáva 200 mg molnupiraviru PO q12h počas 5 dní. Táto dávka bola samozrejme vypočítaná na základe farmakokinetickej štúdie vykonanej na ľuďoch, a ak priemerný človek váži 60 – 80 kg (70 kg), účinná inhibičná dávka je ~ 3,0 mg/kg PO q12h. Mačka má bazálnu rýchlosť metabolizmu 1,5-krát vyššiu ako človek a za predpokladu rovnakej perorálnej absorpcie u ľudí aj mačiek by minimálna dávka pre mačky podľa tohto výpočtu bola 4,5 mg/kg PO q12h pri neokulárnych a neneurologických formách FIP. Ak molnupiravir prechádza cez hematookulárnu a hematoencefalickú bariéru s rovnakou účinnosťou ako GS-441524 [3,18], dávka by sa mala zvýšiť na ~1,5 a ~2,0-násobok., aby došlo k adekvátnemu prieniku do komorovej vody a mozgovomiechového moku pre mačky s očnou (~8 mg/kg PO, q12 h), resp. neurologickou FIP (~10 mg/kg PO, q12 h). Tieto dávky sú porovnateľné s dávkami používanými u fretiek , kde 7 mg/kg q12h udržiava sterilizujúce hladiny liečiva v krvi proti vírusu chrípky (1,86 uM) počas 24 hodín [10]. Dávky u fretiek 128 mg/kg PO q12h spôsobili takmer toxické hladiny v krvi, zatiaľ čo dávka 20 mg/kg PO q12h spôsobila len nepatrne vyššie hladiny v krvi [10].

Molnupiravir/GC376 alebo Molnupiravir/GS-441524

Kombinácie molnupiraviru s GC376 alebo GS-441524 sa budú používať čoraz častejšie, a to nielen kvôli synergii alebo doplnení ich individuálnych antivírusových účinkov, ale aj ako spôsob prevencie liekovej rezistencie. Liečivé koktaily boli veľmi účinné pri prevencii liekovej rezistencie u pacientov s HIV/AIDS [11]. V súčasnosti však nie sú k dispozícii dostatočné dôkazy o bezpečnosti a účinnosti kombinácie molnupiraviru s GC376 alebo GS-441524 ako počiatočnej liečby FIP.

Prípadové štúdie


Rocky – DSH MN Neuro FIP


9-mesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny mal niekoľko týždňov trvajúce záchvaty so zvyšujúcou sa frekvenciou, ataxiou a progresívnou parézou. Krvné testy boli bez pozoruhodností. Liečba FIP sa začala dávkou 15 mg/kg BID GS-441524, ktorá sa približne týždeň znižovala na SID. U mačky sa do 24 hodín od začiatku liečby prejavilo zlepšenie, záchvaty ustali a zvýšila sa jej pohyblivosť. Do 5 dní liečby bola mačka opäť schopná pohybu. Približne 2 týždne od začiatku liečby sa však u mačky objavila strata zraku, znížená pohyblivosť, obnovenie záchvatov a ťažkosti s prehĺtaním. Bola vykonaná úprava dávky levetiracetamu a prednizolónu, ako aj zmena zloženia lieku GS-441524, po ktorej nasledovalo prechodné zlepšenie pohyblivosti a prehĺtania a zníženie výskytu záchvatov, celkovo sa však stav mačky zhoršil. Dávka lieku GS-441524 sa postupne zvyšovala až na 25 mg/kg, pričom zlepšenie bolo malé alebo žiadne. V tomto bode sa prešlo na perorálne podávanie GS v dávke 25 mg/kg (odhaduje sa, že zodpovedá približne 12,5 mg/kg) a do 3 dní sa mačka začala pohybovať, zlepšilo sa jej videnie a prestali záchvaty spolu so zvýšením energie a chuti do jedla. Zlepšovanie u mačky pokračovalo približne 4 týždne pri perorálnom podávaní GS-441524, potom ustalo približne 3 týždne pred rýchlo postupujúcou parézou. Boli skúšané perorálne dávky až do výšky 30 mg/kg SC ekvivalentu avšak bez účinku. Potom sa prešlo na injekčné podávanie GS-441524 v dávke 20 mg/kg a mačka bola do 4 dní opäť schopná pohybu s dobrou chuťou do jedla a energiou. Po 2 týždňoch sa do dávkovacieho režimu pridala dávka GC376 20 mg/kg BID. Mačka ukončila 6 týždňov kombinovanej liečby GS441524 a GC376 a potom liečbu ukončila. Hoci mačka má určité trvalé neurologické deficity, jej stav je stabilný, má dobrú pohyblivosť, chuť do jedla a aktivitu už 9 mesiacov od ukončenia antivírusovej liečby.

Video Rockyho: https://www.youtube.com/watch?v=RXB_NnfcMOY

Bucky – DSH MN Neuro/okulárna FIP


Štvormesačný kastrovaný kocúr domácej krátkosrstej mačky získaný ako mačiatko zo záchrannej skupiny bol prezentovaný s mesačnou anamnézou letargie a progresívnou anamnézou ataxie, parézou zadných končatín, pikou, uveitídou, anizokóriou a inkontinenciou moču a stolice. Krvné testy boli väčšinou bez pozoruhodností s výnimkou miernej hyperglobulinémie. Pomer A/G bol 0,6. Mačka bola liečená dávkou 10 mg/kg GS-441524 SC SID počas 3 týždňov. Aktivita, mentácia a uveitída sa zlepšili do 72 hodín od začiatku liečby. Počas prvých 2 týždňov sa pozorovalo pomalé zlepšenie pohyblivosti a očných symptómov, ale potom sa dosiahlo plató. Po 3 týždňoch sa dávka GS-441524 zvýšila na 15 mg/kg GS-441524 SC SID z dôvodu pretrvávajúceho neurologického a očného deficitu. Okrem toho sa v tomto čase zaznamenalo zväčšenie ľavého oka v dôsledku glaukómu a oko naďalej opúchalo až do jeho odstránenia v 8. týždni liečby.
Vzhľadom na pretrvávajúcu slabosť/nedostatok koordinácie v panvovej oblasti a narastajúcu letargiu sa v 9. týždni dávka GS-441524 zvýšila na 20 mg/kg SC SID [alebo ekvivalentnú perorálnu dávku] a o niekoľko dní neskôr sa do režimu pridalo 20 mg/kg SC BID GC376. Výrazne zvýšená aktivita a ochota skákať na vyvýšené povrchy sa prejavila do 48 hodín od začiatku liečby liekom GS376. Kombinovaná liečba GS-441524 a GC376 sa udržiavala počas 8 týždňov. Mačka má po liečbe reziduálne problémy s inkontinenciou, ale inak je 6 mesiacov po liečbe klinicky normálna.

Boris – Mainská mývalia MI vlhká očná FIP


Päťmesačný intaktný (nekastrovaný) kocúr mainskej mývalej mačky, získaný od chovateľa, mal letargiu, nechutenstvo, brušný ascites, kašeľ, anémiu a neutrofíliu. Pri stanovení diagnózy nebol vykonaný žiadny biochemický rozbor. Mačka bola liečená 6 mg/kg GS-441524 SC SID počas 8 týždňov. Po šiestich týždňoch liečby röntgen odhalil uzlíky v pľúcach a po 8 týždňoch pretrvávala hyperglobulinémia. Dávka GS-441524 sa potom zvýšila na 8 mg/kg SC SID počas 4 týždňov. V krvných testoch a na röntgenových snímkach sa zaznamenalo len malé zlepšenie a dávka GS-441524 sa zvýšila na 12 mg/kg SC SID počas 4 týždňov, potom nasledovalo zvýšenie na 17 mg/kg počas 11 týždňov, 25 mg/kg počas 4 týždňov a 30 mg/kg počas 4 týždňov. Po 25 týždňoch liečby sa ultrazvukom zaznamenali pleurálne odchýlky na ľavej strane a röntgenové snímky nepreukázali žiadne zlepšenie pľúcnych uzlín. Okrem toho sa na pravom oku zaznamenala uveitída a odchlípenie sietnice. Boli odobraté aspiráty pľúc, ktoré preukázali zápal zodpovedajúci FIP. Po 33 týždňoch liečby sa do režimu pridalo 20 mg/kg SC BID GC376 a kombinovaná liečba GS-441524 a GC376 pokračovala 12 týždňov. Zvýšená aktivita sa zaznamenala v priebehu niekoľkých dní. V priebehu 5 týždňov sa zrýchlilo priberanie na hmotnosti, zmiernil sa kašeľ a zvýšila sa uroveň energie. Krvné testy ukázali zlepšenie pomeru A/G a röntgenové snímky hrudníka preukázali zmenšenie uzlín v pľúcach. Po 84 dňoch kombinovanej antivírusovej liečby bol pomer A/G 0,85 a mačka sa javila klinicky normálne. Mačka je v súčasnosti 3 mesiace po liečbe.

Literatúra

  1. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018; 20(4):378-392.
  2. Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019; 21(4):271-281.
  3. Perera KD, Rathnayake AD, Liu H, et al. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. J. Vet Microbiol. 2019;237:108398. doi:10.1016/j.vetmic.2019.108398
  4. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9. DOI:10.1128/mBio.00221-18.
  5. Pedersen NC. 2021. The neurological form of FIP and GS-441524 treatment.
    https://sockfip.org/the-neurological-form-of-fip-and-gs-441524-treatment/
  6. Pedersen NC. The long history of beta-d-n4-hyroxycytidine and its modern application to treatment of covid019 in people and FIP in cats. https://sockfip.org/the-long-history-of-beta-d-n4-hydroxycytidineand-its-modern-application-to-treatment-of-covid-19-in-people-and-fip-in-cats/.
  7. Agostini, M. L. et al. Small-molecule antiviral beta-d-N (4)-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. J. Virol. 2019; 93, e01348.
  8. Warren, T. K. et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531, 381–385.
  9. FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir) https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/
  10. Toots M, Yoon JJ, Cox RM, Hart M, Sticher ZM, Makhsous N, Plesker R, Barrena AH, Reddy PG, Mitchell DG, Shean RC, Bluemling GR, Kolykhalov AA, Greninger AL, Natchus MG, Painter GR, Plemper RK. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med. 2019;11(515):eaax5866.
  11. Zdanowicz MM. The pharmacology of HIV drug resistance. Am J Pharm Educ. 2006;70(5):100.doi:10.5688/aj7005100
  12. Gandhi, S, Klein J, Robertson A, et al. De novo emergence of a remdesivir resistance mutation during treatment of persistent SARS-CoV-2 infection in an immunocompromised patient: A case report. medRxiv, 2021.11.08.21266069AID
Prečítať “Alternatívna liečba mačiek s FIP a prirodzenou alebo získanou rezistenciou voči GS-441524”

Dlhá história Beta-d-N4-hydroxycytidínu a jeho moderná aplikácia na liečbu Covid-19 u ľudí a FIP u mačiek.

Niels C. Pedersen DVM, PhD
Originálny článok: The long history of Beta-d-N4-hydroxycytidine and its modern application to treatment of Covid-19 in people and FIP in cats.

Beta-d-N4-hydroxycytidín je malá molekula (nukleozid), ktorá bola študovaná koncom 70. rokov v bývalom Sovietskom zväze ako súčasť výskumu biologických zbraní [2]. Weaponizácia chorôb, ako sú kiahne, bola celosvetovým postrachom, ale nebezpečenstvo použitia vírusu kiahní na tento účel bolo príliš veľké. Pravé kiahne boli zo sveta vykorenené, prakticky všetky zásoby zničené a ďalší výskum zakázaný. To viedlo USA a Sovietsky zväz k výskumu ďalších RNA vírusov ako biologických zbraní a antivirotík na obranu proti nim. Vírus venezuelskej konskej encefalomyelitídy (VEEV) bol jedným z prvých vírusov, u ktorého sa seriózne zvažovalo jeho využitie ako biologickej zbrane [3]. VEEV sa na ľudí prenáša uštipnutím komárom a spôsobuje vysokú horúčku, bolesti hlavy a encefalitídu s opuchmi, ktoré môžu byť smrteľné. Zistilo sa, že beta-d-N4-hydroxycytidín nielenže inhibuje replikáciu VEEV, ale aj širokú škálu alfavírusov vrátane eboly, chikungunya, chrípkového vírusu, norovírusu, vírusu bovinnej diarey, vírusu hepatitídy C a respiračného syncyciálneho vírusu. [3-8]. Prvé správy o inhibičnom účinku beta-d-N4-hydroxycytidínu na ľudský koronavírus NL63 pochádzajú z roku 2006 [9]. Nedávne štúdie potvrdili jeho inhibičný účinok na široké spektrum ľudských a zvieracích koronavírusov [8].

Dôležitá časť novšej histórie beta-d-N4-hydroxycytidínu je spojená s Emory Institute for Drug Development (EIDD) [1], kde dostal experimentálne označenie EIDD-1931. Významnú finančnú podporu na štúdium antivirotík proti alfavírusom v inštitúciách, ako je Emory, poskytovala americká vláda už od roku 2004 [10]. Agentúra na zníženie obranných hrozieb poskytla v roku 2014 inštitucionálnu podporu s cieľom nájsť antivírusovú zlúčeninu proti VEEV a iným alfakoronavírusom. „N4-Hydroxycytidín a jeho deriváty a antivírusové použitia“ boli zahrnuté v patentovej prihláške USA 2016/106050 A1 z roku 2016 [11]. Ďalšie financovanie v roku 2019 poskytol Národný ústav pre alergie a infekcie na partnerský výskum esterifikovaného prekurzora beta-d-N4-hydroxycytidínu (EIDD-2801) na liečbu chrípky [10]. Uvedeným zámerom chemických zmien EIDD-2801 bolo zvýšenie jeho orálnej biologickej dostupnosti, čo by v konečnom dôsledku umožnilo podávať beta-d-N4-hydroxycytidín ako pilulky a nie ako injekcie. V roku 2019/2020 došlo k zmene zamerania výskumu z chrípky na SARS-CoV-2 [2]. Komercializáciou EIDD-2801 bola poverená pobočka Emory s názvom Ridgeway Biotherapeutics, ktorá následne spolupracovala so spoločnosťou Merck na zdĺhavom a nákladnom procese schvaľovania FDA. Aktuálna verzia EIDD-2081 na testovanie v teréne dostala názov Molnupiravir.

Beta-d-N4-hydroxycytidín, účinná látka Molnupiraviru, existuje v dvoch formách ako tautoméry. V jednej forme sa chová ako cytidín s jednoduchou väzbou medzi uhlíkom a skupinou N-OH. Vo svojej ďalšej forme, ktorá napodobňuje uridín, má oxim s dvojitou väzbou medzi uhlíkom a skupinou N-OH. Za prítomnosti beta-d-N4-hydroxycytidínu ho vírusová RNA-dependentná RNA polymeráza číta ako uridín namiesto cytidínu a namiesto guanozínu vkladá adenozín. Prepínanie medzi formami spôsobuje nezhody počas transkripcie, čo má za následok početné mutácie vírusového genómu a zastavenie replikácie vírusu [8].

Snaha spoločnosti Merck o podmienečné a úplné schválenie Molnupariviru FDA pokračuje. Spoločnosť Merck vo svojom vyhlásení uviedla: [12] „V očakávaní výsledkov programu MOVe-OUT spoločnosť Merck vyrába Molnupiravir na vlastné riziko. Spoločnosť Merck očakáva, že do konca roku 2021 vyrobí 10 miliónov liečebných dávok, pričom v roku 2022 sa očakáva výroba ďalších. Merck sa zaväzuje poskytovať včasný prístup k lieku Molnupiravir na celom svete, ak bude autorizovaný alebo schválený, a plánuje zaviesť prístup k viacúrovňovým cenám na základe kritérií príjmu krajín Svetovej banky, ktoré budú odrážať relatívnu schopnosť krajín financovať svoju zdravotnú reakciu na pandémiu. V rámci svojho záväzku rozšíriť globálny prístup spoločnosť Merck už skôr oznámila, že uzavrela nevýhradné dobrovoľné licenčné zmluvy na Molnupiravir so zavedenými generickými výrobcami na urýchlenie dostupnosti Molnupiraviru vo viac ako 100 krajinách s nízkymi a strednými príjmami (LMIC) po schválení alebo núdzovom povolení miestnymi regulačnými agentúrami. “ Je nepravdepodobné, že by sa táto „veľkorysosť“ vzťahovala aj na použitie u zvierat.

Lieky na inhibíciu pôvodcu súčasnej pandémie Covid-19 boli v posledných dvoch rokoch predmetom urýchlených terénnych testov a jeden z nich, Remdesivir, bol schválený v rekordnom čase pre použitie u hospitalizovaných pacientov. V minulom roku bol Molnupiravir postúpený k podmienečnému schváleniu ako perorálny liek na domácu liečbu infekcie v počiatočnom štádiu [12]. Účinné zlúčeniny proti koronavírusu však boli vyvíjané už skôr pre inú bežnú a vážnu chorobu mačiek, mačaciu infekčnú peritonitídu (FIP). Tieto lieky zahŕňajú inhibítor proteázy (GC376) [13] a inhibítor RNA dependentnej RNA polymerázy (GS-441524), ktorý je aktívnou zložkou Remdesiviru [14]. Úspech antivírusových liekov pri liečbe FIP podnietil nedávnu štúdiu EIDD-1931 a EIDD-2801 pre ich schopnosti inhibovať FIPV v tkanivových kultúrach [15]. Účinná koncentrácia EC50 pre EIDD-1931 proti FIPV je 0,09 μM, EIDD-2801 0,4 μM a GS441524 0,66 μM [15]. Percento cytotoxicity pri 100 μM je 2.8, 3.8, respektíve 0. Preto sú EIDD-1931 a EIDD-2801 o niečo účinnejšie pri inhibícii vírusov, ale tiež cytotoxickejšie ako GS-441524. Tieto laboratórne štúdie naznačujú, že EIDD-1931 a EIDD-2801 sú vynikajúcimi kandidátmi na liečbu FIP.

Napriek tomu, že EIDD-1931 a EIDD-2801 sú veľkým prísľubom pre liečbu FIP, existuje niekoľko prekážok, kvôli ktorým v blízkej budúcnosti nebude legálne používanie týchto zlúčenín veľmi pravdepodobné. GS-441524, aktívna forma Remdesiviru a patentovaná spoločnosťou Gilead Sciences, bol skúmaný na použitie u mačiek s FIP krátko pred pandémiou Covid-19. Výskum FIP [14] preto podnietil potenciálne použitie Remdesiviru proti vírusu Ebola, a nie koronavírusom podobným SARS [14]. Aj keď boli tieto štúdie realizované v spolupráci s vedcami z Gilead Sciences, spoločnosť odmietla udeliť práva na GS-441524 na liečbu u zvierat, akonáhle bolo zrejmé, že existuje oveľa väčší trh s Covid-19 u ľudí [16]. Podobne moje pokusy za posledné 2-3 roky u Emory, Ridgeback Biotherapeutics a veterinárnej divízie spoločnosti Merck skúmať EIDD-1931 a EIDD2801 pre liečbu FIP u mačiek buď zostali bez odpovede, alebo boli zamietnuté, nepochybne z podobných dôvodov, prečo Gilead odmietol udeliť práva pre GS-441524. Veľká celosvetová potreba liečby FIP však rýchlo podporila neschválený trh s GS-441524 z Číny. Tá istá potreba liečiť FIP nedávno vyvolala záujem o Molnupiravir, tiež z Číny.

Situácia s EIDD-1931 vs. EIDD-2801/Molnupiravir a GS-441524 vs. Remdesivir vyvoláva otázku, prečo sa niektoré lieky pre účely marketingu prevádzajú na proliečivá [17]. Remdesivir bol údajne esterifikovaný, aby sa zvýšila antivírusová aktivita, aj keď štúdie na mačkách ukázali, že GS-441524 a Remdesivir mali podobnú vírusovú inhibičnú aktivitu v tkanivovej kultúre [18]. Zistilo sa však, že Remdesivir sa zle absorbuje orálnou cestou, a preto bol podmienenčne schválený iba pre injekčné použitie. EIDD-2801 bol vytvorený pre zvýšenie orálnej absorpcie EIDD-1931, aj keď predchádzajúci výskum ukázal, že EIDD-1931 je dobre absorbovaný orálne aj bez esterifikácie [6]. Motívy komercializácie Remdesiviru namiesto GS-441524 na humánne použitie boli vedecky spochybnené, pretože tento sa zdá byť v niekoľkých smeroch lepší bez ďalších úprav [17]. Prečo bol pre komercializáciu vybraný EIDD-2801, keď EIDD-1931 by bol lacnejší, 4-násobne účinnejší proti vírusom a o jednu tretinu menej toxický ako EIDD-2801 [15]? Sila patentových práv a dlhá životnosť patentov môžu v týchto rozhodnutiach predstavovať dôležitejšie faktory. [16,17,19].

Jedným z problémov pri liečbe FIP u mačiek sú hematookulárne a hematoencefalické bariéry, ktoré nadobúdajú veľký význam, keď choroba postihne oči a/alebo mozog [13, 14, 20]. Tento problém bol z veľkej časti prekonaný pri liečbe očných a neurologických foriem FIP pomocou GS-441524 postupným zvyšovaním dávkovania na zvýšenie hladín v krvi a tým aj koncentrácie liečiva v komorovom moku a/alebo v mozgu [20]. GC376, jedno z najúčinnejších antivirotík proti vírusu FIP v kultúre [17], nie je účinný proti okulárnej a neurologickej FIP kvôli neschopnosti dostať do týchto miest dostatok liečiva, aj keď sa dávka niekoľkonásobne zvyšuje[14]. Našťastie sa zdá, že EIDD-1931 môže dosiahnuť účinné hladiny v mozgu, ako to naznačujú štúdie na koňoch s infekciou VEEV [3]. Rezistencia na liečivá je ďalším problémom, ktorý sa teraz prejavuje u niektorých mačiek liečených GS-441524, najmä u jedincov s neurologickou formou FIP. Dlhé liečebné procedúry a ťažkosti s transportom dostatočného množstva liečiva do mozgu podporujú rozvoj liekovej rezistencie.

Zásadný význam má krátkodobý a dlhodobý toxický účinok kandidátskeho lieku na testovaného človeka alebo zviera. V bunkových kultúrach vykázal GS-441524 nižšiu toxicitu ako GC376, EIDD-1931 a EIDD-2801 [15]. Najdôležitejšia je však toxicita, ktorá sa prejavuje in vivo. GC376 patrí medzi lieky s najvyšším inhibičným účinkom na koronavírus [15], ale pri podávaní mladým mačiatkam spomaľuje vývoj dospelého chrupu [13]. Počas takmer troch rokov používania GS-441524 v teréne nebola pozorovaná žiadna vážna toxicita, čo odzrkadľuje úplnú absenciu cytotoxických účinkov in vitro pri koncentráciách až 400 µM [18]. EIDD-1931 a EIDD-2801 však vykazujú významnú cytoxicitu pri 100 µM [15]. Preto schopnosť EIDD-1931 vytvárať fatálne mutácie v RNA vyvoláva už nejaký čas množtvo otázok [8, 21, 22]. To bol hlavný dôvod, prečo sa aplikácia na liečbu chorôb stále odkladala. Súčasná odporúčaná doba liečby Covid-19 Molnupiravirom je však v počiatočnom štádiu liečby iba 5 dní [10]. Odporúčaná doba liečby FIP s GS-441524 je ale 12 týždňov [14], čo predstavuje oveľa dlhší čas pre manifestáciu toxicity. Preto bude dôležité dôkladné pozorovanie mačiek pri liečbe EIDD-1931 alebo EIDD-2801, či už ide o krátkodobé alebo dlhodobé účinky.

Všetky doterajšie antivírusové lieky viedli k rozvoju liekovej rezistencie prostredníctvom mutácií vo vírusovom genóme. Aj keď sa Remdesivir javí menej náchylný voči takýmto mutáciám v porovnaní s liekmi používaných pri vírusových ochoreniach, ako je HIV/AIDS, rezistencia je dobre zdokumentovaná [23–25]. Rezistencia voči GS-441524 u mačiek liečených na FIP bola pozorovaná s vyššou frekvenciou, najmä u mačiek s neurologickou FIP, kde je ťažšie dopraviť do mozgu dostatočné množstvo liečiva [13, 14, 20]. Rezistencia voči GS-441524 u mačiek bude tiež pravdepodobne väčším problémom, pretože mačky s FIP sa často liečia 12 týždňov alebo dlhšie, zatiaľ čo Remdesivir (a Molnupiravir) sa odporúčajú užívať iba päť dní počas počiatočného viremického štádia Covid-19 [16]. Problém rezistencie na liečivá je v liečbe HIV/AIDS efektívne zvládnutý použitím kokteilu rôznych liekov súčasne s rôznymi profilmi rezistencie. Mutanty rezistentné na jedno liečivo budú ostatné lieky okamžite inhibovať, čím sa zabráni ich pozitívnej selekcii pri liečbe. Inhibícia rezistencie je obzvlášť silná, ak tieto dva lieky útočia na rôzne proteíny zahrnuté v replikácii vírusu. Napríklad GC376 je inhibítor proteázy [13], zatiaľ čo GS-441524 pôsobí na RNA dependentnú RNA polymerázu [18]. GC376 však nie je tak dobre absorbovaný cez hematoencefalickú bariéru. Aj keď ešte neprebehol potrebný výskum, zdá sa, že medzi GS-441524 a Molnupiravirom nebude existovať žiadna skrížená rezistencia, a pri prechode hematoencefalickou bariérou je rovnako účinný ako GS-441524 [3]. To z Molnupiraviru (alebo 5-hyroxycytidínu) robí dôležitý príspevok pre budúcu liečbu FIP.

Ako sa dalo čakať, Molnupiravir bol nedávno testovaný na mačkách s FIP najmenej jedným čínskym predajcom GS-441524 a predbežné výsledky sú uvedené na webovej stránke FIP Warriors CZ/SK [26]. Terénne testy zahŕňali 286 mačiek s rôznymi formami prirodzene sa vyskytujúcej FIP pozorovaných na klinikách pre domáce zvieratá v USA, Veľkej Británii, Taliansku, Nemecku, Francúzsku, Japonsku, Rumunsku, Turecku a Číne. 286 mačiek, ktoré sa zúčastnili štúdie, vrátane siedmich mačiek s okulárnou (n=2) a neurologickou (n=5) FIP, nedošlo k žiadnemu úhynu. Dvadsať osem z týchto mačiek bolo vyliečených po 4-6 týždňoch liečby a 258 po 8 týždňoch. Všetky liečené mačky boli zdravé aj po 3-5 mesiacoch, čo je obdobie, počas ktorého by sa u neúspešne liečených mačiek očakávali relapsy. Tieto údaje poskytujú presvedčivé dôkazy o bezpečnosti a účinnosti Molnupiraviru pre mačky s rôznymi formami FIP. Dúfame však, že táto terénna štúdia bude napísaná v rukopisnej forme, predložená k recenznému konaniu a uverejnená. Tak či tak, Molnupiravir sa už teraz predáva majiteľom mačiek s FIP. Minimálne jeden ďalší veľký predajca GS-441524 má tiež záujem používať Molnupiravir na FIP, čo naznačuje dopyt po ďalších antivírusových liečivách pre mačky s FIP.

Bezpečné a účinné dávkovanie pre Molnupiravir u mačiek s FIP nebolo publikované. Minimálne jeden predajca z Číny však poskytol iste farmakokinetické dáta a dáta z terénnych testov Molnupariviru u mačiek s prirodzene sa vyskytujúcou FIP v reklamnom letáku na výrobok s názvom Hero-2081 [26]. Tieto informácie však jasne neuvádzajú množstvo Molnupiraviru v jednej z ich „50 mg tabliet“ a skutočný dávkovací interval (q12h alebo q24h?). Našťastie odhadovanú počiatočnú dávku molnupiraviru pre mačky s FIP je možné získať z publikovaných štúdií o EIDD-1931 a EIDD-2801 in vitro na bunkových kultúrach [15] a laboratórnych a terénnych štúdií GS-441524 [14,18]. Molnupiravir (EIDD-2801) má EC50 0,4 uM/ul proti FIPV v bunkovej kultúre, zatiaľ čo EC50 GS-441524 je asi 1,0 uM/ul [18]. Oba majú podobnú perorálnu absorpciu okolo 40 – 50 %, takže účinná subkutánna (SC) dávka pre Molnupiravir by bola približne polovica odporúčanej 4 mg/kg SC každých 24 hodín začiatočnej dávky pre GS441524 [14] alebo 2 mg/kg SC q24h. Dávka per-os (PO) by sa zdvojnásobila, aby sa zohľadnila menej účinná perorálna absorpcia na dávku 4 mg/kg PO každých 24 hodín. Odhadovanú počiatočnú perorálnu dávku molnupiraviru pre mačky s FIP je možné tiež vypočítať z dostupných údajov o liečbe Covid-19. Pacientom liečeným na Covid-19 sa podáva 200 mg molnupiraviru PO q12h počas 5 dní. Táto dávka bola evidentne vypočítaná z farmakokinetickej štúdie vykonanej na ľuďoch a ak priemerný človek váži 60-80 kg (70 kg), účinná inhibičná dávka je ~ 3,0 mg/kg PO q12h. Mačka má bazálny metabolický pomer 1,5 -krát vyšší ako človek a za predpokladu rovnakej orálnej absorpcie u ľudí aj mačiek by minimálna dávka pre mačky podľa tohto výpočtu bola 4,5 mg/kg PO každých 12 hodín. Za predpokladu, že molnupiravir prechádza cez hematookulárnu bariéru a hematoencefalickú bariéru rovnako efektívne ako GS-441524 [3,18], dávka by sa zvýšila ~1,5 a ~2,0-krát, aby sa umožnila adekvátna penetrácia do komorovej vody a mozgovomiechový mok pre mačky s okulárnou (~ 8 mg/kg PO, q12 h) alebo neurologickou FIP (~ 10 mg/kg PO, q12h). Liečba bude trvať 10-12 týždňov a monitorovanie odpovede na liečbu bude identické s GS-441524 [14, 20]. Tieto odporúčania sú založené na predpokladoch zo zverejnených informácií a budú potrebné ďalšie skúsenosti s Molnupiravirom v tejto oblasti. Nie je pravdepodobné, že Molnupiravir bude na liečbu FIP bezpečnejší a účinnejší ako GS-441524, ale tretie antivírusové liečivo môže byť mimoriadne užitočné pri prevencii rezistencie voči GS-441524 (ako kokteil antivirotík s rôznymi profilmi rezistencie) alebo pri liečbe mačiek, ktoré už nereagujú dobre na GS-441524. Veľkou neznámou je, či bude Molnupiravir bez dlhodobých toxických účinkov, pretože účinná látka N4-hydroxycytidín je mimoriadne účinný mutagén [21] a doba liečby FIP je oveľa dlhšia ako pri Covid-19 a existuje pravdepodobnosť väčších vedľajších účinkov.

Je škoda, že EIDD-1931 (N4-hydroxycytidín), účinnej látke Molnupiraviru, nebola pri liečbe mačiek FIP venovaná väčšia pozornosť ako Molnupiraviru. EIDD-1931 má 4-krát väčší inhibičný účinok proti vírusu ako Molnupiravir (EC50 0,09 oproti 0,4 μM) a percento cytotoxicity je o niečo nižšie (2,3% vs. 3,8% pri 100 μM) [15]. N4-hydroxycytidín je tiež účinne absorbovaný orálnou cestou [3], čo bolo pri vývoji EIDD-2801 (Molnupiravir) bagatelizované. Tento scenár je identický so scenárom GS-441524 vs. Remdesivir, pričom pre komercializáciu bol vybraný druhý z nich – Remdesivir, aj keď súčasný výskum naznačuje, že najlepším kandidátom by bol GS-441524[17].

Referencie

  1. Painter GR, Natchus MG, Cohen O, Holman W, Painter WP. Developing a direct acting, orally available antiviral agent in a pandemic: the evolution of molnupiravir as a potential treatment for COVID-19 [published online ahead of print, 2021 Jun 18]. Curr Opin Virol. 2021;50:17-22. doi:10.1016/j.coviro.2021.06.003
  2. Halford B. An emerging antiviral takes aim at COVID-19. c&en topics. 2020. https://cen.acs.org/pharmaceuticals/drug-development/emerging-antiviral-takes-aim-COVID19/98/web/2020/05.
  3. Painter GR, Richard A. Bowend RA, Bluemling GR et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal Venezuelan equine encephalitis virus infection. Antiviral Res. 2019, 171:104597
  4. Costantini, V.P., Whitaker, T., Barclay, L., Lee, D., McBrayer, T.R., Schinazi, R.F., Vinje,J., 2012. Antiviral activity of nucleoside analogues against norovirus. Antivir. Ther.17 (6), 981–991. https://doi.org/10.3851/imp2229.
  5. Ehteshami, M., Tao, S., Zandi, K., Hsiao, H.M., Jiang, Y., Hammond, E., Amblard, F., Russell, O.O., Merits, A., Schinazi, R.F., 2017. Characterization of beta-d-N(4)-hydroxycytidine as a novel inhibitor of chikungunya virus. Antimicrob. Agents Chemother. 61 (4) e02395-02316. https://doi.org/10.1128/aac.02395-16.
  6. Stuyver, L.J., Whitaker, T., McBrayer, T.R., Hernandez-Santiago, B.I., Lostia, S., Tharnish, P.M., Ramesh, M., Chu, C.K., Jordan, R., Shi, J., Rachakonda, S., Watanabe, K.A., Otto, M.J., Schinazi, R.F., 2003. Ribonucleoside analogue that blocks replication of bovine viral diarrhea and hepatitis C viruses in culture. Antimicrob. Agents Chemother. 47 (1), 244–254.
  7. Yoon J., Toots M, Lee S, Lee ME, et al., 2018. Orally efficacious broad-spectrum ribonucleoside analog inhibitor of influenza and respiratory syncytial viruses. Antimicrob. Agents Chemother. 2018, 62(8): https://doi.org/10.1128/aac.00766-18
  8. Urakova N, Kuznetsova V, Crossman DK, Sokratian A, Guthrie DB, Kolykhalov AA, et al. β-d-N4Hydroxycytidine is a potent anti-alphavirus compound that induces a high level of mutations in the viral genome. J Virol. 2018, 92:e01965–e01917. doi: 10.1128/JVI.01965-17.
  9. Pyrc, K., Bosch, B.J., Berkhout, B., Jebbink, M.F., Dijkman, R., Rottier, P., van der Hoek,L., 2006. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother. 2006, 50(6):2000–2008. https://doi.org/10.1128/aac.01598-05.
  10. Whitfill T. A likely new treatment for Covid-19 was made possible by government-funded innovation. STAT+. https://www.statnews.com/2021/10/05/government-funding-backed-molnupiravir-possible-newcovid-19-treatment/.
  11. Painter, G.R., Guthrie, D.B., Bluemling, G., Natchus, M.G. N4-Hydroxycytidine and Derivatives and Antiviral Uses Related Thereto. US Patent Application, 2016, 2016/106050 A1.
  12. Merck news release, October 1, 2021. https://www.merck.com/news/merck-and-ridgebacksinvestigational-oral-antiviral-molnupiravir-reduced-the-risk-of-hospitalization-or-death-by-approximately-50percent-compared-to-placebo-for-patients-with-mild-or-moderat/.
  13. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018, 20(4):378-392.
  14. Pedersen NC, Perron M, Bannasch M, Montgomery E, Murakami E, Liepnieks M, Liu H. efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019, 21(4):271-281.
  15. Cook SE, Vogel H and D. Castillo D. A rational approach to identifying effective combined anticoronaviral therapies against feline coronavirus. 2021. bioRxiv 2020.07.09.195016; doi: https://doi.org/10.1101/2020.07.09.195016
  16. Zhang S. A Much-Hyped COVID-19 Drug Is Almost Identical to a Black-Market Cat Cure. May 8, 2020 Shutterstock / The Atlantic, https://www.theatlantic.com/science/archive/2020/05/remdesivir-cats/611341/.
  17. Yan VC, Muller FL. Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment. ACS Medicinal Chemistry Letters. 2020, 11 (7):1361-1366 DOI: 10.1021/acsmedchemlett.0c00316
  18. Murphy BG, Perron M, Murakami E, Bauer K, Park Y, Eckstrand C, Liepnieks M, Pedersen NC. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies.Vet Microbiol. 2018, 219:226-233.
  19. Common Dreams. Public citizen. Press release, August 4, 2020, https://www.commondreams.org/newswire/2020/08/04/public-citizen-scientists-gilead-and-federalscientists-have-neglected
  20. Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of Covid-Front. Vet. Sci. 2020, 23: https://doi.org/10.3389/fvets.2020.584673
  21. Zhou S, Hill CS, Sarkar S, et al., β-d-N4-hydroxycytidine Inhibits SARS-CoV-2 through lethal mutagenesis but Is also mutagenic to mammalian cells. J Infect Dis. 2021, 224:415–419, https://doi.org/10.1093/infdis/jiab247.
  22. Cohen J, Piller C. Emails offer look into whistleblower charges of cronyism behind potential COVID-19 drug. ScienceInsider-Health. 2020, https://www.science.org/news/2020/05/emails-offer-look-whistleblowercharges-cronyism-behind-potential-covid-19-drug.
  23. Agostini ML, Andres EL, Sims AC, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio 2018; 9. DOI:
    10.1128/mBio.00221-18.
  24. Szemiel AM, Merits A, Orton RJ, In vitro selection of Remdesivir resistance suggests evolutionary predictability of SARS-CoV-2. Plos Path, 2021,https://doi.org/10.1371/journal.ppat.1009929 .
  25. Martinot M, Jary A, Fafi-Kremer S, et al., Emerging RNA-Dependent RNA Polymerase Mutation in a Remdesivir-Treated B-cell Immunodeficient Patient With Protracted Coronavirus Disease 2019, Clinical Infectious Diseases, 2020;, ciaa1474, https://doi.org/10.1093/cid/ciaa1474
  26. FIP Warriors CZ/SK – EIDD-2801 (Molnupiravir) https://www.fipwarriors.eu/en/eidd-2801-molnupiravir/
Prečítať “Dlhá história Beta-d-N4-hydroxycytidínu a jeho moderná aplikácia na liečbu Covid-19 u ľudí a FIP u mačiek.”

ZHRNUTIE LIEČBY FIP POMOCOU GS-441524 (Dr. Pedersen)

Pôvodný článok: SUMMARY OF GS-441524 TREATMENT FOR FIP
Niels C. Pedersen, DVM PhD, emeritný profesor,
Stredisko pre zdravie spoločenských zvierat, škola veterinárneho lekárstva, UC Davis

Na monitorovanie liečby používame rovnaké kritériá, aké sú opísané v klinickej štúdii publikovanej v JFMS (Journal of Feline Medicine and Surgery). Majitelia by mali v denných alebo týždenných intervaloch sledovať teplotu, váhu, aktivitu, chuť do jedla a klinické príznaky pôvodného ochorenia. Krvné testy – hematológia a biochémia (vrátane hodnôt sérových bielkovín – celkový proteín, albumín, globulín, pomer A:G) na začiatku liečby a potom každé 4 týždne. Je vždy užitočné, keď sa tieto hodnoty spolu s hmotnosťou aktualizujú vo forme grafu. Cieľom je mať zdravú, čulú a aktívnu mačku na konci 12 týždňov liečby a s normálnymi hodnotami krvných testov, najmä pokiaľ ide o pomery hematokritu, celkového proteínu, globulínu, albumínu a A: G. Výrazné zvýšenie hmotnosti je tiež dobrým znamením, a niektoré mladé alebo obzvlášť vychudnuté mačky môžu počas liečby viac ako zdvojnásobiť svoju váhu. Jedná sa samozrejme o idealizovanú liečbu, a treba počítať s tým, že bude pravdepodobne potrebné upraviť dávkovanie smerom nahor, ak je odpoveď pomalá, alebo ak sa počas liečby prejavia komplikácie, ako napríklad okulárne alebo neurologické postihnutie.

Pre stabilizáciu mačiek, ktoré sú kriticky choré v čase diagnózy, alebo počas prvých dní liečby GS-441524 (GS), môže byť potrebná podporná (symptomatická) starostlivosť. Abdominálny výpotok by sa nemal odsávať, pokiaľ neutláča hrudník a nezasahuje do dýchania, pretože sa rýchlo nahradí na úkor zvyšku tela. Hrudné výpotky sú však zvyčajne spojené s rôznym stupňom dyspnoe a mali by sa odstrániť. Hrudné výpotky sa vracajú oveľa pomalšie. Symptomatická starostlivosť tiež často zahŕňa tekutiny a elektrolyty na potlačenie dehydratácie, antibiotiká pri podozrení na sekundárnu bakteriálnu infekciu a protizápalové lieky (zvyčajne systémové kortikosteroidy) a zriedkavo krvnú transfúziu. U niektorých mačiek s postihnutím oka môžu byť potrebné aj lokálne lieky na potlačenie závažného zápalu a zvýšeného vnútroočného tlaku (glaukóm).

Kortikosteroidy, ako je prednizolón, by sa mali používať len počas prvých dní liečby GS a mali by sa vysadiť, keď dôjde k rýchlemu zlepšeniu zdravotného stavu. Dlhodobé používanie kortikosteroidov s GS sa dôrazne neodporúča, pretože môže maskovať príznaky zlepšenia spôsobené GS, najmä u mačiek s neurologickou FIP, nemá žiadnu liečebnú moc a môže interferovať s vývojom ochrannej imunitnej odpovede na vírus FIP. Je možné, že táto imunitná odpoveď hrá hlavnú úlohu v konečnom vyliečení. Ak sú mačky na chronickej liečbe steroidmi, nie je potrebné znižovať dávku, pretože neexistuje dôkaz, že by sa u mačiek vyskytla závažná atrofia nadobličiek, ku ktorej dochádza u ľudí pri dlhodobej liečbe steroidmi. Mnohí majitelia, poradcovia pre liečbu GS a veterinári budú používať rôzne propagované doplnky na zlepšenie zdravia pečene, obličiek alebo imunitného systému, ako aj vitamíny ako B12. Tieto látky nemajú preukázanú účinnosť a považujem ich za vyhodené peniaze.

Liečba injekčnou formou GS, ktorá je najbežnejšia, sa môže tiež skomplikovať vredmi/léziami v mieste vpichu. Liečba je ťažká pre majiteľov aj pre mačky, pretože injekcie môžu byť bolestivé. U niektorých mačiek, najmä u tých s neurologickým postihnutím, nastáva problém s vývojom čiastočnej liekovej rezistencie, ktorá si vyžaduje zvyšovanie dávky. Reakcia na liečbu je zvyčajne do 24-72 hodín a väčšina mačiek sa vráti do normálu, alebo sa blíži k normálu v priebehu 2-4 týždňov, čo je dobré znamenie. Predpokladáme, že miera úspešnosti liečby FIP s GS-441424 je viac ako 80%, s ohľadom na zlyhanie liečby v dôsledku nesprávnej diagnózy FIP, neprimerané dávkovanie, komplikácie zdravotného stavu a rezistenciu na lieky. Mladé mačky sa liečia ľahšie a majú vyššiu mieru vyliečenia, ako mačky staršie 7 rokov. Mačky s vlhkou alebo suchou FIP, s nekomplikovanými neurologickými alebo očnými symptómami sa liečia ľahšie, ako mačky s neurologickou FIP.

Počiatočná dávka pre mačky s vlhkou alebo suchou FIP bez známok očného alebo neurologického ochorenia, je 4-6 mg/kg denne počas 12 týždňov, pričom u mladších mačiek a vlhkej FIP je tendencia smerovať k dolnej hranici a suché prípady k hornej hranici. Mačky s očnými léziami a bez neurologických príznakov začínajú s dávkou 8 mg/kg denne počas 12 týždňov. Mačky s neurologickými príznakmi začínajú na dennej dávke 10 mg/kg po dobu 12 týždňov. Ak sa u mačiek s vlhkou alebo suchou FIP na začiatku objavia očné alebo neurologické príznaky, prechádzajú na príslušné očné alebo neurologické dávky. Existuje orálna forma GS dostupná najmenej z dvoch zdrojov z Číny (Spark, Mutian), ale nepoužívam ju, takže nepoznám porovnateľné dávkovanie. Neodporúčam to však, pokiaľ injekčná dávka stúpne nad 10 mg/kg denne, pretože účinnosť orálnej absorpcie pri týchto vysokých dávkach klesá.

Odporúčam dávkovanie upraviť týždennou kontrolou hmotnosti. Prírastok hmotnosti môže byť u mnohých z týchto mačiek obrovský, a to buď preto, že sú na začiatku tak vychudnuté, alebo rastú, prípadne oboje. Ak dôjde k úbytku hmotnosti na začiatku liečby, zostávam na pôvodnom dávkovaní a neznižujem ho. Neschopnosť naberať váhu počas liečby sa považuje za zlé znamenie. Nezvyšujeme dávku, pokiaľ na to nie sú závažné dôvody, ako napríklad zhoršenie stavu, alebo sa nezlepšujú výsledky krvných testov, pomalé zlepšenie, slabá úroveň aktivity, obnovenie pôvodných klinických príznakov, alebo zmena formy ochorenia zahrňujúca aj očné alebo neurologické príznaky. Tu prichádza na rad zdravý úsudok, pretože sa nechcete zaseknúť na jednej hodnote krvi, ktorá nie je celkom bežná, ale nemá vplyv na celkový zdravotný stav mačky. Napríklad globulín môže byť stále trochu vysoký, ale ďalšie dôležité hodnoty krvných testov a zdravotný stav sú veľmi dobré. Ak existuje dobrý dôvod na zvýšenie dávky, malo by to byť vždy od +2 do +5 mg/kg denne a minimálne po dobu 4 týždňov. Ak tieto 4 týždne spôsobia predĺženie 12-týždňového trvania liečby, je to kvôli tejto úprave dávky. Dá sa očakávať pozitívna reakcia na akékoľvek zvýšenie dávky, a pokiaľ nevidíte zlepšenie, znamená to, že dávka stále nie je dostatočne vysoká, objavuje sa rezistencia na lieky, máte zlú značku GS, mačka nemá FIP , alebo existujú iné choroby, ktoré liečbu ovplyvňujú.

Jedným z najťažších rozhodnutí je určiť, kedy ukončiť liečbu. Hoci niektoré mačky, často mladšie s vlhkou FIP, môžu byť vyliečené už za 8 týždňov, a možno aj skôr, zvyčajná doba trvania liečby je 12 týždňov. Niektoré mačky môžu dokonca vyžadovať úpravu dávkovania a dlhšie obdobia liečby. Kritické krvné hodnoty, ako je hematokrit, hladina celkového proteínu, albumínu a globulínu a celkový počet bielych krviniek a absolútny počet lymfocytov sa zvyčajne u liečených mačiek normalizujú po 8-10 týždňoch, kedy často dochádza k neočakávanému zvýšeniu úrovne aktivity. Predpokladá sa, ale nie sú na to ešte dôkazy, že po 8-10 týždňov sa u mačky objaví vlastná imunita voči infekcii. Toto je situácia, ktorá sa vyskytuje pri liečbe hepatitídy C u ľudí, čo je tiež chronická infekcia spôsobená RNA vírusom, ktorá si často vyžaduje až 12 alebo viac týždňov antivírusovej liečby.

Nanešťastie neexistuje jednoduchý test, ktorý by určil, kedy došlo k vyliečeniu, a strach z relapsu často vedie majiteľov, liečebných poradcov a veterinárov k predĺženiu liečby nad hranicu 84 dní. Strach z relapsov tiež spôsobí, že ľudia zapojení do rozhodovacieho procesu budú príliš opatrní, pokiaľ ide o jednu hodnotu krvi, ktorá je trochu abnormálna (napr. mierne vysoký globulín alebo mierne nízky pomer A:G), alebo výsledky konečného ultrazvuku naznačujúce podozrivo zväčšené lymfatické uzliny, malé množstvo tekutiny v brušnej dutine, alebo nejasné nepravidelnosti v orgánoch, ako sú obličky, slezina, pankreas alebo črevá. Je potrebné pamätať na to, že do normálneho rozsahu krvných hodnôt síce spadá väčšina zvierat, ale inak sú to krivky v tvare zvona, a že sa nájde pár výnimočných pacientov, ktorí budú mať hodnoty na okraji týchto kriviek. Diagnóza podľa ultrazvuku musí vziať do úvahy stupeň patológie, ktorá sa môže vyskytnúť v brušnej dutine postihnutou FIP, ako napríklad jazvy alebo niektoré následky vo forme zmien orgánov u úspešne liečených mačiek. V situáciách, keď také otázky vyvstávajú, je lepšie pozrieť sa podrobnejšie na celkový obraz, a nielen na jednu malú časť. Najdôležitejším výsledkom liečby je návrat k normálnemu zdraviu, ktorý má dve zložky – vonkajšie príznaky zdravia a vnútorné príznaky zdravia. Medzi vonkajšie príznaky zdravia patrí návrat k normálnej úrovni aktivity, chuť k jedlu, primerané zvýšenie hmotnosti alebo rast a kvalita srsti. Posledne menované sú pre mačku často jednými z najlepších meradiel zdravia. Vnútorné príznaky zdravia sa prejavujú návratom určitých kritických hodnôt k normálu na základe periodického sledovania úplného krvného obrazu a biochémie. Najdôležitejšie hodnoty v krvnom obraze sú hematokrit a relatívny a absolútny celkový počet bielych krviniek, neutrofilov a lymfocytov. Najdôležitejšie hodnoty v biochémii (alebo sérovej elektroforéze) sú hladiny celkového proteínu, globulínu, albumínu a pomer A: G. Bilirubín je u mačiek často zvýšený pri efúznej FIP a môže byť užitočný pri monitorovaní závažnosti a trvania zápalu. V hematologických a biochemických paneloch existuje veľa ďalších hodnôt a nie je nič neobvyklé, že niektoré z nich sú o niečo vyššie alebo nižšie ako normálne, a je lepšie tieto hodnoty ignorovať, pokiaľ nie sú výrazne zvýšené a nie sú spojené s klinickými príznakmi – napríklad vysoká urea a kreatinín, ktoré sú tiež spojené so zvýšenou spotrebou vody, nadmerným močením a abnormalitami v analýze moči. Počet krvných doštičiek strojovo je u mačiek notoricky nízky v dôsledku traumy z odberu krvi a zhlukovania krvných doštičiek, a mal by sa vždy overiť manuálnym vyšetrením krvných náterov. Konečné rozhodnutie o ukončení alebo predĺžení liečby, keď sa stretnete s nejasnými pochybnosťami o rôznych testovacích postupoch, by malo vždy vychádzať z vonkajších prejavov zdravia viac, ako z ktoréhokoľvek jednotlivého výsledku testu.

Rôzne FIP skupiny prišli s rôznymi modifikáciami liečby FIP. Niektoré skupiny budú od začiatku liečiť mimoriadne vysokou dávkou GS namiesto toho, aby dávku zvyšovali iba vtedy, keď je to indikované, alebo v posledných dvoch týždňov navýšia dávkovanie GS, alebo o ďalšie dva týždne pretiahnu liečbu s vyššou dávkou GS v nádeji, že môžu skrátiť dobu trvania liečby, či znížiť pravdepodobnosť relapsu. Niektorí obhajujú použitie interferónu omega alebo nešpecifických imunostimulantov na ďalšiu stimuláciu imunitného systému, a niektorí používajú rôzne ďalšie modifikácie. Neexistuje žiadny dôkaz, že modifikácia liečby extra vysokou dávkou zlepší rýchlosť vyliečenia. Podobne interferón omega a nešpecifické imunostimulanty nemajú žiadne preukázané priaznivé účinky pri FIP, keď sa podávajú ako jediná liečba alebo ako doplnky ku GS. Objavuje sa aj prax pridávania ďalšieho antivírusového lieku, inhibítora vírusovej proteázy GC376, k liečbe GS u mačiek, u ktorých sa vyvíja rezistencia na GS, ale táto možnosť ešte vyžaduje výskum. Nakoniec je bežné, že majitelia, liečebné skupiny a veterinárni lekári pridávajú mnohé doplnky, toniká alebo injekcie (napr. B12) na zvýšenie hladín v krvi alebo na prevenciu ochorenia pečene alebo obličiek. Takéto doplnky sú zriedka potrebné u mačiek s čistou chorobou FIP.

Relapsy FIP počas 12-týždňového pozorovacieho obdobia po liečbe sa vyskytujú, a neexistuje jednoduchý krvný test na predpoveď, či došlo k vyliečeniu, alebo je možný relaps. Relapsy zvyčajne zahŕňajú infekcie, ktoré prenikli do centrálneho nervového systému (mozog, chrbtica, oči) počas liečby vlhkej alebo suchej FIP, ktorá nebola sprevádzaná neurologickými alebo okulárnymi príznakmi. Dávka GS-441524 používaná na liečbu týchto foriem FIP je často nedostatočná na účinné prekonanie hematoencefalickej alebo hematookulárnej beriéry. Hematoencefalická bariéra je nepriestupnejšia ako hematookulárna bariéra, čo vysvetľuje, prečo sa lézie očí dajú liečiť ľahšie ako infekcie mozgu alebo chrbtice. Relapsy, ktoré sa vyskytnú v období po liečbe, a ktoré zahŕňajú oči, mozog alebo chrbticu sa zvyčajne liečia najmenej 8 týždňov pri začiatočnej dennej dávke najmenej o 5 mg / kg vyššej, ako je dávka použitá počas primárnej liečby (napr. 10, 12, 15 mg/kg denne). Odporúča sa nepoužívať perorálne formy GS, ak dávka presahuje 10 mg/kg injekčnej formy denne, pretože pri vysokých perorálnych koncentráciách je znížená účinnosť absorpcie v čreve. U mačiek, ktoré sa nedajú vyliečiť z infekcie pri dávkach až 15 mg/kg denne, sa pravdepodobne vyvinula rôzna miera rezistenice voči GS-441524. Čiastočná rezistencia môže umožniť udržanie príznakov ochorenia pod kontrolou, ale nie vyliečenie, zatiaľ čo celková rezistencia sa prejavuje rôznou závažnosťou klinických príznakov počas liečby.

V čase diagnostiky môže existovať rezistencia na GS-441524, čo je však neobvyklé. Skôr sa objavuje počas liečby, a na začiatku je často čiastočná a vedie k potrebe vyššieho dávkovania. U niektorých mačiek sa môže stať úplnou. Rezistencia je najväčším problémom u mačiek s neurologickým ochorením, najmä u tých, ktoré majú neurologické príznaky, alebo sa u nich vyvine mozgová infekcia počas liečby, alebo počas relapsu po tom, čo sa liečba javila ako úspešná. Mnoho mačiek s čiastočnou rezistenciou na lieky môže byť liečené na príznaky choroby, ale relaps sa objaví hneď po ukončení liečby. Mačky sa „liečili“ na FIP už viac ako rok bez vyliečenia, ale nakoniec sa rezistencia zhoršuje, alebo majiteľovi dôjdu peniaze.

Liečba GS-441524 vykazuje žiadne, alebo len minimálne systémové vedľajšie účinky. Môže spôsobiť mierne poškodenie obličiek u niektorých mačiek, ale nemala by viesť k zlyhaniu obličiek. Systémové liekové reakcie typu vaskulitídy sa pozorovali u niekoľkých mačiek a možno ich zameniť s reakciami v mieste vpichu. Tieto liekové reakcie sú však v miestach, kde sa nepodávajú injekcie, a často sa stratia samé, alebo dobre reagujú na krátkodobú nízku dávku steroidov. Hlavným vedľajším účinkom liečby GS je bolesť v miestach vpichu, ktorá sa líši od mačky k mačke a podľa schopností osoby, ktorá injekcie aplikuje (zvyčajne majiteľ). Vredy/lézie v mieste vpichu sú u niektorých mačiek problém, a zvyčajne k nim dôjde, keď sa miesto vpichu nestrieda (nezdržujte sa medzi ramenami) a nepodáva sa do svalových a nervových vrstiev pod podkožím. Odporúčam zvoliť miesta začínajúce jeden palec za lopatkami, dole od chrbta po 1 až 2 palce pred chvostovou časťou a jednu tretinu až polovicu cesty dole k hrudníku a bruchu. Mnoho ľudí používa gabapentín pred injekciami na zmiernenie bolesti. Vredy v mieste vpichu sa zbavia okolitých chlpov a jemne sa čistia 4 alebo viackrát denne sterilnými vatovými tyčinkami namočenými v zriedenom roztoku peroxidu vodíka pre domácnosť v pomere 1:5. Zvyčajne nevyžadujú žiadne zložitejšie ošetrenie a vyliečia sa asi za 2 týždne.

Dúfame, že čoskoro bude k dispozícii legálna forma GS-441524. Liečivo s názvom Remdesivir je najväčšou súčasnou nádejou, pretože Remdesivir sa pri intravenóznom podaní ľuďom, myšiam, primátom a mačkám okamžite rozkladá na GS. Remdesivir dostal plné schválenie americkej FDA, a podobné schválenie bude pravdepodobne nasledovať aj v ďalších krajinách. Ak to tak bude, môže ho predpisovať akýkoľvek humánny lekár s licenciou a veterinári. Použitie Remdesiviru v USA sa však stále obmedzuje na konkrétnu podskupinu pacientov s Covid-19 a len za kontrolovaných podmienok a s pokračujúcim zberom údajov. Kým nebudú zrušené všetky obmedzenia, nebude ľahko dostupný ani pre ľudské použitie. Nemám skúsenosti s liečbou mačiek Remdesivirom namiesto GS-441524. Skupiny v Austrálii a niektorých ázijských krajinách však začínajú Remdesivir používať a hlásia rovnaké výsledky ako s GS-441524. Dávkovanie Remdesiviru na molárnom základe je teoreticky rovnaké ako GS-441524. Voľná ​​báza GS-441524 má molekulovú hmotnosť 291,3 g/M, zatiaľ čo Remdesivir má 602,6 g/M. Preto na získanie 1 mg GS-441524 by bolo potrebné dvakrát viac Remdesiviru (602,6/291,3=2,07). Rozpúšťadlo pre Remdesivir sa výrazne líši od rozpúšťadla používaného pre GS-441524 a je určené na IV použitie u ľudí. Nie je známe, ako sa bude zriedený Remdesivir správať pri subkutánnej aplikácii počas 12 alebo viac týždňov dlhej liečbe. U ľudí sa pri Remdesivire pozorovali mierne príznaky hepatotoxicity a nefrotoxicity. GS-441524 spôsobuje miernu a neprogresívnu renálnu toxicitu u mačiek, ale bez zjavnej pečeňovej toxicity. Nie je isté, či renálna toxicita pozorovaná u ľudí, ktorým bol podávaný Remdesivir, je spôsobená jeho aktívnou zložkou (t.j. GS-441524) alebo chemickými prísadami určenými na zvýšenie antivírusovej aktivity. O schválenie GC376 pre mačky (a ľudí) sa snaží spoločnosť Anivive, ale bude to trvať ešte dva alebo viac rokov. GC376 je inhibítor vírusovej proteázy a pôsobí odlišne ako GS-441524, ktorý inhibuje rané štádium replikácie vírusovej RNA. Preto je nepravdepodobné, že bude mať významný synergický vírusový inhibičný účinok, bude ale oveľa dôležitejší pri inhibícii liekovej rezistencie, keď sa použije v kombinovanej terapii (ako napríklad kombinovaná antivírusová terapia pre HIV/AIDS).

Prečítať “ZHRNUTIE LIEČBY FIP POMOCOU GS-441524 (Dr. Pedersen)”

Liečba FIP perorálnymi formami GS-441524

Niels C. Pedersen, Nicole Jacque,
3.10.2021
Pôvodný článok: FIP treatment with oral formulations of GS-441524

Úvod

Počiatočné testovanie GS-441524 v teréne na liečbu FIP zahŕňalo subkutánnu aplikáciu. Tento spôsob podávania bol založený na predchádzajúcich farmakokinetických (PK) štúdiách vykonaných na laboratórnych mačkách. Intravenózny a subkutánny spôsob podávania injekcie priniesol podobné vysoké hladiny v krvi, ktoré sa udržiavali v koncentráciách inhibujúcich vírusy viac ako 24 hodín. Zistilo sa, že perorálne podanie vedie k hladinám v krvi, ktoré dosahujú vrchol po 2 hodinách, ale dosahujú len približne 40 % vrcholových hladín subkutánnej a intravenóznej aplikácie (Pedersen NC, nepublikované údaje, 2018). Psy, ktoré majú dlhší črevný trakt vyvinutý pre všežravcov, však môžu perorálnou cestou absorbovať až 85 % GS441524 [1, 5]. Psy sa v štúdiách perorálnej absorpcie často používajú ako náhrada za ľudí, takže perorálna absorpcia u ľudí je tiež pravdepodobne vyššia ako u mačiek. 

Čínski dodávatelia lieku GS-441524 skopírovali riedidlo, koncentráciu lieku a spôsob subkutánneho podania, ktoré boli použité v pôvodnej publikovanej terénnej štúdii. Prvou spoločnosťou, ktorá ponúkla GS441524 na neschválenom trhu, bola spoločnosť Mutian. Spoločnosť Mutian bola tiež prvá, ktorá skúmala a ponúkala perorálnu formu lieku. Výskumníci spoločnosti Mutian zistili, že účinné hladiny lieku GS-441524 v krvi možno dosiahnuť len zvýšením koncentrácie lieku v ich perorálnych prípravkoch. Ostatné spoločnosti (napr. Aura, Lucky) následne ponúkli svoje vlastné verzie perorálne podávaného lieku GS-441524. Od septembra 2021 však spoločnosť Mutian na svojej webovej stránke už neuvádza perorálne prípravky GS (v akejkoľvek forme). V súčasnosti sú v USA najpoužívanejšími perorálnymi formami GS441524 prípravky Aura, Lucky a Capella.

Súčasné značky kapsúl/tablet sa predávajú ako výživové doplnky a na ich etiketách je uvedených niekoľko bežných neškodných chemických zlúčenín a liečivých bylín, pričom GS-441524 nie je medzi zložkami vôbec uvedený. Pravdepodobne sa tak deje preto, aby sa výrobcovia vyhli colným kontrolám. Bez ohľadu na zoznam zložiek je účinnou zložkou všetkých perorálnych výrobkov GS-441524. Presnú koncentráciu GS-441524 v rôznych perorálnych prípravkoch predajcovia utajujú, ale je zjavne vyššia (1,5 – 2-násobok?), ako by bolo potrebné, keby sa liek podával podkožne. 

Spočiatku sme sa k orálnej ceste stavali kriticky z dvoch dôvodov. Po prvé, orálne formy boli viac plytvajúce tým, čo bolo spočiatku vzácnym a drahým zdrojom. Po druhé, publikovaný výskum perorálnej absorpcie nukleozidov (GS-441524 je nukleozid) dokumentuje limitnú koncentráciu alebo strop pre perorálnu absorpciu [2-5]. Výsledky s EIDD-1931, príbuzným nukleozidom, ukázali pokles biologickej dostupnosti z 56 na 36 % so zvyšovaním perorálnej dávky [6]. Toto obmedzenie by teoreticky sťažilo dosiahnutie extrémne vysokých koncentrácií v krvi potrebných na liečbu niektorých foriem FIP (napr. neurologických) a/alebo na prekonanie problému získanej rezistencie na lieky. Perorálnu biologickú dostupnosť môžu výrazne znížiť aj niektoré látky v potrave a majitelia mačiek sú známi tým, že používajú veľké množstvo doplnkov stravy, z ktorých niektoré by mohli negatívne ovplyvniť liečbu. 

Zdá sa, že čoraz viac majiteľov a veterinárnych lekárov využíva perorálnu liečbu GS-441524 na časť alebo celú liečbu. Náklady na perorálne prípravky GS-441524 sa za posledné dva roky neustále znižujú a ich kvalita sa zvyšuje. Problém reakcií v mieste vpichu spolu s účinnejšími perorálnymi prípravkami GS-441524 stimulovali perorálnu liečbu a čoraz viac mačiek sa lieči perorálnymi liekmi buď z časti, alebo úplne. 

Zloženie a označenie

Väčšina zavedených perorálnych prípravkov sú malé tablety, ktoré sa podávajú ľahšie ako väčšie kapsuly. Novšie prípravky, ako je Sweeper, ponúkajú rozpustnú filmovú formu GS-441524, aby sa predišlo ťažkostiam pri “pilulkovaní” u niektorých mačiek. 

Skutočné množstvo GS-441524 v tablete/kapsule a predajcom odporúčané dávkovanie perorálnych liekov sa značne líši podľa formy FIP, predajcu a skúseností majiteľa a skupín liečiacich FIP. Preto sa skutočné množstvo (mg) GS-441524 v tablete alebo kapsule zvyčajne neuvádza.   Namiesto skutočného množstva GS-441524 v tablete alebo kapsule sa dávkovanie predajcu často zakladá na počte tabliet potrebných na kg hmotnosti, napr. 1 tableta/kg per os (P0) každých (q)24 hodín (h) pre mačky s vlhkou alebo suchou FIP a bez okulárneho alebo neurologického postihnutia.  Množstvo GS-41524 v jednej takejto tablete podanej po 24 hodinách zodpovedá dávke 4-6 mg/kg SC po 24 hodinách, ale skutočné množstvo GS v jednej tablete môže byť dvojnásobné ako v 1 ml injekčného GS, aby sa kompenzovala znížená biologická dostupnosť pri podávaní perorálnou cestou. 

Okrem toho má jeden dodávateľ (Aura/Spark) tablety označené na podávanie q12h a iné na dávkovanie q24h. 1 tableta/kg po 12 hodinách obsahuje polovičné množstvo GS-441524 (pravdepodobne 4 – 6 mg) ako 1 tableta/kg po 24 hodinách (pravdepodobne 10 mg) – dôvodom je, že dávkovanie po 12 hodinách zabráni poklesu koncentrácie v krvi pred 24 hodinami. Účinné hladiny v krvi po jednorazovej dávke PO alebo SC sa však v oboch prípadoch udržiavajú 24 hodín alebo dlhšie. Pri dávkach zodpovedajúcich 10 – 15 mg/kg SC q24h môže byť ďalšou výhodou dávkovanie q8h alebo q12h oproti q24h, pretože môže pomôcť obísť absorpčný strop.  Preto sa u mačiek s dávkami zodpovedajúcimi 10 – 15 mg/kg SC q24h alebo vyššími často používa rozdelenie dávok po dávkovaní na q8h alebo q12h.

Dávkovanie

Odporúčané začiatočné dávkovanie GS-441524 pre mačky s mokrou alebo suchou FIP a bez neurologických alebo okulárnych príznakov je 4-6 mg/kg SC q24h. Injekčná dávka pre mačky s okulárnym ochorením je 8 mg/kg SC q24h a pre mačky s neurologickým ochorením 10 mg/kg SC q24h.  Ak sa u mačky začne liečba vlhkej FIP a potom sa vyvinie ochorenie očí, dávka sa okamžite zvýši na 8 mg/kg SC q24h a ak sa vyvinú neurologické príznaky, zvýši sa na 10 mg/kg SC q24h. Neúspešná liečba FIP pri dávkach vyšších ako 15 mg/kg SC q24h svedčí o rezistencii na liek. Dávky PO zodpovedajúce 4-6, 8 a 10 mg/kg SC q24h sú 10, 16 a 20 mg/kg PO q24h. (Poznámka: niektoré perorálne prípravky sú označené ako ekvivalenty SC, ale v skutočnosti obsahujú až dvojnásobok uvádzaných mg GS) Odporúčaná dĺžka liečby je 12 týždňov, pričom dávka sa zvyšuje, ak sa to považuje za potrebné. Je však známe, že niektoré mačky sa môžu vyliečiť za 6 týždňov s ktoroukoľvek formou GS-441524, viaceré za 8-10 týždňov a takmer všetky za 12 týždňov. Mladé mačky s abdominálnou vlhkou FIP majú tendenciu reagovať najrýchlejšie, mačky so suchou FIP pomalšie a mačky s neurologickou FIP najpomalšie. Preto je “univerzálnym” odporúčaním liečiť každú mačku s FIP bez ohľadu na formu minimálne 12 týždňov. Dennú dávku vo forme PO je možné rozdeliť q12h, čo môže byť výhodné pri liečbe vyššími dávkami, aby sa predišlo absorpčnému stropu. Liečba SC a PO sa môže striedať q12h, aby sa zabránilo veľkým injekčným objemom.

Perorálne dávkovanie GS je menej presné ako pri injekciách.  Tablety sa ťažko delia, pretože majú tendenciu drobiť sa, takže delenie na polovice je často to najlepšie, čo sa dá urobiť. Ak vypočítaná dávka po užití spadá medzi uvedené dávky v tabletách, odporúča sa vždy zaokrúhliť nahor na najbližšiu polovicu tablety. 

Podávanie

Všetky perorálne značky majú obdobné pokyny na podávanie kapsúl alebo tabliet. Vo všeobecnosti sa odporúča polhodinový pôst pred a po podaní lieku. Malé množstvo pamlsku môže mačky povzbudiť, aby tablety užili, a mnohé mačky ich skonzumujú, keď sa im dajú na tanier obalené v pamlsku (napr. Churu). 

Náklady

Cena perorálneho GS sa za posledný rok výrazne znížila. Napriek tomu je relatívna cena perorálneho GS-441524 o 20 – 40 % vyššia (v závislosti od dodávateľa) ako jeho injekčná verzia.  

Faktory ovplyvňujúce perorálnu a injekčnú aplikáciu 

Mačky, u ktorých sa momentálne vyskytuje zvracanie/regurgitácia a hnačka, sa vo všeobecnosti považujú za nevhodných kandidátov na perorálnu liečbu liekom GS-441524. Preto sa mačkám so závažným gastrointestinálnym ochorením často začínajú podávať injekcie, aspoň kým sa tieto problémy nevyriešia. Väčšina ľudí, najmä v minulosti, začala s injekčným podávaním GS-441524. Injekčná forma je lacnejšia a dávkovanie je presnejšie riadené. Absorpcia GS-441524 je tiež spoľahlivejšia subkutánnou cestou ako perorálnou, čo je často rozhodujúci faktor pri počiatočnej liečbe mačiek, ktoré sú na začiatku ťažko choré a nestabilné. To, či mačka bude pokračovať v injekčnom podávaní lieku GS-441524, je často podmienené schopnosťou majiteľa aplikovať injekcie čo najefektívnejším spôsobom, ochotou mačky prispôsobiť sa bolesti pri injekcii a výskytom injekčných rán (lézií) v mieste aplikácie. Perorálne podávané lieky sú v takýchto situáciách často vítanou úľavou pre majiteľa aj mačacieho pacienta. Niektoré látky podávané perorálne môžu interferovať s absorpciou GS-441524. Preto by ste sa mali vyhnúť zaradeniu iných liekov a výživových doplnkov, ak nie sú nevyhnutné pre liečbu FIP. 

Porovnanie úspešnosti liečby injekčným a perorálnym GS-441524  

Za predpokladu, že dávkovanie je presne vypočítané a riadne nastavené, úspešnosť perorálneho lieku GS-441524 v súčasnosti reflektuje úspešnosť injekčných liekov. Napriek tomu boli zaznamenané rozdiely v reakciách medzi perorálnym a injekčným GS-441524. Malý počet mačiek nereagoval dobre na perorálny GS-441524 ako počiatočnú liečbu alebo viedol k relapsom pri nahradení injekcií. Alternatívne, prechod mačiek na perorálny GS-441524 v ekvivalentnej dávke viedol k vyriešeniu ochorenia, ktoré nereagovalo dobre na injekcie. Je ťažké priradiť tieto dramatické rozdiely v odpovedi liekovej forme, keďže GS-441524 podávaný subkutánnou alebo perorálnou cestou sa dostáva do krvného obehu a nakoniec do tkanív. Je pravdepodobnejšie, že je to spôsobené tým, že značky injekčného alebo perorálneho lieku GS-441524 používané pred takouto zmenou neboli dobré alebo že sa vyskytli problémy s absorpciou alebo podávaním.  Skutočne sa vyskytlo mnoho prípadov, keď prechod na inú perorálnu alebo injekčnú značku okamžite viedol k zlepšeniu odozvy. 

Pôvodne sa predpokladalo, že iba injekčná forma GS-441524 môže dosiahnuť extrémne vysoké hladiny v krvi a mozgovomiechovom moku potrebné na účinnú liečbu neurologického ochorenia, najmä v situáciách, keď sa u vírusu vyvinul rôzny stupeň rezistencie na lieky. Avšak perorálne značky, ako napríklad Aura/Lucky, boli účinné u mnohých mačiek s neurologickou FIP. Týkalo sa to aj niektorých mačiek, ktoré nereagovali na extrémne vysoké dávky injekčnej formy GS441524. Čoraz viac mačiek s neurologickou FIP sa lieči výlučne perorálnou formou GS. Je to spôsobené buď väčšími skúsenosťami s perorálnou liečbou v ťažkých prípadoch FIP, alebo pravdepodobne vyššou kvalitou perorálnych prípravkov. 

Prehľad v súčasnosti dostupných značiek perorálnej formy GS-441524 

Poznámka: Označenie a obsah GS odrážajú informácie poskytnuté dodávateľmi a neboli nezávisle overené. 

Mutian – Ide o pôvodnú a najznámejšiu značku orálnej formy GS-441524. Predával sa v niekoľkých rôznych formách vrátane viacerých foriem tabliet a kapsúl. Začiatkom roku 2021 prešiel Mutian na formu tabliet, označených ako 200 mg alebo 50 mg “Mutian” alebo “Xraphconn” – tie dodávajú ekvivalentnú SC dávku 10, resp. 2,5 mg GS-441524. Tablety sú podstatne väčšie (priemer 8,5 mm) ako tablety iných dodávateľov.  V poslednom čase je ojedinele k dispozícii nová formulácia kapsúl. Od septembra 2021 už webová stránka spoločnosti Mutian neponúka možnosť PO. Pre všetky perorálne formy lieku Mutian dodávateľ uvádza dávkovanie: 100 mg/kg “Mutian” pre vlhkú/suchú FIP, 150 mg/kg Mutian pre okulárnu FIP a 200 mg/kg pre neurologickú FIP. 

Aura/Spark – Aura je dlhodobo zavedená značka a predáva sa v tabletách, ktoré sa podávajú každých 12 alebo 24 hodín. Predávajú sa vo verziách q12h a q24h, avšak medzi týmito dvoma verziami nie je rozdiel v zložení (t. j. predĺžené uvoľňovanie atď.). Skutočné množstvo GS-441524 v každej tablete sa neuvádza, ale označenie a účinná dávka sú nasledovné:

OznačenieEkvivalent injekčnej dávkyPokyny pre dávkovanie
Aura 12h-1kgcca. 2.5 mg/kgVlhká/suchá: 1 tableta na kg dvakrát denne
Okulárna: 1,5 tablety na kg dvakrát denne
Neurologická: 2 tablety na kg dvakrát denne  
Aura 24h–1 kgcca. 5 mg/kgVlhká/suchá: 1 tableta na kg denne
Okulárna: 1,5 tablety na kg denne
Neurologická: 2 tablety na kg denne         
Aura 12h–3 kgcca. 7.5 mg/kgVlhká/suchá: 1 tableta na 3 kg dvakrát denne
Okulárna: 1,5 tablety na 3 kg dvakrát denne
Neurologická: 2 tablety na 3 kg dvakrát denne         
Aura 24h–2 kgcca. 10 mg/kgVlhká/suchá: 1 tableta na 2 kg dvakrát denne
Okulárna: 1,5 tablety na 2 kg dvakrát denne
Neurologická: 2 tablety na 2 kg dvakrát denne         

Ekvivalentná perorálna dávka pre >10 mg/kg denne injekčného GS sa úmerne zvyšuje.  Tablety sa môžu kombinovať bez ohľadu na označenie 12/24h s použitím účinnej injekčnej dávky – napríklad 2,5 kg mačka s vlhkou FIP by mohla užívať jednu tabletu 24h – 2 kg a jednu tabletu 12h -1 kg denne.

Lucky – Tablety Lucky sú označené ako 24h – 1 kg (ekvivalentná dávka 5-6 mg/kg SC) alebo 24h – 2 kg (ekvivalentná dávka približne 10-12 mg/kg SC) a údajne majú identické zloženie ako porovnateľné tablety Aura, hoci majú iný tvar.  V prípade FIP bez okulárnych alebo neurologických príznakov by ste mali podávať jednu 1 kg tabletu denne na kg hmotnosti mačky alebo jednu 2 kg tabletu na každé 2 kg, zaokrúhlené na najbližšiu polovicu tablety. Počet tabliet na deň vynásobte číslom 1,5 v prípade očných alebo číslom 2 v prípade neurologických foriem. 

OznačenieEkvivalent injekčnej dávkyPokyny na dávkovanie pri vlhkej/suchej FIP (dávkovanie sa zdvojnásobuje pre neuro/okulárnu FIP)
Lucky 24h – 1 kgcca. 5-6 mg1 tableta na kg denne
Lucky 24h – 2 kgcca. 10-12 mg1 tableta na 2 kg denne

Capella – Capella vyrába dve veľkosti tabliet, 1 kg (dávka 5 – 6 mg SC ekvivalentu) a 2 kg (dávka 10 – 12 mg SC ekvivalentu). V prípade FIP bez okulárnych alebo neurologických príznakov by ste mali podávať jednu 1 kg tabletu denne na kg hmotnosti mačky alebo jednu 2 kg tabletu na každé 2 kg a zaokrúhliť nahor na najbližšiu polovicu tablety. Počet tabliet na deň vynásobte 1,5 v prípade okulárnych alebo 2 v prípade neurologických foriem. 

Kitty Care – Ide o ďalšiu nízkonákladovú značku, ktorá teraz ponúka injekčnú aj perorálnu formu lieku GS-441524. Predpokladá sa, že každá tableta obsahuje ekvivalent 6 mg SC dávky GS-441524. 

Hero 16 –Ide o dobre známu značku, ktorá sa dodáva v ľahko aplikovateľných a deliteľných tabletách určených na podávanie v dávke jedna tableta na 2 kg hmotnosti, ako sú tablety Capella 2 kg. Každá tableta pravdepodobne obsahuje 16 mg GS-441524. 

Rainman – Táto značka je populárna v Číne a zdá sa, že má dobrú povesť v krajinách, kde sa používa. Predáva sa v tabletách s hmotnosťou 1 kg a 2 kg, o ktorých sa predpokladá, že obsahujú ekvivalent 5 – 6 mg a 10 – 12 mg SC GS-441524. 

Mary – Mary sa predáva v kapsulách, ktoré pravdepodobne obsahujú ekvivalent 6 mg SC GS-441524

Additional brands– Panda, Pany, Sweeper, Sweeper film

Referenčné štúdie o GI absorpcii nukleozidov podobných GS-441524 a GS-441524

  1. Thomas L. A precursor to remdesivir shows therapeutic potential for COVID-19. https://www.news-medical.net/news/20210209/A-precursor-to-remdesivir-showstherapeuticpotential-for-COVID-19.aspx.
  2. Painter GR, Bowen RA, Bluemling GR, et al. The prophylactic and therapeutic activity of a broadly active ribonucleoside analog in a murine model of intranasal venezuelan equine encephalitis virus infection. Antiviral Res. 2019;171:104597. doi:10.1016/j.antiviral.2019.104597
    After oral administration EIDD-1931 is quickly absorbed as evidenced by plasma T-max-values ranging between 0.5 and 1.0 h.Exposures are high (C-ma-xvalues range between 30 and 40μM) and are dose dependent, but significantly less than dose proportional. The observation of decreasing bioavailability with increasing dose may indicate capacity limited absorption, a phenomenon that has been reported for other nucleosides (de Miranda et al., 1981). EIDD-1931, like most endogenous nucleosides and xenobiotic nucleoside analogs, is a highly polar, hydrophilic molecule (cLog P =−2.2) and therefore likely to require functional transporters to cross cell membranes. This dependence would explain the capacity limited uptake seen in the pharmacokinetic studies done using the CD-1 mice. Earlier reports also indicated that nucleoside uptake into mouse intestinal epithelial cells is primarily mediated by sodium dependent concentrative nucleoside transporters (Cass et al., 1999; Vijayalakshmi and Belt, 1988).
  3. Cass, C.E., Young, J.D., Baldwin, S.A., Cabrita, M.A., Graham, K.A., Griffiths, M.,Jennings, L.L., Mackey, J.R., Ng, A.M., Ritzel, M.W., Vickers, M.F., Yao, S.Y., 1999.Nucleoside transporters of mammalian cells. Pharm. Biotechnol. 12313–12352
  4. de Miranda, P., Krasny, H.C., Page, D.A., Elion, G.B., 1981. The disposition of acyclovir indifferent species. J. Pharmacol. Exp. Ther. 219 (2), 309–315
  5. Vijayalakshmi, D., Belt, J.A., 1988. Sodium-dependent nucleoside transport in mouse intestinal epithelial cells. Two transport systems with differing substrate specificities. Biol. Chem. 263 (36), 19419–19423.
  6. Yan VC, Khadka S, Arthur K, Ackroyd JJ, Georgiou DK, Muller FL. Pharmacokinetics of Orally Administered GS-441524 in Dogs. bioRxiv, doi: https://doi.org/10.1101/2021.02.04.429674
  7. FIP Warriors CZ/SK, https://www.fipwarriors.eu/, https://www.facebook.com/groups/fipczsk
Prečítať “Liečba FIP perorálnymi formami GS-441524”

Racionálny prístup k identifikácii účinných kombinovaných antikoronavírusových terapií proti mačaciemu koronavírusu

9.7.2020
S.E. Cook, H. Vogel, D. Castillo, M. Olsen, N. Pedersen, B. G. Murphy
Pôvodný článok: A rational approach to identifying effective combined anticoronaviral therapies against feline coronavirus

Abstrakt

Mačací infekčný zápal pobrušnice (FIP), spôsobený genetickým mutantom mačacieho enterického koronavírusu známym ako FIPV, je smrteľným ochorením mačiek, pre ktoré v súčasnosti nie je k dispozícii žiadna vakcína alebo liečba schválená FDA. Šírenie FIPV u postihnutých mačiek vedie k radu klinických príznakov vrátane kavitárnych výpotkov, anorexie, horúčky a lézií pyogranulomatóznej vaskulitídy a perivaskulitídy s alebo bez postihnutia centrálneho nervového systému a/alebo oka. Vznikla kritická potreba účinných a schválených antivírusových terapií proti koronavírusom vrátane FIPV a zoonotických koronavírusov, ako je SARS-CoV-2, pôvodcu COVID-19. Pokiaľ ide o SARS-CoV-2, predbežné dôkazy naznačujú, že môžu existovať potenciálne klinické a patologické spoločné znaky s mačacím koronavírusovým ochorením, vrátane enterického a neurologického postihnutia. Skúmali sme 89 vytipovaných antivírusových zlúčenín a identifikovali sme 25 zlúčenín s antivírusovou aktivitou proti FIPV, ktoré predstavujú rôzne triedy liekov a mechanizmov antivírusového pôsobenia. Na základe úspešných stratégií kombinovanej liečby u ľudských pacientov s infekciou HIV alebo vírusom hepatitídy C sme identifikovali kombinácie liekov zameraných na rôzne fázy životného cyklu FIPV, ktoré vedú k synergickému antivírusovému účinku. Podobne navrhujeme, aby sa kombinovaná antikoravírusová terapia (cACT) s viacerými mechanizmami účinku a penetrácie do všetkých potenciálnych anatomických miest vírusovej infekcie aplikovala na liečbu ďalších koronavírusov, ako je SARS-CoV-2.

Zhrnutie autora

In vitro sme testovali antivírusovú aktivitu proti FIPV u 89 zlúčenín. Antivírusová aktivita týchto zlúčenín spočivala buď v priamom účinku na vírusové proteíny zapojených do replikácie vírusu, alebo v nepriamom inhibičnom účinku na normálne bunkové procesy uzurpované FIPV na podporu replikácie vírusu. Dvadsaťpäť z týchto zlúčenín vykázalo významnú antivírusovú aktivitu. Zistili sme aj to, že určité kombinácie týchto zlúčenín sú účinnejšie ako samotná monoterapia.

Slovník

SkratkaAnglický výrazSlovenský preklad
PIprotease inhibitorinhibítor proteázy
NPInucleoside polymerase inhibitornukleozidový inhibítor polymerázy
NNPInon-nucleoside polymerase inhibitornenukleozidový inhibítor polymerázy
CPEcytopathic effect cytopatický efekt
cACTcombined anti-coronaviral therapykombinovaná antikoronavírusová terapia
cARTcombined anti-retroviral therapykombinovaná antiretrovírusová terapia
CRFK cellsCrandell-Rees Feline Kidney cellsCrandell-Rees mačacie obličkové bunky

Úvod

Mačacia infekčná peritonotída (FIP) je vysoko smrteľné ochorenie bez účinnej vakcíny alebo liečby schválenej FDA. Aj keď patogenéza nie je úplne objasnená, všeobecne sa predpokladá, že FIP je výsledkom špecifických mutácií vo vírusovom genóme minimálne patogénneho a všadeprítomného mačacieho enterického koronavírusu (FECV), ktoré vedú k vzniku virulentného vírusu FIP (FIPV) [1–3]. Tieto mutácie FECV vedú k zmene tropizmu vírusom napadnutej hostiteľskej bunky z intestinálnych enterocytov na makrofágy peritoneálneho typu. Produktívna infekcia makrofágov vírusom FIPV, cielená rozsiahla anatomická diseminácia a imunitne sprostredkovaná perivaskulitída vedú k vysoko smrteľnému systémovému zápalovému ochoreniu FIP [4]. V dôsledku vírusovej diseminácie sa FIP môže prejavovať klinickými príznakmi odrážajúcimi zápal na rôznych anatomických miestach, ktoré môžu potenciálne zahŕňať brušnú dutinu a vnútornosti, hrudnú dutinu, centrálny nervový systém a/alebo oči [5–8]. Kvôli vysokej úmrtnosti FIP zostáva devastujúcim vírusovým ochorením mačiek a výzvou pri stanovení presnej etiologickej diagnózy za súčasného nedostatku dostupných a efektívnych možností liečby [7, 9]. Vývoj účinnej vakcíny proti FIP bol komplikovaný úlohou na protilátkách závislého zosilnenia (ADE) v patogenéze choroby FIP, kde sa ukázalo, že prítomnosť neneutralizujúcich antikoronavírusových protilátok zhoršuje ochorenie FIP [10–12] .

Koronavírusy u cicavcov infikujú a spravidla spôsobujú ochorenie črevného traktu alebo dýchacieho systému infikovaných hostiteľov [13]. FIP sa však často prejavuje ako syndróm multisystémového zápalového ochorenia v dôsledku rozsiahleho šírenia makrofágov infikovaných FIPV. Nedávny pandemický výskyt SARS-CoV-2 má u infikovaných ľudských pacientov za následok rôzne syndrómy choroby, súhrnne označovanej ako COVID-19. Aj keď má SARS-CoV-2 zjavný tropizmus pre respiračný epitel, ktorý vedie k intersticiálnej pneumónii, nedávne dôkazy naznačujú, že COVID-19 sa môže prejavovať aj ako zažívacie ochorenie a klinicky sa prejavovať ako hnačka [14, 15]. Tropizmus pre tieto tkanivá odráža membránovú expresiu proteínu ACE2, bunkového cieľa SARS-CoV-2 [16]. Ďalej sa ukazuje, že SARS-CoV-2 je schopný infikovať a spôsobiť zápalové ochorenie v tkanivách mimo črevného traktu a dýchacích ciest, vrátane mozgu, očí, reprodukčných orgánov a srdcového myokardu [17–21]. Neuroinvazia mozgového kmeňa a následná encefalitída spôsobená SARS CoV-2 môžu prispieť k respiračnému zlyhaniu u pacientov s COVID-19 [20,22]. Experimentálne je SARS CoV-2 schopný vytvoriť produktívnu infekciu u mačiek [23]. Infekcia FIPV mačiek a infekcia SARS CoV-2 u ľudských pacientov sa preto podobajú viac, ako sa pôvodne zdalo.

Vznikla okamžitá a kritická potreba dostupných a účinných antivírusových terapií na liečenie týchto koronavírusových chorôb. Mačky infikované FIPV by mohli slúžiť ako translačný model a poskytnúť užitočné poznatky použiteľné pre pacientov infikovaných SARS-CoV-2 s COVID-19. Posledné antivírusové klinické štúdie u mačiek experimentálne aj prirodzene infikovaných FIPV priniesli nádej pre liečbu a vyliečenie FIP pomocou GS-441524, nukleozidového analógu a metabolitu proliečiva Remdesivir (Gilead Sciences) alebo GC-376, 3C-like inhibítora proteázy FIPV (Anivive) [24–26]. Remdesivir, prodrug GS-441524, sa nedávno ukázal byť sľubným pri liečbe ľudských pacientov infikovaných SARS-CoV-2 [27,28]. Napriek týmto nedávnym klinickým úspechom musia byť tieto antivírusové zlúčeniny ešte schválené a v súčasnosti nie sú k dispozícii na klinické veterinárne použitie u mačiek s FIP.

Identifikácia a vývoj účinných antivírusových terapií môžu byť nákladné aj časovo náročné. Cielený skríning a opakované použitie liekov už schválených FDA alebo schválených na výskumné použitie, môžu hrať efektívnu úlohu pri objavovaní liekov. Použitím predpokladaných antivírusových zlúčenín vybraných na základe ich preukázanej účinnosti pri liečbe iných RNA-vírusov sme identifikovali podskupinu zlúčenín so silnou anti-FIPV aktivitou a charakterizovali ich profily bezpečnosti a účinnosti in vitro. Na základe veľkého úspechu kombinovanej antiretrovírusovej terapie (cART) proti HIV-1 a kombinovanej liečby vírusu hepatitídy C [29] sme vyvinuli metódy na identifikáciu účinných kombinačných terapií proti FIPV. Počiatočné monoterapie proti HIV-1, ako je azidotymidín (AZT), často viedli k vírusovým únikovým mutáciám. Zdá sa, že súčasné použitie viacerých antivírusových zlúčenín blokuje tento adaptívny vírusový evolučný mechanizmus, pretože vývoj HIV-1 je modernými cART účinne zastavený [30]. Úspešnosť cART je výsledkom farmakologického zamerania na viac stupňov životného cyklu vírusu súčasne, pričom sa spoločne dosahuje synergický antivírusový účinok [31].

Vzhľadom na pôsobivý úspech cART by sa mohlo javiť, že súčasné zacielenie na FIPV v rôznych fázach životného cyklu vírusu kombinovanou antikoronavírusovou terapiou (cACT) môže ponúknuť vyššiu úroveň trvalého a úplnejšieho úspechu, v porovaní s monoterapiami samotnými. Zahrnutie antivírusového agenta do cACT schopného preniknúť hematoencefalickou (BBB) ​​a hematookulárnou bariérou, a dosiahnuť farmakologicky relevantné tkanivové koncentrácie môže uľahčiť eradikáciu FIPV v celom systéme. Popisujeme tu súbor in vitro testov uľahčujúcich rýchly skríning a identifikáciu účinných antikoronavírusových zlúčenín. Účinné antivírusové látky s rôznymi mechanizmami účinku a predpokladanou distribúciou v tele boli kombinované do cACT a testované na synergiu zlúčenín. Predpokladali sme, že kombinované použitie dvoch alebo viacerých účinných antivírusových monoterapií s rôznymi mechanizmami účinku uľahčí identifikáciu synergických kombinácií poskytujúcich vynikajúcu antikoronavírusovú účinnosť v porovnaní s ich samostatným použitím. Identifikácia úspešnej cACT môže tiež poskytnúť vodítka k liečbe ďalších objavujúcich sa vírusových ochorení, ako je SARS-CoV-2.

Výsledky

Testovanie zlúčenín

Na identifikáciu zlúčenín s anti-FIPV aktivitou bola in vitro testovaná skupina 89 zlúčenín (doplnková tabuľka 1) z rôznych tried liečiv a s rôznymi predpokladanými mechanizmami účinku. Testované zlúčeniny zahŕňali inhibítory nukleozidovej polymerázy (NPI), nenukleozidové polymerázové inhibítory (NNPI), inhibítory proteázy (PI), NS5A inhibítory, súbor nových anti-helikázových chemických „fragmentov“ a súbor zlúčenín s neurčenými mechanizmami účinku . Z tejto skupiny 89 zlúčenín sa ukázalo, že celkovo 25 rôznych zlúčenín vykazuje antivírusovú aktivitu proti FIPV vrátane NPI, PI, inhibítorov NS5A a dvoch zlúčenín s neurčenými mechanizmami účinku (označovaných ako „iné“, obr. 1). Medzi tieto úspešné antivírusové látky patrili toremiféncitrát, daklatasvir, elbasvir, lopinavir, ritonavir, nelfinavirmesilát, K777 / K11777, grazoprevir, amodiaquín, EIDD 1931, EIDD 2801 a GS-441524 pochádzajúce od troch rôznych čínskych výrobcov (tabuľka 1, obr. 2). Testovali sme niekoľko nukleozidových analógových zlúčenín poskytnutých spoločnosťou Gilead Sciences štrukturálne príbuzných nukleozidovým analógom GS-441524 a Remdesivir na ich antivírusové vlastnosti a našli sme niekoľko s potenciálom (obsiahnutých vo vyššie uvedených 25 identifikovaných zlúčeninách), ale tieto látky sme ďalej nesledovali. Pre ďalšie analýzy bolo vybraných 13 antivírusových látok. Tento celkový počet zahrňuje už pretým identifikovaný 3-C inhibítor proteázy, GC-376 (Anivive).

Názov zlúčeninyKategória liekuEC50 (µM)
GC376PI0.04
EIDD 1931NPI0.09
ElbasvirNS5A Inhibitor0.16
EIDD 2801NPI0.4
GS-441524+NPI0.66
K777/K11777PI0.67
Toremifene citrateIné*5
AmodiaquineIné**6.5
LopinavirPI8.08
RitonavirPI8.7
GrazoprevirPI12.13
Nelfinavir mesylatePI13.47
Tabuľka 1.
EC50 zlúčenín s anti-FIPV aktivitou.
PI = Inhibítor proteázy; NPI = Nukleozidový inhibítor polymerázy
+ MedChem Express, HY-103586
* Selektívny modulátor estrogénových receptorov
** 4-Aminoquinoline
Obrázok 1
Testované zlúčeniny podľa mechanizmu účinku
(A) Všetky testované zlúčeniny
(B) Zlúčeniny, u ktorých bola pri testoch in vitro zistená anti-FIPV aktivita
Obrázok 2
Príklad testovacej matrice využívajúcej farbenie kryštálovou violeťou na identifikáciu anti-FIPV aktivity pri 10μM.
Horný ľavý riadok sú kontrolné jamky iba s CRFK bunkami a bez liečiva alebo FIPV. Pravý horný riadok je pozitívna kontrola využívajúca GS-441524 so známou úplnou ochranou CRFK buniek pred FIPV-indukovanou bunkovou smrťou. Celý spodný rad jamiek predstavuje CRFK bunky infikované FIPV a bez liečby. Zvyšné riadky sú testovacie jamky, pričom ľavá polovica hodnotí cytotoxicitu pri 10μM (bez infekcie FIPV) a pravá polovica hodnotí anti-FIPV aktivitu pri 10μM pre ktorúkoľvek danú zlúčeninu. Strata zafarbenia naznačuje stratu buniek. Daklatasvir a velpatasvir demonštrovali anti-FIPV aktivitu, o čom svedčí zvýšené farbenie kryštálovou violeťou (relatívne intaktné bunkové monovrstvy) v porovnaní s kontrolnými jamkami obsahujúcimi iba FIPV (spodný rad doštičky). Lieky 32, 33 a 34 vykazovali neprítomný až minimálny antivírusový účinok, zatiaľ čo liečivo 34 (Ravidasvir) tiež vykazovalo cytotoxicitu pri koncentrácii 10μM na základe dramatického vyčistenia jamiek pozorovaného v ľavej polovici matrice bez FIPV.

Stanovenie antivírusovej účinnosti

Antivírusová účinnosť (EC50) sa stanovila pre 10 antivírusových zlúčenín. Pre tieto zlúčeniny bola EC50 v rozmedzí od 0,04μM do 13,47μM (tabuľka 1, obr. 3). Jedna z antivírusových látok, Daclatasvir, preukázal neprijateľnú cytotoxicitu pri 20μM a bol vyradený z ďalšieho testovania. Ukázalo sa, že GS-441524 pochádzajúci z Číny (MedChemExpress, HY-103586) má porovnateľnú EC50 v porovnaní s predtým publikovanými hodnotami pre GS-441524 pochádzajúci z Gilead Sciences [25].

Obrázok 3
Reprezentatívne príklady nelineárnych regresných analýz EC50 pre zlúčeniny s anti-FIPV aktivitou.

Na identifikáciu polovičnej maximálnej efektívnej koncentrácie (EC50) sa uskutočnili sériové riedenia každej zlúčeniny s anti-FIPV aktivitou. Tu uvedené výsledky GS-441524 predstavujú zlúčeninu pochádzajúcu z MedChemExpress.

Bezpečnostné profily cytotoxicity

Profily bezpečnosti na cytotoxicitu (CSP) sa stanovili pre desať rôznych antivírusových zlúčenín v bunkách CRFK. Pri 5μM sedem testovaných zlúčenín nevykazovalo v podstate žiadnu cytotoxicitu, zatiaľ čo dve z antivirotík, amodiaquine a toremifene, mali 11, respektíve 12% cytotoxicitu (obr. 4; tabuľka 2). 50% cytotoxická koncentrácia (CC50) pre GC376 sa uvádza ako >150μM [32]. Je zaujímavé, že na základe testu Promega CellTox ™ Green Cytotoxicity bola cytotoxicita obidvoch EIDD zlúčenín v podstate nedetegovateľná až do 100μM. Vizuálna kontrola jamiek s EIDD tesne pred aplikáciou fluorescenčného farbiva a odčítaním z matrice však odhalila rozdiely v morfológii buniek (cytopatický účinok) medzi neliečenými CRFK bunkami a liečenými bunkami. Neliečené CRFK bunky sa vyznačovali adherentnou vretenovou morfológiou v jednej monovrstve, zatiaľ čo jamky s EIDD preukázali zreteľný pokles konfluencie v porovnaní s variabilnou morfológiou buniek vrátane zaokrúhľovania buniek (cytopatický účinok). Rozpor medzi subjektívnym vizuálnym hodnotením jamiek s EIDD a fluorescenčným testom je záhadou. Je možné, že celkové zníženie počtu buniek v jamkách s EIDD viedlo k strate a degradácii nukleovej kyseliny nevyhnutnej na fluorescenčné viazanie a detekciu v teste CellTox.

ZlúčeninaKategória lieku5μM10μM25μM50μM100μM
ElbasvirNS5A Inhibítor0.670.461.424.9
K777/K11777PI0.610.292.3916
Toremifene citrateIná*1222233539
AmodiaquineIná**1112192326
LopinavirPI0.6715131618
RitonavirPI0.490.8423326
GrazoprevirPI0.5500.813.919
EIDD1931NPI1.20.940.60.782.8
EIDD2801NPI00.950.631.70.8
GS-441524+NPI0.210000
Tabuľka 2
Percento cytotoxicity podľa zlúčeniny a koncentrácie.
PI = Inhibítor proteázy; NPI = Nukleozidový inhibítor polymerázy
* Selektívny modulátor estrogénových receptorov
** 4-Aminoquinoline
+ NMPharmTech
Obrázok 4
Reprezentatívne profily cytotoxicity.
Stĺpcové grafy percenta cytotoxicity +/- štandardná odchýlka (SD) pre štyri zlúčeniny s anti-FIPV aktivitou. Percentuálne hodnoty cytotoxicity sa stanovili normalizáciou cytotoxicity pre kontrolné jamky s pozitívnou toxicitou (nastavená na 100% cytotoxicitu) a neliečené bunky CRFK (nastavené na 0% východiskovej cytotoxicity).

Kvantifikácia inhibície produkcie vírusovej RNA pri monoterapii

Na meranie schopnosti každej antivírusovej látky inhibovať koronavírusovú replikáciu pri monoterapii (Vírusový RNA knock-down test) sa použil test RT PCR v reálnom čase. Zlúčeninami demonštrujúcimi najväčšiu inhibíciu produkcie FIPV RNA boli GC376, 3C-like inhibítor koronavírusovej proteázy, GS-441524, EIDD-1931 a EIDD-2801, pričom posledné tri boli nukleozidové analógy (obr. 5, tabuľka 3). Medzi látky s najmenším inhibičným účinkom na produkciu vírusovej RNA patria elbasvir, nelfinavir a ritonavir. Ritonavir, inhibítor proteázy, sa používa v kombinácii s lopinavirom na liečbu infekcie HIV-1 (Kaletra, AbbVie). Monoterapia lopinavirom má u ľudí neuspokojivú orálnu biologickú dostupnosť, avšak pri použití v kombinácii sa ukázalo, že ritonavir výrazne zlepšuje plazmatickú koncentráciu lopinaviru [33]. Preto aj napriek relatívne minimálnej inhibícii FIPV identifikovanej s ritonavirom ako monoterapiou, bola táto zlúčenina predmetom ďalšieho testovania vrátane kombinovaného antikoravírusového hodnotenia.

ZlúčeninaNásobok redukcie titra vírusu
GC376 (20μM)25000
GC3767300
GS-441524 (NMPharmTech)5280
EIDD-19313700
GS-441524 (MedChemExpress)3500
EIDD-28012110
Lopinavir309
Toremifene10
K7777
Grazoprevir5
Amodiaquine4
Elbasvir2
Nelfinavirmesylate1
Ritonavir1
Tabuľka 3
Násobné zníženie počtu kópií vírusovej RNA pre anti-FIPV zlúčeniny pri monoterapii
*Pokiaľ nie je uvedené inak, všetky zlúčeniny sa použili pri 10 μM.
Obrázok 5
Násobné zníženie počtu kópií FIPV RNA s použitím antivírusových zlúčenín pri monoterapii.

FIPV-infikované CRFK bunky sa inkubovali 24 hodín so zlúčeninami so zistenou anti-FIPV aktivitou. Počet vírusových kópií sa následne stanovil pomocou RT-qPCR a normalizoval sa na počet mačacích GAPDH kópií, aby sa určil účinok násobného zníženia pre každú zlúčeninu. Všetky zlúčeniny sa testovali pri 10μM, pokiaľ nie je uvedené inak. Všetky experimentálne ošetrenia sa uskutočňovali v triplikátových jamkách a násobný pokles sa vypočítal vydelením priemerného experimentálneho normalizovaného počtu kópií FIPV priemerným normalizovaným počtom kópií FIPV stanoveným pre neošetrené jamky infikované FIPV.
1GS-441524 – NMPharmTech (Čína).
2GS-441524 – MedChemExpress (Čína).

Kvantifikácia inhibície produkcie vírusovej RNA pri cACT

Na identifikáciu kombinácií liekov so synergickým antivírusovým účinkom oproti monoterapii sa vybrali kombinácie dvoch alebo viacerých zlúčenín na základe (i) zavedených kombinácií používaných pri iných vírusových infekciách, ako je HIV-1 a HCV, (ii) liekov s rôznymi mechanizmami účinku , (iii) potenciálnych zmien v systémovej distribúcii zlúčeniny (napr. schopnosti preniknúť cez hematoencefalickú alebo hematookulárnu bariéru podľa chemickej klasifikácie) a (iv) minimálnej cytotoxicity (na základe CSP). Pre každú cACT bolo akékoľvek výsledné zníženie počtu kópií FIPV prevyšujúce vypočítaný aditívny účinok pre každé liečivo použité v režime monoterapie považované za synergické (tabuľka 4). Najväčší synergický účinok s najvyšším celkovým násobným znížením vírusovej RNA, dosiahla kombinácia GC376 a amodiaquinu so 76-násobným znížením vírusovej RNA v porovnaní s aditívnym účinkom (obr. 6). Táto konkrétna synergická kombinácia bola jedným z prekvapujúcich výsledkov vzhľadom na to, že samotný amodiaquín preukázal iba obmedzenú inhibíciu kópií vírusovej RNA FIPV stanovenú pomocou qRT-PCR.

Zlúčenina 1Zlúčenina 2Zlúčenina 3Redukcia titra vírusuAddcACT/add
GC376 (20 uM)Amodiaquine18970002500476
GC376 (20 uM)AmodiaquineToremifene2560002501410
GC376 (20 uM)K7772480002500710
GC376 (20 uM)Toremifene128000250105.1
GC376 (20 uM)Nelfinavir mesylate91100250013.6
Elbasvir (5 uM)Lopinavir1400031145
Elbasvir (5 uM)GC376 (20 uM)12600250020.50
GC376 (10 uM)Amodiaquine1170073041.6
GC376 (10 uM)Grazoprevir829073051.1
GC376 (20 uM)GS-441524 (NMPharmTech)8260302800.27
GC376 (10 uM)AmodiaquineElbasvir (5 uM)757073061.0
GC376 (10 uM)GS-441524 (MedChem)6910108000.64
GC376 (20 uM)Ritonavir6560250010.26
K777Lopinavir553031618
GC376 (10 uM)GS-441524 (NMPharmTech)4340125800.34
GC376 (20 uM)Lopinavir3400253090.13
LopinavirRitonavir313031010
LopinavirRitonavirToremifene17403205.4
GC376 (10 uM)EIDD-280125594100.03
K777Toremifene25171.5
Tabuľka 4
Násobné zníženie počtu kópií FIPV vírusovej RNA pri kombinovanej terapii (cACT).
Očakávaný aditívny účinok reflektuje súčet násobného zníženia vírusovej RNA každej zlúčeniny použitej pri monoterapii (Tabuľka 3)
* Pokiaľ nie je uvedené inak, všetky zlúčeniny boli použité pri 10μM.
cACT/add – pomer redukcie titra FIPV pri kombinovanej terapii oproti súčtu násobkov redukcie titra pri monoterapii
Add – súčet násobkov redukcie titra pri monoterapii
Obrázok 6
Vybrané príklady násobného zníženia počtu kópií FIPV RNA pomocou kombinovanej terapie (cACT).
Stĺpce predstavujú priemerný násobný pokles troch jamiek liečených buniek CRFK v porovnaní so stredným násobným poklesom troch neliečených jamiek infikovaných FIPV. Všetky zlúčeniny boli testované pri 10μM, pokiaľ nie je uvedené inak.

Vzhľadom na výraznú anti-FIPV aktivitu GC-376, ako aj na jeho potenciálnu dostupnosť pre pokrok vo farmakokinetických štúdiách in vivo, klinických testoch a nádejnom použití v aplikácii cACT bola táto zlúčenina vybraná na sériu “vírusových RNA knock-down” testov pri mono a kombinovanej terapii (obr. 7). Celkovo GC376 preukázal vynikajúcu anti-FIPV aktivitu pri 20μM tak pri monoterapii, ako aj pri kombinovanej terapii in vitro. K najvýraznejšiemu zníženiu FIPV RNA došlo v kombinácii GC376 pri 20μM s amodiaquinom pri 10μM. Pokus kombinujúci GC376 s amodiaquinom sa opakoval a oba výsledky sú uvedené pre porovnanie na obr. 7C.

Obrázok 7
GC376 antivírusová aktivita pri monoterapii a v kombinovanej terapii pri 10 a 20 μM

(A) Redukcia FIPV RNA kvantifikovaná pomocou RT-qPCR s použitím GC376 ako monoterapii pri 10 a 20 μM. Medzi týmito dvoma koncentráciami je významný rozdiel, pričom 20μM je lepšia ako 10μM. (nepárový t-test; p <0,0001).
(B) Kombinovaná in vitro terapia s použitím GC376 pri 10 μM.
(C) Kombinovaná in vitro terapia proti FIPV s použitím GC376 pri 20 μM.

Diskusia

Pretože v súčasnosti neexistuje účinná vakcína proti FIP, existuje silná klinická a celosvetová potreba účinných možností antivírusovej liečby pre mačky infikované FIPV. Testovali sme 89 zlúčenín, ktorých výsledkom je identifikácia 25 antivírusových látok s antivírusovou účinnosťou a silnými bezpečnostnými profilmi proti mačaciemu koronavírusu, FIPV. Identifikovali sme tiež kombinácie antivírusových látok (cACT), ktoré viedli k vyššej účinnosti alebo synergizmu oproti samotnej monoterapii. Obzvlášť zaujímavé bolo zistenie týkajúce sa použitia elbasviru, ktorý opakovane demonštroval vynikajúcu ochranu CRFK pred FIPV vyvolanom CPE pri koncentrácii nižšej ako 1 μM na základe viacerých testov (EC50 0,16 μM). V zásade sa však nezistil žiadny rozdiel v počte kópií vírusovej RNA medzi infikovanými bunkami liečenými elbasvirom alebo bez neho. Ďalšia vizuálna analýza buniek CRFK infikovaných FIPV, ktoré boli liečené elbasvirom, odhalila atypickú morfológiu buniek vo vzťahu k neinfikovaným bunkám, ktorá sa vyznačovala premenlivým zväčšením, zaoblením buniek a čiastočným odlúčením buniek (cytopatický účinok). Tieto „atypické bunky“ sa zriedka oddelili od kultivačnej doštičky a vo výsledku boli hodnoty absorbancie porovnateľné s neinfikovanými kontrolnými jamkami. Tento dichotomický výsledok medzi analýzou doštičky a vírusovým RNA knock-down testom naznačuje, že k antivírusovému účinku elbasviru dochádza po vírusovej replikácii a vo výsledku nemusí elbasvir chrániť bunky pred akumuláciou vírusovej RNA. Elbasvir sa používa na liečbu pacientov infikovaných vírusom hepatitídy C (HCV) a predpokladá sa, že je cielený na HCV NS5A proteín zabraňujúci replikácii a tiež na kompletizáciu viriónov [34]. Aj keď nie je pre FIPV identifikovaný homológ NS5A, je možné, že elbasvir vykazuje podobný antivírusový účinok tým, že zabraňuje kompletizácii viriónov FIPV bez blokovania syntézy vírusovej RNA v CRFK bunkách. Dodatočné vyhodnotenie liečených buniek CRFK infikovaných FIPV pomocou transmisnej elektrónovej mikroskopie môže objasniť účinok elbasviru na ochranu CRFK pred poškodením a smrťou spojenou s FIPV.

Ukázalo sa, že súčasné podávanie ritonaviru s lopinavirom významne zvyšuje plazmatické koncentrácie lopinaviru u potkanov, psov a ľudí [33]. Ritonavir je silný inhibítor CYP3A, ktorý je primárnym enzýmom zodpovedným za metabolizmus inhibítorov proteázy, a preto jeho súbežné podávanie s inými inhibítormi proteázy vedie k zvýšeným systémovým koncentráciám súčasne podávaného inhibítora proteázy, ako je lopinavir [38, 39]. Zvýšenie antivírusového účinku lopinaviru spojené s ritonavirom bolo v testoch eliminácie vírusovej RNA relatívne minimálne s iba 10-násobnou inhibíciou FIPV oproti aditívnemu účinku. Môže to byť výsledkom in vitro artefaktu testovania na mačacej obličkovej bunkovej línii (tj. CRFK bunkách), v ktorej chýba enzým CYP3, čo je enzým, ktorý sa typicky vyskytuje v miestach s vysokým metabolizmom inhibítora proteázy pri efekte prvého priechodu (tj. v enterocytoch a hepatocytoch) [39]. Tieto výsledky naznačujú, že samotné testy in vitro nemusia úplne predpovedať účinok antivírusových látok u mačiek infikovaných FIPV in vivo.

Grazoprevir, inhibítor serínovej proteázy NS3/4, sa používal v kombinácii s elbasvirom, inhibítorom NS5A, na liečbu pacientov infikovaných HCV (Zepatier, Merck) [40]. Tu sme preukázali, že grazoprevir má anti-FIPV aktivitu, keď sa používa ako monoterapia. Inhibítor cysteínovej proteázy K777/K11777 bol skúmaný kvôli svojej schopnosti blokovať vstup koronavírusu (MERS-CoV a SARS-CoV-1) a ebolavírusu a bolo zistené, že úplne inhibuje koronavírusovú infekciu, ale iba v cieľových bunkových líniách bez vírus aktivujúcich serínových proteáz. [41]. V prípade iných bunkových línií K777 inhiboval vstup koronavírusových buniek v kombinácii s inhibítorom serínovej proteázy [41]. Je možné, že obmedzená inhibícia produkcie FIPV RNA K777 by sa mohla zvýšiť, ak by sa kombinovala s inhibítorom serínovej proteázy.

Amodiaquine je antimalarické liečivo a patrí do triedy 4-aminochinolínových liečiv. Amodiaquine spolu s príbuznými 4-aminochinolínmi, ako sú chlorochin a hydroxychlorochin, bol pôvodne vyvinuý pre liečbu malárie [42], a podobne ako chlorochín a hydroxychlorochín oplýva rozsiahlym anatomickým distribučným objemom vrátane očí a mozgu [43–49]. Prenikanie antivírusových látok do CNS a/alebo očných kompartmentov je obzvlášť dôležité v prípade mačiek infikovaných FIPV s neurologickým a/alebo očným postihnutím. Zatiaľ čo niekoľko výskumov definovalo antivírusové vlastnosti chlorochínu a hydroxychlorochínu [28, 50, 51], antivírusová aktivita amodiaquinu sa skúmala aj s identifikáciou antivírusovej aktivity proti vírusu dengue, vírusu Ebola a ťažkej horúčke s vírusovým trombocytopénnym syndrómom (SFTS) [52–55]. Mechanizmus účinku amodiaquinu môže zahŕňať zvýšenie cytoplazmatického lyzozomálneho a/alebo endozomálneho pH, ktoré zabráni uvoľneniu životaschopných viriónov do cytoplazmy [56]. Vzhľadom na svoj jedinečný status triedy liečív a predpokladanú schopnosť prekonať hematoencefalickú bariéru [57] je amodiaquine sľubným kandidátom pre kombinovanú liečbu neurologických a/alebo okulárnych foriem FIP.

Toremiféncitrát, selektívny modulátor estrogénových receptorov (SERM), sa používa na liečbu metastatického karcinómu prsníka u ľudských pacientov. V poslednej dobe bol toremifén hodnotený z hľadiska jeho antivírusových vlastností a preukázal antikoravírusovú aktivitu proti zoonotickým koronavírusom, koronavírusom blízkovýchodného respiračného syndrómu (MERS-CoV) a SARS-CoV-1 [58]. Toremifén tiež preukázal aktivitu proti vírusu Ebola (EBOV) [59, 60]. Aj keď presný mechanizmus antivírusového pôsobenia nie je definovaný, zdá sa, že antivírusový účinok toremifénu proti EBOV spočíva v destabilizácii glykoproteínu EBOV [59].

Je zaujímavé, že GC376 preukázal pri kombinovanej terapii mätúce rozdiely medzi dávkovaním 10 μM a 20 μM . Pri kombinovanom použití pri 10 μM s inými zlúčeninami absentoval synergizmus a v niektorých prípadoch pokles antivírusového účinku v porovnaní s adititívnymi hodnotami v rozmedzí od 0,03 do 1,6 (tabuľka 4). Ak sa použil pri 20 μM, stále existovali prípady, keď kombinácia s inou zlúčeninou viedla k zníženému antivírusovému účinku v porovnaní s GC376 použitým ako monoterapia pri 20 μM. Oveľa viac variácií však pri kombináciách pri 20 μM vykazovalo násobok účinku oproti aditívnym hodnotám v rozmedzí od 0,13 do 76 (tabuľka 4). Konkrétnym príkladom je kontrast medzi GC376 pri 20 μM v porovnaní s GC376 pri 10 μM kombinovanom s amodiaquinom pri 10 μM. Prvý spôsobil najväčšiu inhibíciu vírusovej RNA, ako aj najväčší násobok aditívneho (synergického) účinku, zatiaľ čo druhý spôsobil takmer stratu synergizmu s hodnotou násobku aditívnej hodnoty 1,6.

Identifikácia účinných antivírusových stratégií pre liečbu mačiek infikovaných FIPV má translačné dôsledky pre prebiehajúcu pandémiu SARS-CoV-2. Infekcia FIPV u mačiek pripomína infekciu koronavírusmi u fretiek [61, 62] a porovnáva sa s patogenézou iných chronických chorôb závislých od makrofágov, ako je tuberkulóza [63]. Pretože sa klinické a patogénne podrobnosti infekcie SARS-CoV-2 u ľudí stále objavujú, zdá sa, že existuje určité prekrytie s FIPV v anatomickej distribúcii, klinických prejavoch a pravdepodobnej reakcii na určité antivírusové terapie. U mačiek je mačací enterický koronavírusový biotyp (FECV) obmedzený na zažívací trakt v dôsledku tropizmu enterocytov. Klinické príznaky u mačiek infikovaných FECV siahajú od mierneho gastrointestinálneho ochorenia (hnačka) až po absenciu príznakov. Mutovaný mačací biotyp koronavírusu FIPV získava makrofágový tropizmus a prednostne sa zameriava na serózne povrchy brušnej a hrudnej dutiny s podskupinou mačiek, ktoré demonštrujú postihnutie CNS alebo očí [7]. Podobne u pacientov s COVID-19 existujú správy o hnačkách a podskupine pacientov s postihnutím CNS [14]. Aj keď bol bunkový receptor pre SARS-CoV-2 identifikovaný ako ACE2 [64], bunkový receptor pre FIPV sérotypu I sa ešte musí určiť. Bunkový receptor pre menej klinicky relevantný FIPV sérotypu II bol identifikovaný ako mačacia aminopeptidázová peptidáza (fAPN) [4]. Štúdia využívajúca RNAseq na hodnotenie profilov génovej expresie buniek ascitu získaných z mačiek s FIP neidentifikovala expresiu ACE2, čo naznačuje, že ACE2 pravdepodobne nebude receptorom FIPV sérotypu I [63]. Je potrebné podrobnejšie preskúmanie identity receptora FIPV sérotypu I.

Doterajšie klinické úspechy s použitím GS-441524 alebo GC-376 u mačiek s experimentálnymi a prirodzene sa vyskytujúcimi FIP ukazujú, že je možné účinne liečiť FIP, avšak liečba suchých (granulomatóznych), neurologických a okulárnych FIP stále predstavuje výzvu. Inhibítor proteázy 3C-like proteázy, GC-376, sa javí ako relatívne účinný pri liečbe efúznej infekcie FIPV obmedzenej na telesné dutiny, ale môže byť menej účinný pri liečbe neurologických alebo okulárnych foriem ochorenia [24]. Tieto odlišné výsledky môžu byť výsledkom neúčinnej penetrácie hematoencefalickej a hematookulárnej bariéry, čo robí z GC-376 nádejného kandidáta na kombinovanú terapiu s antivírusovým liekom prenikajúcim do CNS.

Materiály a metódy

Inokulácia FIPV pre in vitro experimenty

Mačacie obličkové bunky Crandell-Reese (CRFK, ATCC) sa kultivovali v bankách T150 (Corning), naočkovali sa FIPV sérotypu II (WSU-79-1146, GenBank DQ010921) a množili sa v 50 ml Dulbeccovho modifikovaného Eagle média (DMEM) s 4,5 g/l glukózy (Corning) a 10% fetálneho hovädzieho séra (Gemini Biotec). Po 72 hodinách inkubácie pri 37°C bol zaznamenaný rozsiahly cytopatický účinok (CPE) a veľké plochy clearingu/oddeľovania buniek. Banky sa následne bleskovo zmrazili na -70°C počas 8 minút, krátko sa rozmrazili pri izbovej teplote a bunky a supernatant sa potom centrifugovali pri 1500 g počas 5 minút, po ktorých nasledoval druhý krok centrifugácie pri 4000 g počas 5 minút, aby sa izolovali bezbunkové vírusové objemy. Supernatant obsahujúci vírusový základ sa rozdelil na 0,5 a 1,0 ml alikvotné časti v 1,5 ml kryotubusoch (Nalgene) a archivoval sa pri -70°C. Po zmrazení sa jedna skúmavka nechala rozmrznúť a titer vírusu sa stanovil pomocou biologických testov (TCID50) a RT PCR metód v reálnom čase (nižšie).

Infekčná dávka dose-50 pre tkanivovú kultúru (TCID50) sa stanovila pomocou vírusového plaque testu. CRFK bunky sa pestovali na 96-jamkovej doštičke pre tkanivové kultúry (Genesee Scientific), kým bunky CRFK nedosahovali približne 75-85% konfluenciu. Sériové 10-násobné riedenia sa pripravili z FIPV zásobného roztoku a 200 μl vzoriek z každého riedenia sa pridalo do 10-jamkových replikátov. 72 hodín po infekcii sa bunky fixovali metanolom a zafarbili sa kryštálovou violeťou (Sigma-Aldrich). Jednotlivé jamky sa vizuálne hodnotili na vírusom indukovaný CPE, hodnotili sa ako CPE pozitívne alebo negatívne a TCID50 sa stanovila na základe rovnice log10TCID50 = [celkový počet # jamiek CPE pozitívny / # replikátov] + 0.5, aby reflektovali infekčné virióny na mililiter supernatantu [68].

Kvantifikácia FIPV pomocou qRT-PCR

Bezbunková vírusová RNA bola izolovaná z východiskového vírusu pomocou QIAamp Viral RNA Mini Kit (Qiagen) podľa pokynov výrobcu. Izolovaná RNA bola ošetrená DNázou (Turbo DNáza, Invitrogen) a následne reverzne transkribovaná pomocou súpravy High-Capacity RNA-to-CDNA (Applied Biosystems) podľa protokolov výrobcov. Počet kópií FIPV a mačacej GAPDH cDNA sa stanovil s použitím Real-Time PCR systému Applied Biosystems ‘QuantStudio 3 a PowerUp SYBR Green Master Mix podľa protokolu výrobcu pre 10 μL reakciu. Každá PCR reakcia sa uskutočňovala trikrát s vodným templátom ako negatívnou kontrolou a plazmidovou DNA ako pozitívnou kontrolou. Kontrolná reakcia vylučujúca reverznú transkriptázu bola zahrnutá do každej sady testov PCR v reálnom čase. Templáty cDNA sa amplifikovali pomocou FIPV forward primeru, 5’-GGAAGTTTAGATTTGATTTGGCAATGCTAG a FIP reverzného primeru, 5’-AACAATCACTAGATCCAGACGTTAGCT (terminálna časť génu FIPV 7b) [25]. PCR v reálnom čase pre mačací domáci gén GAPDH sa uskutočňovala súčasne s použitím primérov, 5 GAPDH, 5’-AAATTCCACGGCACAGTCAAG a 3 GAPDH, 5’-TGATGGGCTTTCCATTGATGA. Podmienky cyklovania pre FIPV aj GAPDH amplikóny boli nasledujúce: 50°C počas 2 minút, 95°C počas 2 minút, potom nasledovalo 40 cyklov pri teplote 95°C počas 15s, 58°C počas 30s, 72°C počas 1 minúty. Posledný krok obsahoval disociačnú krivku na vyhodnotenie špecifičnosti väzby priméru. Počet kópií FIPV a GAPDH bol vypočítaný na základe štandardných kriviek generovaných v našom laboratóriu. Kópie cIPNA FIPV stanovené pomocou RT PCR v reálnom čase sa normalizovali na 106 kópií mačacej GAPDH cDNA.

Vývoj anti-helikázových chemických fragmentov

Lieky skúmané a opísané v tejto štúdii boli už známe antivírusové látky. Naproti tomu bol helikázový enzým FIPV klonovaný, exprimovaný a použitý ako cieľ pre koronavírus a enzýmovo špecifickým vírusovým objavom. Cieľová sekvencia DNA AviTag-FIP Helicase-HisTag bola optimalizovaná a syntetizovaná. Syntetizovaná sekvencia bola klonovaná (Adeyemi Adedeji) do vektora pET30a s tagom Avi-His na expresiu proteínu v E. coli. Kmeň E. coli BL21 (DE3) sa transformoval rekombinantným plazmidom. Jedna kolónia sa naočkovala do 1 litra auto-indukovaného média obsahujúceho antibiotikum a kultúra sa inkubovala pri 37°C pri 200 ot./min.

Keď OD600 dosiahol asi 3, teplota bunkovej kultúry bola na 16 hodín zmenená na 15°C. Bunky sa zozbierali centrifugáciou. Bunkové pelety sa resuspendovali v lyzačnom pufri s následnou sonifikáciou. Zrazenina po centrifugácii sa rozpustila pomocou denaturačného činidla. Cieľový proteín sa získal jednostupňovým čistením na Ni kolóne. Cieľový proteín sa sterilizoval 0,22 um filtrom. Výťažok bol 7,2 mg pri 0,90 mg/ml a bol uložený v PBS, 10% glycerole, 0,5 mM L-arginíne, pH 7,4. Koncentrácia bola stanovená Bradfordovým proteínovým testom s BSA ako štandardom. Čistota proteínu a molekulová hmotnosť sa stanovili pomocou SDS-PAGE s potvrdením Western blot.

Skríning fragmentov povrchovej plazmónovej rezonancie (SPR) sa uskutočňoval na platforme ForteBio Pioneer FE SPR. Použil sa senzorový čip HisCap, ktorý obsahuje povrchovú matricu NTA. Kanály 1 a 3 boli naplnené 100uM NiCI2, nasledovalo injekčné podanie 50ug/ml FIP proteínu. Kanál 2 bol ponechaný bez bielkovín, rovnako ako NiCl2, ako referencia. Kanál 1 bol imobilizovaný na hustotu ~8000 RU, zatiaľ čo kanál 3 obsahoval približne 12000 RU. Bol použitý kanál 1. Pufrom použitým na imobilizáciu bol 10 mM HEPES, pH 7.4, 150mM NaCI a 0,1% Tween-20. Pre tento test sa pridal DMSO do konečnej koncentrácie 4%. Proprietárna knižnica zlúčenín sa zriedila v rovnakom tlmivom roztoku bez DMSO na konečnú koncentráciu DMSO 4% DMSO. Zlúčeniny z knižnice sa testovali pri koncentrácii 100 uM s použitím gradientovej injekčnej metódy OneStep. Nálezy boli vybrané na základe RU a kinetiky a použité pre bunkový skríning.

Vírusový plaque (doštičkový) test

Na skríning antivírusovej aktivity zlúčenín boli infikované bunky CRFK ošetrené zlúčeninami v šiestich jamkových replikátoch a porovnávané s jamkami pozitívnej kontroly (infikované bunky), negatívnymi kontrolami (neinfikované bunky) a kontrolami liečby (infikované bunky ošetrené známou účinnou antivírusovou zlúčeninou) súčasne na každej platni pre tkanivové kultúry. CRFK bunky sa pestovali na 96-jamkových platniach pre tkanivové kultúry (Genesee Scientific) obsahujúcich 200 ul kultivačného média. Pri ~75-85% konfluencii buniek bolo médium v ​​neinfikovaných kontrolných jamkách odsaté a nahradené 200 ul čerstvého média. Médium v ​​infikovaných jamkách bolo odsaté a nahradené médiom inokulovaným FIPV pri multiplicite infekcie (MOI) 0,004 infekčného viriónu na bunku. Doštička pre tkanivovú kultúru sa inkubovala 1 hodinu s periodickým jemným miešaním (manipulácie typu „číslo osem“) uskutočňovaným každých 15 minút, aby sa uľahčila interakcia vírus-bunka. Po 1 hodine po infekcii sa každá predpokladaná antivírusová zlúčenina pridala do šiestich jamiek infikovaných FIPV (na stanovenie antivírusovej účinnosti zlúčeniny) a šiestich neinfikovaných kontrolných jamiek (na skríning cytotoxicity zlúčeniny v bunkách CRFK). Všetky zlúčeniny boli pôvodne skrínované pri 10 μM, s výnimkou zlúčenín „chemického fragmentu“ dodávaných M. Olsenom (Midwestern University), ktoré boli hodnotené pri 50 μM. Doštičky s tkanivovými kultúrami sa inkubovali 72 hodín pri 37°C a potom sa zafixovali metanolom a zafarbili sa kryštálovou fialovou farbou. Doštičky sa skenovali na absorbanciu pri 620 nm pomocou čítačky doštičiek ELISA (FilterMax F3, Molecular Devices; Softmax Pro, Molecular Devices). Pre každú liečebnú podmienku sa zaznamenali jednotlivé hodnoty absorbancie jamky spolu s priemernou hodnotou absorbancie a strednou chybou priemeru pre 6 jamkové experimentálne replikáty.

Pre látky, ktoré preukázali antivírusovú účinnosť pri počiatočnom skríningu pri 10 alebo 50μM (chránené pred vírusom asociovaným CPE), sa EC50 stanovila vykonaním série progresívnych 2-násobných riedení zlúčenín vo vírusovom plaque teste. Na stanovenie EC50 sa bunky CRFK pestovali na 96-jamkových doštičkách pre tkanivové kultúry podobne ako v prípade antivírusového skríningového testu. Okrem neinfikovaných kontrolných jamiek boli všetky zostávajúce jamky infikované FIPV, ako je opísané vyššie. Séria dvojnásobného riedenia sa pohybovala od 20μM do 0μM a každá koncentrácia sa uskutočňovala v šiestich jamkových replikátoch. Počet krokov riedenia bol v rozmedzí od 6 do 14 a bol závislé od zlúčeniny. Šesť jamkových replikátov neinfikovaných buniek CRFK slúžilo ako kontrola pre normálne bunky CRFK; šesť replikátov CRFK buniek infikovaných FIPV slúžilo ako neošetrené kontrolné jamky infikované FIPV; a šesť jamkových replikátov FIPV infikovaných CRFK buniek ošetrených GS-441524 slúžilo ako kontrolné jamky na ochranu pred vírusom indukovanou bunkovou smrťou na základe publikovaných údajov týkajúcich sa účinnosti použitia GS-441524 in vitro v CRFK bunkách [26].

Platne s tkanivovými kultúrami sa inkubovali 72 hodín a potom sa zafixovali metanolom, zafarbili sa kryštálovou violeťou a pomocou čítačky doštičiek ELISA sa skenovala absorbancia pri 620 nm. Jednotlivé hodnoty absorbancie spolu s priemernou hodnotou absorbancie a štandardnou odchýlkou pre 6 jamkové experimentálne replikáty boli zaznamenané pre každú podmienku liečby. EC50 bola vypočítaná vynesením nelineárnej regresnej rovnice (krivka dávka-odpoveď) pomocou programu Prism 8 (GraphPad).

Vírusový RNA knock-down test

Na kvantifikáciu inhibície produkcie vírusovej RNA zlúčeninou sa použili testy v reálnom čase RT-PCR. CRFK bunky sa kultivovali na 6-jamkovej doštičke pre tkanivové kultúry (Genesee Biotek). Pri približne 75-85% splývaní buniek bolo kultivačné médium nahradené čerstvým médiom a bunky boli infikované FIPV sérotypu II pri MOI 0,2 (MOI na základe TCID50 biotestu/pfu). Doštičky sa inkubovali jednu hodinu s periodickým jemným trepaním každých 15 minút. Jamky infikované FIPV boli ošetrené jednou (monoterapia), dvoma alebo tromi (kombinovaná antikoravírusová terapia) antivírusovými zlúčeninami; každé experimentálne ošetrenie sa uskutočňovalo trikrát. Dávka zlúčeniny bola založená na EC50 zlúčenín a pohybovala sa od 0,001 do 20 μM. Pre každú experimentálnu sadu slúžili tri kultivačné jamky s FIPV-infikovanými a neošetrenými CRFK bunkami ako vírusom infikované kontroly. Infikované bunkové kultúry boli následne inkubované po dobu 24 hodín a celková RNA spojená s bunkami bola izolovaná pomocou mini súpravy PureLink ™ RNA (Invitrogen). RNA bola ošetrená DNAsou (TurboDNAse, Ambion), reverzne transkribovaná na cDNA pomocou súpravy High-Capacity RNA-to-cDNA Kit (Applied Biosystems) a cIPNA FIPV a mačacie GAPDH cDNA boli merané pomocou qRT-PCR v reálnom čase, ako je opísané vyššie . Násobné zníženie vírusového titra sa stanovilo delením normalizovaného priemerného počtu kópií FIPV RNA pre neošetrené bunky CRFK infikované FIPV na normalizovaný priemerný počet kópií FIPV RNA pre liečené bunky CRFK požadovanou zlúčeninou (zlúčeninami). Očakávaný aditívny účinok sa stanovil pridaním násobnej redukcie pre každú monoterapiu použitú v kombinácii. Zložený aditívny účinok sa určil vydelením predikovaného aditívneho účinku na hodnotu kombinovanej redukcie násobku pre konkrétnu kombinovanú liečbu.

Stanovenie bezpečnostných profilov cytotoxicity (CSP).

Cytotoxicita zlúčeniny v mačacích bunkách sa hodnotila pomocou komerčne dostupnej súpravy (CellTox Green Cytotoxicity Assay, Promega) podľa pokynov výrobcu. Neošetrené bunky CRFK sa použili ako negatívne kontroly a bunky sa ošetrili cytotoxickým roztokom poskytnutým výrobcom ako pozitívne kontroly toxicity. Stručne, okrem kontrolných jamiek boli bunky CRFK nanesené na 96-jamkové doštičky pre tkanivové kultúry (Genesee Scientific) v štyroch jamkových replikátoch s 5, 10, 25, 50 alebo 100 μM koncentráciami požadovanej zlúčeniny a boli inkubované po dobu 72 hodín. Po 72 hodinách sa na všetky jamky nanieslo farbivo viažuce sa na súpravu DNA, inkubované pri 37°C chránené pred svetlom po dobu 15 minút a intenzite fluorescencie pri 485-500 nm Ex/520-530 nm EM bola následne stanovená pomocou čítačky doštičiek (FilterMax F3, Molekulárne zariadenia; Softmax Pro, Molekulárne zariadenia). Predpokladalo sa, že cytotoxicita zlúčeniny v konkrétnej koncentrácii je úmerná intenzite fluorescencie na základe selektívnej penetrácie a väzby farbiva na DNA degenerovaných, apoptotických alebo nekrotických buniek. Rozsah cytotoxicity sa stanovil nastavením hodnoty fluorescencie pre bunky ošetrené reagentom pre pozitívnu kontrolu na 100% a neošetrené mačacie bunky ako 0% cytotoxicity. Priemerná hodnota fluorescencie pre štyri jamky obsahujúce každú koncentráciu zlúčeniny sa potom interpolovala ako percento (percento cytotoxicity) v rozmedzí od 0 do 100%.

Konflikt záujmov

Autori prehlasujú, že nedošlo k žiadnemu konfliktu záujmov.

Oceňujeme financovanie poskytované Winn Feline Foundation (MTW 17-020; MTW 19-026) a Kalifornskou univerzitou v Davise, Centre for Companion Animal Health (CCAH; 2018-92-F; 2018-94-FE) prostredníctvom darov určených pre výskum FIP viacerými individuálnymi darcami a organizáciami (SOCK FIP, Davis, CA) a nadáciami (fond Philip Raskin, Kansas City, KS).

Doplnkové informácie

Kompletný zoznam zlúčenín testovaných in vitro na aktivitu proti FIPV

Inhibítory nukleozidovej polymerázy

12x GS Nuc AnalogsNucleoside analogNPI
GS-441524 (China-sourced)Nucleoside analog AdenosineNPI
3-Deazaneplanocin A HydrochlorideNucleoside analog AdenosineNPI
AdefovirNucleoside analog AdenosineNPI
GalidesivirNucleoside analog AdenosineNPI
GS-441524 (Manufactured in China)Nucleoside analog AdenosineNPI
MK-0608Nucleoside analog AdenosineNPI
NITD008Nucleoside analog AdenosineNPI
DidanosineNucleoside analog AdenosineNPI
Tenofovir alafenamideNucleoside analog AdenosineNPI
Tenofovir disoproxil fumarateNucleoside analog AdenosineNPI
EIDD 1931Nucleoside analog Cytidine 
EIDD 2801Nucleoside analog Cytidine 
2′-C-methylcytidineNucleoside analog CytidineNPI
Gemcitabine HydrochlorideNucleoside analog CytidineNPI
2-C-methylguanosineNucleoside analog GuanosineNPI
7-methylguanosineNucleoside analog GuanosineNPI
EntecavirNucleoside analog GuanosineNPI
MizoribineNucleoside analog GuanosineNPI
RibavirinNucleoside analog GuanosineNPI
PSI-6206Nucleoside analog UridineNPI
6-AzauridineNucleoside analog UridineNPI
BalapiravirNucleoside analog CytidineNPI
SofosbuvirNucleoside analog UridineNPI
FavipiravirNucleoside analog PurineNPI
Celkom 36

Inhibítory proteázy

GrazoprevirNS3/4A protease inhibitorPI
RupintrivirRhinoviral 3CP inhibPI
LopinavirAntiretroviral PIPI
RitonavirAntiretroviral PIPI
NelfinavirAntiretroviral PIPI
Disulfiram (tetraethyliuram disulfide)Papain-like protease inhibPI
K777/K11777Cysteine protease inhibitorPI
TelaprevirNS3/4A protease inhibitorPI
Camostat mesylateSerine protease inhibitorPI
ParitaprevirSerine protease inhibitorPI
GC376Coronavirus protease inhibitorPI
Celkom 11

NS5A inhibítory

VelpatasvirNS5A InhibitorNS5A Inhibitor
Ravidasvir/PPI-668NS5A InhibitorNS5A Inhibitor
LedipasvirNS5A InhibitorNS5A Inhibitor
OmbitasvirNS5A InhibitorNS5A Inhibitor
PibrentasvirNS5A InhibitorNS5A Inhibitor
DaclatasvirNS5A InhibitorNS5A Inhibitor
ElbasvirNS5A InhibitorNS5A Inhibitor
Celkom 7

NNPI

DasabuvirNon-nucleoside polymerase inhibitorNNPI
Celkom 1

Iné

MonensinIonophoreIné
Phenazopyridine hydrochlorideCrystalline solidIné
Pyrvinium pamoate hydrateAndrogen receptor inhibitorIné
Toremifene citrateSelective estrogen receptor modulator Iné
AM580Retinobenzoic derivativeIné
HomoharringtonineTranslation elongation inhibIné
Amodiaquine4-aminoquinoloneIné
Celkom 7

Midwestern Chemical Fragments

F0472-0017Midwestern
F6190-0257Midwestern
F6279-0675Midwestern
F2167-1080Midwestern
F6190-0740Midwestern
F6438-2155Midwestern
F3411-5663Midwestern
F6233-0011Midwestern
F9995-2543Midwestern
F2124-0890Midwestern
F2711-2577Midwestern
F2130-0055Midwestern
F2493-3358Midwestern
F2459-0974Midwestern
F2124-0465Midwestern
F1899-2269Midwestern
F2185-1982Midwestern
F2189-0717Midwestern
F2147-0158Midwestern
F1371-0192Midwestern
F2156-0057Midwestern
F9995-2431Midwestern
F3349-0218Midwestern
F2156-0059Midwestern
F2156-0070Midwestern
F5856-0194Midwestern
F2147-0975Midwestern
Celkom 27

Literatúra

  1. Chang HW, de Groot RJ, Egberink HF, et al. Feline infectious peritonitis: Insights into feline coronavirus pathobiogenesis and epidemiology based on genetic analysis of the viral 3c gene. J Gen Virol 2010; 91: 415–420.CrossRefPubMedWeb of ScienceGoogle Scholar
  2. Pedersen NC, Liu H, Dodd KA, et al. Significance of coronavirus mutants in feces and diseased tissues of cats suffering from feline infectious peritonitis. Viruses 2009; 1: 166–184.CrossRefPubMedWeb of ScienceGoogle Scholar
  3. Vennema H, Poland A, Foley J, et al. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 1998; 243: 150–157.CrossRefPubMedWeb of ScienceGoogle Scholar
  4. Rottier PJM, Nakamura K, Schellen P, et al. Acquisition of Macrophage Tropism during the Pathogenesis of Feline Infectious Peritonitis Is Determined by Mutations in the Feline Coronavirus Spike Protein. J Virol 2005; 79: 14122–14130.Abstract/FREE Full TextGoogle Scholar
  5. Diaz JV., Poma R. Diagnosis and clinical signs of feline infectious peritonitis in the central nervous system. Can Vet J 2009; 50: 1091–1093.PubMedGoogle Scholar
  6. Foley JE, Lapointe JM, Koblik P, et al. Diagnostic features of clinical neurologic feline infectious peritonitis. J Vet Intern Med 1998; 12: 415–423.CrossRefPubMedGoogle Scholar
  7. Pedersen NC. An update on feline infectious peritonitis: Diagnostics and therapeutics. Vet J 2014; 201: 133–141.CrossRefPubMedGoogle Scholar
  8. Stiles J. Ocular manifestations of feline viral diseases. Vet J 2014; 201: 166–173.CrossRefPubMedGoogle Scholar
  9. Pedersen NC. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 2009; 11: 225–258.CrossRefPubMedGoogle Scholar
  10. Hohdatsu T, Yamada M, Tominaga R, et al. Antibody-Dependent Enhancement of Feline Infectious Peritonitis Virus Infection in Feline Alveolar Macrophages and Human Monocyte Cell Line U937 by Serum of Cats Experimentally or Naturally Infected with Feline Coronavirus. J Vet Med Sci 1998; 60: 49–55.CrossRefPubMedGoogle Scholar
  11. Takano T, Yamada S, Doki T, et al. Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: Antibodydependent enhancement infection of cats with type I FIPV via the oral route. J Vet Med Sci 2019; 81: 911–915.CrossRefPubMedGoogle Scholar
  12. Vennema H, de Groot RJ, Harbour DA, et al. Early death after feline infectious peritonitis virus challenge due to recombinant vaccinia virus immunization. J Virol 1990; 64: 1407–1409.Abstract/FREE Full TextGoogle Scholar
  13. Fenner’s Veterinary Virology. 2017. Epub ahead of print 2017. DOI: 10.1016/c2013-0-06921-6.CrossRefGoogle Scholar
  14. Wei X, Wang X, Peng W, et al. The Lancet Respiratory Medicine Clinical characteristics of SARS-CoV-2 infected pneumonia with diarrhea. 4.Google Scholar
  15. Hosoda T, Sakamoto M, Shimizu H, et al. SARS-CoV-2 enterocolitis with persisting to excrete the virus for about two weeks after recovering from diarrhea: A case report. Infect Control Hosp Epidemiol 2020; 1–4.Google Scholar
  16. Hamming I, Timens W, Bulthuis MLC, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. 2004; 631–637.Google Scholar
  17. Zhang J, Wu Y, Wang R, et al. Bioinformatic analysis of reproductive system Bioinformatic analysis reveals that the reproductive system is potentially at risk from SARS-CoV-2. 2020; 1–15.Google Scholar
  18. Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol. Epub ahead of print 2020. DOI: 10.1038/s41569-020-0360-5.CrossRefGoogle Scholar
  19. Chen L, Deng C, Chen X, et al. Ocular manifestations and clinical characteristics of 534 cases of COVID-19 in China: A cross-sectional study. medRxiv 2020; 2020.03.12.20034678.Google Scholar
  20. Mao L, Wang M, Chen S, et al. Neurological Manifestations of Hospitalized Patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv 2020; 2020.02.22.20026500.Google Scholar
  21. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz 2020; 10–12.Google Scholar
  22. Li Y-C, Bai W-Z, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol 2020; 24–27.Google Scholar
  23. Shi J, Wen Z, Zhong G, et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS-coronavirus 2. Science. Epub ahead of print 2020. DOI: 10.1126/science.abb7015.Abstract/FREE Full TextGoogle Scholar
  24. Pedersen NC, Kim Y, Liu H, et al. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg 2018; 20: 378–392.CrossRefGoogle Scholar
  25. Murphy BG, Perron M, Murakami E, et al. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet Microbiol 2018; 219: 226–233.Google Scholar
  26. Pedersen NC, Perron M, Bannasch M, et al. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg 2019; 21: 271–281.Google Scholar
  27. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382: 929–936.CrossRefPubMedGoogle Scholar
  28. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269–271.CrossRefPubMedGoogle Scholar
  29. Nakagawa F, May M, Phillips A. Life expectancy living with HIV: Recent estimates and future implications. Curr Opin Infect Dis 2013; 26: 17–25.CrossRefPubMedGoogle Scholar
  30. Simonetti FR, Kearney MF. Review: Influence of ART on HIV genetics. Current Opinion in HIV and AIDS. Epub ahead of print 2015. DOI: 10.1097/COH.0000000000000120.CrossRefGoogle Scholar
  31. Arts EJ, Hazuda DJ. HIV-1 antiretroviral drug therapy. Cold Spring Harb Perspect Med; 2. Epub ahead of print 2012. DOI: 10.1101/cshperspect.a007161.Abstract/FREE Full TextGoogle Scholar
  32. Kim Y, Liu H, Kankanamalage ACG. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. 2016; 1–18.Google Scholar
  33. Kumar GN, Jayanti VK, Johnson MK, et al. Metabolism and disposition of the HIV-1 protease inhibitor lopinavir (ABT-378) given in combination with ritonavir in rats, dogs, and humans. Pharm Res 2004; 21: 1622–1630.CrossRefPubMedWeb of ScienceGoogle Scholar
  34. Sulejmani N, Jafri SM, Gordon SC. Pharmacodynamics and pharmacokinetics of elbasvir and grazoprevir in the treatment of hepatitis C. Expert Opin Drug Metab Toxicol 2016; 12: 353–361.Google Scholar
  35. Combination Antiretroviral Therapy for HIV Infection – American Family Physicianhttps://www.aafp.org/afp/1998/0601/p2789.html (accessed 6 April 2020).Google Scholar
  36. Julg B. Atripla™ – HIV therapy in one pill. 2008; 4: 573–577.Google Scholar
  37. Clay PG, Taylor TAH, Glaros AG, et al. “One pill, once daily”: what clinicians need to know about Atripla™. 2008; 4: 291–302.Google Scholar
  38. Hill A, Van Der Lugt J, Sawyer W, et al. How much ritonavir is needed to boost protease inhibitors? Systematic review of 17 dose-ranging pharmacokinetic trials. Aids 2009; 23: 2237–2245.CrossRefPubMedWeb of ScienceGoogle Scholar
  39. A. H, G.R. G, R.J. B. Ritonavir: Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998; 35: 275–291.CrossRefPubMedWeb of ScienceGoogle Scholar
  40. Kwo P, Gane EJ, Peng C, et al. Effectiveness of Elbasvir and Grazoprevir Combination, With or Without Ribavirin, for Treatment-Experienced Patients With Chronic Hepatitis C Infection. Gastroenterology 2017; 152: 164–175.e4.Google Scholar
  41. Zhou Y, Vedantham P, Lu K, et al. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res 2015; 116: 76–84.CrossRefPubMedGoogle Scholar
  42. Alessandro SD, Scaccabarozzi D, Signorini L, et al. The Use of Antimalarial Drugs against Viral Infection. 2020; 1–26.Google Scholar
  43. Rynes RI, Bernstein HN. Ophthalmologic safety profile of antimalarial drugs. In: Lupus. 1993. Epub ahead of print 1993. DOI: 10.1177/0961203393002001051.CrossRefGoogle Scholar
  44. Briceño E, Reyes S, Sotelo J. Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neurosurg Focus. Epub ahead of print 2003. DOI: 10.3171/foc.2003.14.2.4.CrossRefPubMedGoogle Scholar
  45. Ekong M, Igiri A, Ekanem T, et al. The effect of amodiaquine on some brain macromolecules of Wistar rats. Int J Biol Chem Sci. Epub ahead of print 2009. DOI: 10.4314/ijbcs.v2i4.39762.CrossRefGoogle Scholar
  46. Mackenzie AH. Pharmacologic actions of 4-aminoquinoline compounds. Am J Med. Epub ahead of print 1983. DOI: 10.1016/0002-9343(83)91264-0.CrossRefPubMedWeb of ScienceGoogle Scholar
  47. Kuroda K. Detection and distribution of chloroquine metabolites in human tissues. J Pharmacol Exp Ther.Google Scholar
  48. Maguire A, Kolb H. THE EFFECT OF A SYNTHETIC ANTIMALARIAL (AMODIAQUINE) ON THE RETINA. Br J Dermatol. Epub ahead of print 1964. DOI: 10.1111/j.1365-2133.1964.tb15487.x.CrossRefPubMedWeb of ScienceGoogle Scholar
  49. McAnally D, Siddiquee K, Gomaa A, et al. Repurposing antimalarial aminoquinolines and related compounds for treatment of retinal neovascularization. PLoS One. Epub ahead of print 2018. DOI: 10.1371/journal.pone.0202436.CrossRefGoogle Scholar
  50. Keyaerts E, Li S, Vijgen L, et al. Antiviral activity of chloroquine against human coronavirus OC43 infection in newborn mice. Antimicrob Agents Chemother 2009; 53: 3416–3421.Abstract/FREE Full TextGoogle Scholar
  51. Savarino A, Boelaert JR, Cassone A, et al. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect Dis 2003; 3: 722–727.CrossRefPubMedWeb of ScienceGoogle Scholar
  52. Azuma P, Massaquoi M, Job D, et al. Effect of Artesunate–Amodiaquine on Mortality Related to Ebola Virus Disease. 2016; 23–32.Google Scholar
  53. Boonyasuppayakorn S, Reichert ED, Manzano M, et al. HHS Public Access. 2015; 125–134.Google Scholar
  54. Baba M, Toyama M, Sakakibara N. Establishment of an antiviral assay system and identification of severe fever with thrombocytopenia syndrome virus inhibitors. 2017; 25: 83–89.Google Scholar
  55. Savarino A, Lucia MB, Rastrelli E, et al. Anti-HIV Effects of Chloroquine. JAIDS J Acquir Immune Defic Syndr. Epub ahead of print 2004. DOI: 10.1097/00126334-200403010-00002.CrossRefPubMedWeb of ScienceGoogle Scholar
  56. Al-bari AA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging viral diseases. 2017; 5: 1–13.Google Scholar
  57. Terauchi M. Pharmacokinetics of selective estrogen receptor modulators(SERMs). Clin Calcium 2016; 26: 1571–1581.Google Scholar
  58. Agents A, Dyall J, Diseases I, et al. Repurposing of Clinically Developed Drugs for Treatment of Middle. Epub ahead of print 2014. DOI: 10.1128/AAC.03036-14.Abstract/FREE Full TextGoogle Scholar
  59. Zhao Y, Ren J, Harlos K, et al. virus glycoprotein. Nature 2016; 535: 169–172.CrossRefPubMedGoogle Scholar
  60. Dyall J, Nelson EA, Dewald LE, et al. Identification of Combinations of Approved Drugs With Synergistic Activity Against Ebola Virus in Cell Cultures. 2018; 22908: 672–678.Google Scholar
  61. Michimae Y, Mikami S, Okimoto K, et al. The First Case of Feline Infectious Peritonitis-like Pyogranuloma in a Ferret Infected by Coronavirus in Japan. 2010; 99–101.Google Scholar
  62. Ramis A, Amarilla SP. Coronavirus Infection in Ferrets : Antigen Distribution and Inflammatory Response. 2016; 53: 1180–1186.Google Scholar
  63. Watanabe R, Eckstrand C, Liu H, et al. Characterization of peritoneal cells from cats with experimentally ‑ induced feline infectious peritonitis (FIP) using RNA ‑ seq. Vet Res 2018; 1–15.Google Scholar
  64. Inhibitor P, Hoffmann M, Kleine-weber H, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Article SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. 2020; 1–10.Google Scholar
  65. Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. Epub ahead of print 2020. DOI: 10.1101/2020.03.12.20035048.Abstract/FREE Full TextGoogle Scholar
  66. Zhao J, Yuan Q, Wang H, et al. Antibody Responses to SARS-CoV-2 in Patients of Novel Coronavirus Disease 2019. SSRN Electron J. Epub ahead of print 2020. DOI: 10.2139/ssrn.3546052.CrossRefGoogle Scholar
  67. Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol; 2019. Epub ahead of print 2020. DOI: 10.1038/s41577-020-0308-3.CrossRefPubMedGoogle Scholar
  68. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol 2016; 5: 85.CrossRefPubMedGoogle Scholar
Prečítať “Racionálny prístup k identifikácii účinných kombinovaných antikoronavírusových terapií proti mačaciemu koronavírusu”

Neurologická forma mačacej infekčnej peritonitídy a liečba pomocou GS-441524

1.6.2021
Niels C. Pedersen, DVM PhD
Pôvodný článok: The Neurological Form of Feline Infectious Peritonitis and GS-441524 treatment

Úvod

Neurologické postihnutie sa vyskytuje asi u 5–10% prípadov FIP. To sa môže v jednotlivých regiónoch líšiť, pretože na základe skúseností autora sa zdá, že turecké pouličné mačky vykazujú väčšiu prevalenciu. Vek nástupu je podobný ako u iných foriem FIP, pričom väčšina prípadov sa vyskytuje do 3 rokov.

Neurologická FIP sa považuje za formu suchej FIP a typické lézie suchej FIP v oblasti brucha, hrudníka alebo očí sa vyskytujú približne v polovici neurologických prípadov FIP. Neurologické príznaky sú viditeľné iba u asi 5% mačiek s prejavmi vlhkej FIP.1 Každopádne u mačiek došlo k významnému zvýšeniu výskytu neurologickej FIP buď počas liečby s GS-441524, alebo vo forme relapsov v období pozorovania po liečbe u mačiek, ktoré boli pôvodne liečené na neneurologickú FIP.

Klinické príznaky

Neurologická FIP sa vyskytuje v dvoch formách, primárnej a sekundárnej. Abnormálne neurologické príznaky sú prítomné u mačiek s primárnym ochorením. Bežné sú však aj všeobecné príznaky zlého zdravotného stavu, ako napríklad neprospievanie, chudnutie, letargia a nechutenstvo. Horúčka môže byť zjavná alebo skrytá. Asi polovica mačiek s primárnou neurologickou FIP bude mať tiež identifikovateľné lézie mimo CNS a typickými výsledkami krvných testov. Avšak mačky bez zjavných znakov poškodenia CNS budú mať často na paneli CBC a v sére normálne, alebo normálu sa blížiace hladiny.

Skoré neurologické príznaky, rozpoznateľné prospektívne alebo retrospektívne, zahŕňajú lízanie podlahy alebo stien, sporadické zášklby svalov a neurčité správanie a kognitívne abnormality. Anizokória je ďalším skorým znamením. Podozrenie na neurologickú FIP rastie, keď sú klinické príznaky funkčnejšie. Najskorším znakom je zvyčajne postupná strata koordinácie a rovnováhy (ataxia). Nechuť skákať hore alebo dole z vysokých miest je jedným z prvých prejavov nekoordinácie. Inkoordinácia je spočiatku najnápadnejšia u zadných nôh, ale rýchlo sa stáva všeobecnou. V niektorých prípadoch sa môžu vyskytnúť aj záchvaty typu grand mal alebo psychomotorického typu. Záchvaty typu grand mal sa prejavujú krátkou stratou vedomia, silnými rytmickými svalovými kŕčmi postihujúcimi celé telo. Psychomotorická epilepsia je spojená s rôznym stupňom vedomia a nekontrolovanými alebo čiastočne kontrolovanými pohybmi tela.

Mačky so sekundárnou neurologickou FIP sa vyznačujú príznakmi extra-intestinálneho ochorenia a postihnutie CNS sa objaví v neskoršej fáze choroby. Vyskytuje sa často počas antivírusovej liečby iných foriem FIP a je častou príčinou relapsu u mačiek liečených na iné formy FIP. Tieto relapsy sa zvyčajne vyskytujú v priebehu prvých 1-4 týždňov po úspešnej liečbe.

Postihnutie miechy je pri neurologickej FIP často prehliadané, hoci viac ako 50% mačiek so zápalovým ochorením miechy má FIP.2 Postihnutie miechy vedie k fekálnej a/alebo močovej inkontinencii rôznej závažnosti. Paralýza chvosta alebo zadných končatín sú tiež príznakmi ochorenia miechy. Postihnutie miechy pravdepodobne vedie k trvalým neurologickým deficitom a potom k ochoreniu mozgu.

Diagnostika

Náhly výskyt neurologických abnormalít u mačiek mladších ako 5-7 rokov je silným dôkazom FIP už iba ​​na základe samotnej pravdepodobnosti, pretože len málo ďalších chorôb bude mať v tejto vekovej skupine podobné príznaky. Avšak medzi veterinármi existuje tendencia zaradiť systémovú toxoplazmózu na svoj diagnostický zoznam vyššie, najmä keď sa pozorujú očné príznaky alebo príznaky postihnutia CNS. Systémová toxoplazmóza u mačiek je v porovnaní s FIP zriedkavým ochorením a často sa vyskytuje u imunokompromitovaných hostiteľov, vrátane hostiteľov s FIP. 15-17 Je to pochopiteľné, pretože mačky sú v prírode definitívnym hostiteľom Toxoplasma gondii a vyvinul sa u nich stav fakultatívnej symbiózy. Okrem toho je hlavným klinickým prejavom systémovej toxoplazmózy charakteristická pneumónia, niekedy spojená s hepatitídou, nekrózou pankreasu, myozitídou, myokarditídou a dermatitídou.3-8 Uveitída podobná FIP sa vyskytuje u približne 10% mačiek so systémovou toxoplazmózou, 4 a encefalitída je ešte menej častá.7,17 Diagnostický test na systémovú toxoplazmózu je založený na porovnaní titrov protilátok IgG a IgM pomocou postupu nepriamej fluorescenčnej protilátky (IFA). 3 Vysoké titre IgG pri absencii protilátok IgM naznačujú predchádzajúcu expozíciu na toxoplazmu, ktorá môže v populácií divých mačiek dosahovať až 50% .4 Prítomnosť vysokých titrov protilátok IgM je indikáciou systémového rozšírenia organizmu z čreva do iných tkanív a je jednou z požiadaviek na diagnostiku systémového ochorenia. Mnoho mačiek s očnými a neurologickými známkami je však nevhodne liečených na systémovú toxoplazmózu iba na základe vysokých titrov IgG.

Diagnóza typických foriem FIP sa zvyčajne určí spojením informácií o veku a pôvode mačky, historických a fyzických znakov (napr. zlý zdravotný stav, horúčka, brušné alebo hrudné výpotky, hmatateľné hmoty v brušných orgánoch) s určitými laboratórnymi abnormalitami v kompletnom krvnom obraze (anémia; vysoký počet bielych krviniek, nízky počet lymfocytov a vysoký počet neutrofilov), sérovom biochemickom paneli (vysoká celková bielkovina, vysoký globulín, nízky albumín a nízky pomer A:G), vyšetrenia výpotkov, ak sú prítomné (exsudát alebo modifikovaný exsudát, žltý odtieň) a určením pravdepodobnosti, že tieto zistenia možno najlepšie vysvetliť FIP. Definitívnu diagnózu je možné získať identifikáciou koronavírusových proteínov alebo RNA vo výpotkoch alebo vzorkách tkanív pomocou PCR alebo imunohistochémie. Je ale možné, že u mačiek, u ktorých sa vyvinie neurologická FIP počas liečby alebo po liečbe neneurologickej formy, budú mnohé alebo všetky tieto klinické znaky chýbať.

Diagnostika neurologickej FIP, najmä v primárnej forme, sa zvyčajne robí tromi spôsobmi: 1) zvážte všetky historické, klinické a laboratórne nálezy a odhadnite pravdepodobnosť, že sa jedná o FIP, 2) vyšetrite mozog pre charakteristické znaky FIP pomocou magnetickej rezonancie (MRI) a/alebo analýzou mozgovomiechového moku (CSF), 8,9 a 3) liečte na základe predpokladu, že ide o neurologickú FIP, a dúfajte v pozitívnu reakciu na antivírusovú liečbu.

Pri diagnostike neurologickej FIP sa stále viac uplatňuje magnetická rezonancia s vylepšením kontrastu. Dilatácia (hydrocefalus) jednej alebo viacerých mozgových komôr je častou léziou v mozgu.8,9 Podobné rozšírenia vo forme syringomyélie sa dajú pozorovať aj v mieche. Dilatácie sú sekundárne pri zápale okolitého ependymu. Ependyma zabezpečuje vylučovanie, cirkuláciu a udržiavanie homeostázy CSF. Preto je závažnosť sekundárneho obštrukčného hydrocefalu FIP úmerná stupňu ependymálneho zápalu a súvisiaceho zvýšenia kontrastu. Diskrétne lézie parenchýmu nie sú identifikované. MRI výrazne zvyšuje náklady na diagnostiku, anestézia zvyšuje riziko úmrtia u ťažko chorých mačiek a odborné znalosti a vybavenie nie sú vždy k dispozícii. Preto konečná diagnóza často spadá do reakcie na špecifickú antivírusovú liečbu. Liekom voľby pre neurologické prípady FIP je GS-441524.9,12

Analýza CSF je alternatívnym spôsobom kvantifikácie povahy a závažnosti zápalu v ependyme a mozgových blanách. Hladiny proteínu v CSF a počet buniek sú u mačiek s FIP zvýšené a často je možné získať vhodné vzorky pre detekciu infikovaných makrofágov pomocou IHC alebo PCR.10,11 Analýza CSF je spojená s malým rizikom z anestézie a punkcie ihly do cisterny magna.

Liečba

Neurologická FIP sa dá vyliečiť, ak sa cez hematoencefalickú bariéru prejde dostatočné množstvo antivivirotika a vírus nezískal rezistenciu voči lieku.9,12 Terénne testy s inhibítorom vírusovej proteázy GS376 boli prvými, ktoré preukázali, že neurologické príznaky možno významne potlačiť, ale infekcia sa nedá vyliečiť. Za dôvod sa považovala neschopnosť dosiahnuť dostatočne vysoké hladiny GC376 v CNS. Väčší úspech pri liečbe mačiek s neurologickou FIP sa dosiahol pomocou nukleozidového analógu a inhibítora transkripcie vírusovej RNA GS-441524.9,12 Ukázalo sa, že GS-441524 vstupuje do cerebrospinálnej tekutiny (CSF) v koncentráciách od 7-21% krvi, v závislosti od testovanej mačky. 13 Tieto rozdiely hematoencefalickej bariéry medzi mačkami sú pravdepodobným vysvetlením variabilných dávok GS-441524 od 4 do 10 mg/kg denne potrebných pre liečbu prirodzene sa vyskytujúcich prípadov neurologickej FIP.9,12

Súčasné počiatočné dávkovanie pre GS-441524 bolo na základe nedávnych zistení7 stanovené na 10 mg/kg denne subkutánnou cestou. Aj keď je možné liečiť niektoré mačky pri nižšom dávkovaní, 9,12 neexistuje jednoduchý spôsob, ako zmerať silu hematoencefalickej bariéry, takže sa používa najnižšie dávkovanie, ktoré bude mať liečivý efekt pre väčšinu mačiek. Úspešnosť liečby sa meria tak zlepšením klinických príznakov, ako aj zlepšením kritických abnormálnych hodnôt krvných testov. Prírastok hmotnosti a kvalita srsti sú taktiež dôležité kvalitatívne znaky, ktoré je potrebné pozorovať. Sekvenčné analýzy MRI a CSF poskytnú priamejšie dôkazy o reakcii na liečbu,9 ale vo väčšine prípadov sú nepraktické.

Zlepšenie celkového zdravotného stavu a neurologických príznakov sa zvyčajne prejavia do 24-48 hodín a väčšina mačiek predurčených k úplnému zotaveniu sa vráti do normálneho stavu za 4-6 týždňov. Významná časť mačiek však bude reagovať pomalšie a vyžaduje si prehodnocovanie ich klinického stavu a stavu krvných testov každé 4 týždne. Spomalenie priebehu liečby, buď klinicky, alebo vo forme zvratu v počiatočných abnormalitách krvného testu, si bude vyžadovať zvýšenie dávky lieku od +2 do +5 mg/kg denne.9,12

Ukončenie liečby, ktoré je zvyčajne po 84 dňoch, nie je vždy ľahké potvrdiť. Typické abnormality v krvných testoch, ktoré sa používajú pri väčšine ostatných foriem FIP, sa buď nevyskytujú v čase diagnózy, alebo sa vrátia do normálu pred ukončením liečby. Trvalé neurologické abnormality môžu pretrvávať aj po vyliečení infekcie a sťažujú tak klinické vyhodnotenie. Bez analýzy pomocou magnetickej rezonancie a/alebo mozgovomiechového moku, ktoré by potvrdili, či choroba už pominula, zostáva jedinou možnosťou ukončiť liečbu a dúfať, že k relapsu nedôjde.

Komplikácie neurologickej FIP

Relapsy u mačiek liečených na neurologickú FIP sa zvyčajne vyskytujú v priebehu niekoľkých dní po ukončení liečby a sú spôsobené buď neprimeraným dávkovaním a/alebo získaním liekovej rezistencie. Výskyt relapsov sa javí o niečo vyšší ako po liečbe foriem FIP bez postihnutia CNS. Poddávkovanie môže byť výsledkom silnejšej hematoencefalickej bariéry u niektorých mačiek v porovnaní s inými, nekvalitného antivírusového lieku alebo nesprávneho výpočtu dávky. Je však bežné, že sa mačky pri opakovanej liečbe vyliečia, pokiaľ nedošlo k liekovej rezistencii.

Získanie liekovej rezistencie je dobre známe u antivírusových liekov používaných u ľudí na choroby ako HIV/AIDS. Bola zaznamenaná aj u GC37611,14 aj GS-441524 u mačiek.12 Rezistencia na liečivo sa môže vyskytnúť mutáciami buď v pôvodnom FECV, alebo v jeho mutantnom biotype FIP v prírode14, a prejavovať sa nedostatočnou počiatočnou reakciou na liečbu, ale nie je to bežný jav.12 Rezistencia sa pravdepodobnejšie vyskytne počas liečby a dochádza k nej jednak chronickým vystaveniu liečivu, jednak nižšími sub-inhibičnými hladinami liečiva. Rezistencia na liek je zvyčajne čiastočná a dá sa často prekonať zvýšením dávky. Lieková rezistencia sa môže časom časom zhoršiť, a ďalšie zvyšovanie dávkovania už neprinesie žiadny efekt.

Mačky s neurologickou FIP môžu po ukončení liečby vykazovať zvyškové poškodenie mozgu a/alebo miechy a trvalé následky. Medzi postihnutia patrí rôzny stupeň nekoordinácie, zmeny správania a demencia. Najproblematickejšie následky sú spojené s postihnutím miechy. Miecha je uzavretá v kostnej trubici, ktorá neumožňuje veľkú expanziu v prípade zápalu alebo nejakej formy syringomyélie. Postihnutie miechy pri FIP sa často prejavuje rôznymi stupňami fekálnej a/alebo močovej inkontinencie. Pozoruje sa tiež ochrnutie zadných končatín a chvosta, ale je to menej časté. Bohužiaľ, tieto klinické abnormality sú často trvalé, najmä ak sa neurologické ochorenie nelieči dlhší čas.

Jedným z najbežnejších negatívnych výsledkov antivírusovej liečby u mačiek s neurologickou FIP je nedosiahnutie vyliečenia, aj keď pokračovanie v liečbe vysokými dávkami stále umožňuje udržateľnú kvalitu života (t.j. riadenie príznakov ochorenia bez vyliečenia). Táto situácia naznačuje, že inhibícia replikácie vírusu antivírusovými liekmi nemusí byť dostatočná pre vyliečenie infekcie, a že je tiež potrebná účinná imunitná odpoveď. Tento fenomén „liečby bez vyliečenia“ viedol v mnohých prípadoch mnohých majiteľov k tomu, aby v liečbe za každú cenu pokračovali aj po dobu viac ako jedného roka. Tiež to viedlo k mnohým experimentom s ultravysokými dávkami GS441524 (>15 mg/kg denne), rozdelenými dávkami, prechodom z injekcií na perorálnu liečbu, súčasnou perorálnou a injekčnou liečbou, kombinovanou antivírusovou liečbou (napr. GS-441424 plus GC376) a podporou antivírusovej liečby vysokými dávkami kortikosteroidov a iných imunosupresív. Príležitostne sa vyžaduje liečba takýmito spôsobmi liečby, ale výsledok bol pre väčšinu týchto mačiek nepriaznivý.

Existujú nepriame dôkazy o tom, že imunita hostiteľa voči FIP je rozdelená medzi CNS a ostatné časti tela. Výskyt postihnutia CNS sa zdá byť zvýšený, keď vďaka GS-441524 dôjde k inhibícii infekcie mimo CNS. Zdá sa preto, že aktívne ochorenie mimo CNS má inhibičný účinok na ochorenie v CNS. Mačky s čistým neurologickým ochorením často nevykazujú abnormálne hodnoty krvných testov na paneli CBC ani v sére, a to ani pri významných zápalových zmenách v mozgovomiechovom moku.8 Mačky s neurologickou FIP majú v porovnaní s inými formami FIP často najvyššie sérum, teda najvyššie hodnoty titra protilátok v CSF.8 To všetko sú dôkazy o „kompartmentalizácii“ infekcie na jednej alebo druhej strane hematoencefalickej bariéry.

Referencie

  1. Pedersen NC. 2009. A review of feline infectious peritonitis virus infection: 1963-2008. J Feline Med Surg 11:225-58.
  2. Marioni-Henry K. Feline spinal cord diseases. Vet Clin No Am Small Anim Pract. 2010;40:1011–1028.
  3. Pedersen NC. Toxoplasmosis. In: Feline Infectious Diseases. American Veterinary Publications, Inc., Goleta, CA, USA, 1988, pp 372-380.
  4. Petrak M, Carpenter J. Feline toxoplasmosis. J Am Vet Assoc. 1965; 146:728734. 
  5. Jokelainen P, Simola O, Rantanen E, Nareaho A, Lohi H, Sukura A. Feline toxoplasmosis in Finland: Cross-sectional epidemiological study and case series study. J Vet Diagn Invest. 2012; 24:1115–1124.
  6. Henriksen P, Dietz HH, Henriksen SA. Fatal toxoplasmosis in five cats. Vet Parasitol. 1994;55:15-20.
  7. Holzworth J. Encephalitic toxoplasmosis in a cat. J Am Vet Assoc. 1954; 124:313-316.
  8. Foley JE, Lapointe JM, Koblik P, Poland A, Pedersen NC Diagnostic features of clinical neurologic feline infectious peritonitis. J Vet Intern Med. 1998;12:415-423.
  9. Dickinson PJ, Bannasch M, Thomasy SM, Murthy VD, Vernau KM, Liepnieks M, Montgomery E, Knickelbein KE, Murphy B, Pedersen NC. Antiviral treatment using the adenosine nucleoside analogue GS‐441524 in cats with clinically diagnosed neurological feline infectious peritonitis. J Vet Intern Med. 2020; 34:1587–1593.
  10. Ives EJ, Vanhaesebrouck AE, Cian F. 2013. Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages. J Feline Med Surg. 2013;15:1149–1153. 
  11. Pedersen NC, Kim Y, Liu H, Galasiti Kankanamalage AC, Eckstrand C, Groutas WC, Bannasch M, Meadows JM, Chang KO. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg. 2018;20:378-392.
  12. Pedersen NC, Perron M, Bannasch M, et al. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. J Feline Med Surg. 2019;21:271-281. 
  13. Murphy BG, Perron M, Murakami E, et al. The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Vet Microbiol. 2018;219:226-233. 
  14. Perera KD, Rathnayake AD, Liu H, Pedersen NC, Groutas WC, Chang KO, Kim Y. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. Vet Microbiol. 2019;237:108398. 
  15. Ward, B.C. and Pedersen, N.C.:  Infectious Peritonitis in Cats.  J Am Vet Med.  1969;154:26-35.  
  16. Toomey JM, Carlisle-Nowak MM, Barr SC, Lopez JW, French TW, Scott FW, Hoose W, Pizano S, Dubey JP. Concurrent toxoplasmosis and feline infectious peritonitis in a cat. J Am Anim Hosp Assoc. 1995;31:425-428.
  17. Zandonà L, Brunetta R, Zanardello C, Vascellari M, Persico L, Mazzolini E. Cerebral toxoplasmosis in a cat with feline leukemia and feline infectious peritonitis viral infections. Can Vet J. 2018;59:860-862
Prečítať “Neurologická forma mačacej infekčnej peritonitídy a liečba pomocou GS-441524”
sk_SKSK